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Abstract

Whereas the rules underlying the perceived intensity of binary mixtures have been investigated, minimal efforts have been
directed at elucidating the rules underlying the perceived pleasantness of such mixtures. To address this, 84 subjects ranked the
pleasantness and intensity of 5 distinct binary mixtures (15 pairs, inter-stimulus interval = 4 s, inter-trial interval = 30 s, flow = 6
l/min, pulse = 2 s) constructed from different ratios (0:100%, 25:75%, 50:50%, 75:25%, and 100:0%, olfactometer-
generated vapor phase). We found that in the majority of cases, the pleasantness of the mixture fell between the pleasantness
values of its separated constituents and that it was strongly influenced by the relative intensities of the constituents. Based on
these results, we proposed a prediction paradigm for the pleasantness of binary mixtures from the pleasantness of their
separated constituents weighted by their respective perceived intensities. The uniqueness of the proposed paradigm is that it
neither requires presetting an interaction constant between the mixture components nor require any factorization of the
pleasantness weights. It does, nonetheless, require solid psychophysical data on the separated components at their different
concentrations, and currently it can only explain the behavior of intermediate pleasantness of mixtures.

Key words: mixtures, olfaction, pleasantness, psychophysics

Introduction

A key to the rules underlying the link between the physical

structure of stimuli and their eventual percept may lie in the

dynamics of stimulus mixture perception. The classic exam-

ple of this was in vision where the psychophysical study of
color mixtures provided significant insight into the neurobi-

ology of color vision. Here we aim to use a similar approach

in the study of olfaction. In the case of vision, mixing stimuli

that varied along the key perceptual axis of color may have

been an intuitively obvious choice, but what perceptual axis

should one concentrate on in olfaction? One possibility is to

address the categorical identification of an odorant mixture

based on the categorical identification of its constituents, in-
dependent of any axis on which they may lie (Olsson 1994,

1998; Deisig et al. 2002; Cometto-Muniz et al. 2005). This,

however, amounts tomixingmultidimensional objects rather

than mixing a particular trait. Unsurprisingly, when 2 mul-

tidimensional objects are mixed, the result is an object that

is an impoverished version of either one or the other of

the original objects (Spence and Guilford 1933; Moskowitz

and Barbe 1977). This is true in vision and audition and is
evident in olfaction where binary mixtures typically (al-

though not always) smell like poor versions of one of their

constituents. Which constituent will dominate the percept

of the eventual mixture can indeed be predicted based on

the perceived intensity of each (Lawless 1977; Laing et al.

1984; Olsson 1994, 1998).

With this in mind, an alternative to mixing odor objects is

mixing odorants that vary along a selected olfactory trait or
axis. The olfactory perceptual axis with the clearest link be-

tween physical stimulus attributes and ensuing percept is

perceived intensity, which is a reflection of stimulus concen-

tration (Cain 1969). Indeed, several experiments and models

have detailed the expected perceived intensity of a binary

mixture based on the intensities of its constituents (Laffort

and Dravnieks 1982). Among these models is the vector

model (Berglund et al. 1973), in which the perceived intensity

of the mixture, RAB, is a vector sum of the perceived inten-

sities of the unmixed components (RA and RB). That is,

RAB =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

A + R2
B + 2RARBcosa

q
, where a is an interaction

coefficient between the mixture constituents. The Euclidean

additivity model, which is the special case where cos(a) = 0.

TheUmodel (Patte and Laffort 1979), followed by the equa-

tion: RAB = RA + RB + 2cosaAB

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RARB

p
, with cosaAB =

RAB – RA – RB

2
ffiffiffiffiffiffiffiffiffi
RARB

p as an estimate for the interaction coefficient a

and others (Berglund et al. 1973; Berglund 1974; Laffort

et al. 2002).
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An additional key perceptual axis in olfaction is odorant

pleasantness. Pleasantness is the primary perceptual aspect

humans use in order to discriminate odorants (Schiffman

1974; Godinot and Sicard 1995) or in order to combine them

into groups (Berglund et al. 1973; Schiffman et al. 1977).

Also, pleasantness emerges as the primary dimension in mul-

tidimensional analyses of perceptual odor space (Moskowitz

and Barbe 1977; Khan et al. 2007). Finally, studies with new-

borns suggest that at least some aspects of olfactory pleas-

antness may be innate (Steiner 1979; Soussignan et al. 1997).

In other words, several lines of research converge to suggest

that pleasantness is a primary perceptual dimension of olfac-

tion. Efforts to elucidate the principles underlying mixture

pleasantness have so far met with limited success. Spence

and Guilford (1933) reported intermediacy between the

pleasantness scores of the components, that is, the pleasant-

ness estimates of the mixture were lower than the values of

the pleasant component and higher than the values of the less

pleasant one. Nonetheless, they could not evaluate an exact

rule for predicting the mixture’s pleasantness.
Moskowitz and Barbe (1977) also observed intermediacy

in the pleasantness estimates of mixtures in the majority

of cases, but not in all. They reported modestly successful

attempts at finding a quantitative model for pleasantness

additivity in binary mixtures. However, their regression

analysis was applied to a limited set of odorants, required

experimental factorization of the model for each mixture,

and did not account for the contribution of the intensities
of the components, which is known to contribute to the qual-

ity of the olfactory percept.

Because the psychophysical attributes of pleasantness and

intensity are interrelated (Henion 1971; Doty 1975), a good

predictive approach to mixture pleasantness is to account for

the causal effects of shifts in intensity on the pleasantness

of the mixture. Lawless proposed a prediction model for

the pleasantness of binary mixtures from the pleasantness
of their constituents, based on their pleasantness intensity

dependency (Lawless 1977). He tested 2 examples of binary

mixtures, each composed of a pleasant odorant mixed with

an unpleasant one at various mixture concentrations. He

then suggested a linear regression model for the pleasantness

of the mixture from the pleasantness of its constituents. That

is, for a given mixture of odorants A and B, PAB =

CAPA +CBPB; with PAB as the pleasantness of the mixture,
PA and PB as the pleasantness of the separated constituents,

and CA and CB as their respective weights. The pleasantness

of the constituents (PA and PB) was in turn a second-order

polynomial function of their intensity. For example, for sub-

stance A, PA = C0 +C1IA +C2I
2
A, with IA as the intensity of

substance A at a certain concentration and C0 through C2 as

the polynomial weights, which were fitted experimentally.

These pleasantness intensity polynomial functions developed
in Lawless (1977) for the mixture’s constituents required

odorant-specific adjustment of the weights, and the linear

model describing the pleasantness of the mixture (PAB) re-

quired experimental adjustment of the weights of the mixture

constituents (CA and CB).

Here we propose a new prediction paradigm for the pleas-

antness of binary mixtures from the pleasantness and inten-

sities of their separated constituents at different mixing
ratios. This paradigm neither requires presetting an interac-

tion constant between the mixture components nor require

factorization of the pleasantness weights. It does, nonethe-

less, require solid psychophysical data of the separated com-

ponents at their different concentrations, and currently it can

only explain the behavior of intermediate pleasantness of the

mixture.

Materials and methods

Subjects

Eighty-four healthy normosmic subjects (50 females) rang-

ing in age from 23 to 36 years participated in the study after

providing informed consent to procedure approved by

Helsinki committee. Subjects were paid for participation.

Olfactometer

Experiments were conducted in a stainless steel–coated room

subserved by high efficiency particulate air filter (HEPA) and

carbon filtration. A 7-channel air dilution olfactometer of

a type previously described in detail (Johnson and Sobel
2007) was used for the delivery of binary mixtures and of un-

mixed odorants (Figure 1). Undiluted liquid odorants, 98%,

supplied by Sigma–Aldrich (Sigma–Aldrich, Rehovot,

Israel) were sited in stainless steel vessels generating the odor

vapors in closed channels. Two separatemass flow controllers

(MFCs) determined the airflow of each of the mixture’s com-

ponents, followed by the opening of the respective channels

with 2-way valves. Another MFC determined the dilution
of the mixture with clean air. Comfortably seated subjects

situated their head on a chin rest where stimuli were delivered

through a stainless steel filter situated in front of the nose.

Odorants

Six different odorants were chosen for composing the vari-

ous mixtures. The odorants were selected based on their lo-

cations within previously published olfactory perceptual and
chemical spaces, where the primary perceptual axis reflected

odorant pleasantness (Khan et al. 2007).

Specifically, 3 odorants had positive pleasantness values

(L-carvone, linalool, and phenylethyl alcohol), and the other

3 had negative pleasantness values (valeric acid, isovaleric

acid, and butanoic acid). Three types of mixtures were

tested: 1) pleasant odorant mixed with a pleasant odorant

(L-carvone and linalool); 2) unpleasant odorant mixed with
an unpleasant odorant (valeric acid and isovaleric acid); and,

finally, 3) pleasant odorant mixed with an unpleasant odor-

ant (L-carvone mixed with valeric acid, linalool mixed with
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isovaleric acid, and phenylethyl alcohol mixed with Butaoinc

acid). See Table 1.

Procedure

Selecting concentrations of mixture constituents

A critical decision when setting out to predict the interaction

of components in a mixture is whether the components will

be selected based on their relative concentrations or their rel-

ative perceived intensities. Because the perceived intensities

of the mixture constituents play a pivotal role in determining

the mixture’s perceived quality (Laing et al. 1984), we opted

for equating perceived intensity. In order to generate a good

first approximation of equated perceived intensity, the com-

ponents of each mixture were determined using a group of 10

subjects independent from those tested later. The procedure

for equation was as follows: for a mixture of A and B, we
aimed at generating 5 mixture versions: 1) 100% A – 0% B,

2) 75% A – 25% B, 3) 50% A – 50% B, 4) 25% A – 75% B,

and 5) 0% A – 100% B, where 100% A would be equated

for intensity with 100%B, 75%Awould be equated for inten-

sity with 75% B, 50% A would be equated for intensity with

50%B, and 25%Awould be equated for intensitywith 25%B.

To this end, taking the case of equating the intensities of 25%

Aand 25%B, subjects smelled a stimulus of 25%A/75% clean

Table 1 Mixture composition

Inclusive
pleasantness

Odorant name
(abbreviation)

CAS # Flow rate of mixture components (l/min)

1) 0% 1) 25% 1) 50% 1) 75% 1) 100%

2) 100 % 2) 75% 2) 50% 2) 25% 2) 0%

Unpleasant Valeric acid (VA) 109-52-4 A1) 0 B1) 1.4 C1) 2.9 D1) 4.4 E1) 5.9

Pleasant Linalool (LIN) 78-70-6 A2) 6 B2) 4.5 C2) 3 D2) 1.5 E2) 0

Unpleasant Isovaleric acid (IVA) 504-74-2 A1) 0 B1) 1.3 C1) 2.8 D1) 4.25 E1) 5.7

Pleasant L-Carvone (LC) 6485-40-1 A2) 6 B2) 4.5 C2) 3 D2) 1.5 E2) 0

Unpleasant Butanoic acid (BA) 107-92-6 A1) 0 B1) 1 C1) 2.6 D1) 4.2 E1) 5.7

Pleasant Phenylethyl alcohol (PEA) 60-12-8 A2) 6 B2) 4.5 C2) 3 D2) 1.5 E2) 0

Unpleasant Valeric acid (VA) 109-52-4 A1) 0 B1) 1.35 C1) 2.75 D1) 4.2 E1) 5.7

Unpleasant Isovaleric acid (IVA) 504-74-2 A2) 6 B2) 4.5 C2) 3 D2) 1.5 E2) 0

Pleasant L-Carvone (LC) 6485-40-1 A1) 0 B1) 1.4 C1) 3 D1) 4.5 E1) 5.9

Pleasant Linalool (LIN) 78-70-6 A2) 6 B2) 4.5 C2) 3 D2) 1.5 E2) 0

Composition of the 5 mixtures. Columns from left to right: mixture type, odorant names, odorant CAS numbers, mixture composition at 5 concentration ratios
(denoted by the approximated percentages of the components in the mixture, numbered as 1 or 2). For each mixture, the separated constituents were diluted
with clean air to the overall flow of the mixture and tested for their pleasantness and intensity, as detailed in the text.

Figure 1 Experimental setup: Left is the user panel for rating the absolute and relative pleasantness. Right is the automated olfactometer introducing the
subject the odorized stimuli.
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air and a stimulus of 25%B/75% clean air (repeated and coun-

terbalanced for order) and determined which of the stimuli

was of higher perceived intensity. This stronger component,

25% A or 25% B, was diluted by replacing quanta of 100 ml/

min of the odorized air with equivalent quanta of clean air.
For example, if trial 1 consisted of 1.5 l/minA + 4.5 l/min clean

air (total 6 l/min) versus 1.5 l/min B + 4.5 l/min clean air and

odorAwas rated asmore intense, then trial 2would consist of

1.4 l/min A + 4.6 l/min clean air (total 6 l/min) versus 1.5 l/min

B + 4.5 l/min clean air. This procedure was repeated (inter-

stimulus interval [ISI] = 4 s, inter-trial interval [ITI] = 30 s,

total flow = 6 l/min, and pulse duration = 2 s) and counterbal-

anced for order, until the 2 stimuli were equated for perceived
intensity (note that total flow denoted as 100% ranged be-

tween 5.7 and 6 l/min across experiments but was always ex-

actly equal within experiments). Thus, by definition, one of

the 2 componentswasat exactly25%airdilutionand theother

was at some lower dilution concentration (e.g., 22%) where

they were matched for perceived intensity. This was repeated

for the 50%, 75%, and 100% dilutions. The actual concentra-

tions used for each component are detailed in Table 1.

Obtaining pleasantness estimates

Following the preset of the odorants’ concentrations, a min-

imum of 20 subjects ranked the pleasantness of each of the 5
mixtures and their separated constituents diluted with clean

air. On a given trial, the subject first received one stimulus

(first odor) and ranked its pleasantness on a visual analogue

scale (VAS). Then, he/she received a second stimulus (second

odor) and ranked its pleasantness on a second VAS, with the

previous one still visible (Figure 1). This provided us with

both an absolute measure of pleasantness for each stimulus

(i.e., the rating between –5 and 5 on each VAS) as well as
a relative measure of pleasantness for one stimulus versus

the other (model building was eventually based on the abso-

lute, not relative, values). Table 2 shows all randomized pairs

of stimuli presented in an experimental session. In this table,

each adjacent pair of rows of the same column (namely

‘‘First odor’’ and ‘‘Second odor’’) represents a single trial,

inwhich the two stimuli presented to the subject were denoted

by ‘‘first’’ and ‘‘second’’ odor. Note that each trial was re-

peated twice with odor order counterbalanced. For example,

the trial A1 preceding C1 (Table 2, first column, rows 3 and 4)

was repeated in the reverse order—C1 precedingA1 (Table 2,
second column, rows 3 and 4). In all cases, ISI = 4 s, ITI = 30 s,

andpulseduration=2s.Followingthepleasantnessscoring, in

10 additional trials, subjects ranked the intensity of the mix-

ture’s constituents diluted with clean air, that is, 0%, 25%,

50%, 75%, and 100% of each of the separated components.

Duetomachineprecisionerror inherent toMFCs,theminimal

flow of an odorant, here described as 0% odor, in fact ranged

up to 0.3 l/min.

Results

Intensity ratings

In most cases, the intensity values of the mixture components

diluted with clean air decreased gradually as a function of

their dilution, as shown clearly in the top panel of Figure 2.

The only exceptions were the cases of 0% and 25% dilutions

in isovaleric acid and the 50% and 75% dilutions in valeric

acid, where no significant change was observed with the

change in dilution (Figure 2, top right panel). Also, the
linalool–L-carvone mixture showed only mild change in

intensity as a function of concentration with significantly

large variances across subjects and almost no dynamic range

within subjects (Figure 4, right panel).

Intensity estimates obtained during the pleasantness

experiments differed slightly, but significantly from those

obtained with the independent group of 10 subjects. Specif-

ically, there were consistent differences in the perceived
intensity of butanoic acid and phenylethyl alcohol in all

dilution steps. In isovaleric acid and L-carvonemixture, there

were differences in all but the 75% dilution step. In valeric

acid and linalool mixture, we observed a difference only

in the 0% case, and in the case of valeric acid and isovaleric

acid, we observed differences in all but the 25% dilution step.

Table 2 Stimuli pairs presented in an experiment session

First odor A1 + A2 C1 + C2 C1 + C2 E1 + E2 B1 + B2 D1 + D2 A1 + A2 D1 + D2 B1 + B2 E1 + E2

Second odor C1 + C2 A1 + A2 E1 + E2 C1 + C2 D1 + D2 B1 + B2 D1 + D2 A1 + A2 E1 + E2 B1 + B2

First odor A1 C1 C1 E1 B1 D1 A1 D1 B1 E1

Second odor C1 A1 E1 C1 D1 B1 D1 A1 E1 B1

First odor A2 C2 C2 E2 B2 D2 A2 D2 B2 E2

Second odor C2 A2 E2 C2 D2 B2 D2 A2 E2 B2

Thirty randomized trials given in one experiment session are specified. Each adjacent pair of rows of the same column represents a pair of stimuli presented in
successive order in a single trial, denoted as ‘‘first’’ and ‘‘second’’ odor. These pairs were ranked for their relative and absolute pleasantness as described in the
text. Rows 3 through 6 represent the separated constituents of the mixtures diluted with clean air to the overall flow of their respective mixtures. Following the
30 trials of pleasantness ratings, the separated mixture constituents were also ranked for their intensities (i.e., 10 randomized stimuli: A1 through E1 and A2
through E2).
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The intensity ratings of all substances exceeded 0 at their

0% concentration. This presumably reflected a combination

of subject bias (subjects rarely perceive ‘‘no odor’’) and the

aforementioned olfactometer machine precision error.

Because the probability distributions of the intensity scores
were not always normal, we used the median values of the

subjects’ ratings rather than their means. These intensity

scores were then used for the calculation of the weights in

the prediction models detailed later (eqs 1 through 5).

Pleasantness ratings

Inmost cases, thepleasantness ratingsof themixtures (Figure 3,

blue curves) fell between the pleasantness ratings of their
separated constituents (Figure 3, red and black curves), that

is, intermediacy of the mixture’s pleasantness was observed.

Significant hyperadditivity in the Z scores of the mixture’s

pleasantnesswasobserved in themixtureof L-carvoneand lin-

alool, that is, the pleasantness of the mixture (Figure 4 left

panel, blue curve)was higher than thepleasantness of the con-

stituents (Figure 4 left panel, red and black curves) in more

than one standard error of the mean Z score value in the
50–50% case.

An insignificant trend toward subadditivity was observed

in the case of butanoic acid and phenylethyl alcohol (Figure

3, second panel from the right), that is, the pleasantness of

the mixture (Figure 3, blue curve) was lower than that of the

less pleasant component (Figure 3, black curve).

In accordance with previous observations (Doty 1975), the

pleasantness of substances varied as a function of their inten-
sity, which was in turn a function of their concentration. For

example, an odorant that was unpleasant at suprathreshold

concentration could be pleasant at near-threshold concen-

trations. This phenomenon was evident here in the cases

of valeric acid and butanoic acid. As noted above, the inten-

sity ratings often exceeded 0 at the 0% concentration. In ac-

cordance with the nonzero intensities at 0% concentration,

thepleasantness scoresof valeric acidandbutanoic acidat this
concentration were not neutral, but in fact slightly pleasant.

The pleasantness estimates of the pleasant–pleasant pair

(L-carvone–linalool) were exceptional in their large variances

across subjects and their moderate increase as a function of

concentration (Figure 4). For this reason, we chose to show

here the Z score values of the pleasantness rather than the

medians or means.

Prediction models

The proposed scheme aims at predicting the pleasantness of
binary mixtures mixed in gas phase from the pleasantness

Figure 2 Top: Intensity estimates of the separated constituents diluted with clean air to the overall flow rate of their corresponding mixtures. In each
experiment session, these 10 randomized stimuli were estimated for their intensity on a number-free VAS scale ranging between ‘‘extremely mild’’ (0) and
‘‘extremely intense’’ (10). X axis is the approximated percentage of the neat odorants (see Table 1). Y is the median of the intensity estimates of all subjects
with corresponding standard errors of the mean. VA – LIN: n = 21, IVA – LC: n = 20, BA – PEA: n = 22, VA – IVA: n = 21. Bottom: Model weights constructed
from the constituents’ intensities (top panel) for the 2 models that performed best: dashed, weights implemented from the ‘‘interaction model’’ (Olsson 1994,
eq. 5); continuous, weights of the sin model (eq. 2). These weights were substituted as the linear summation coefficients (WA, WB), composing the mixture’s
pleasantness (eq. 1).
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of their separated constituents diluted with clean air to the

same mixture volume, given the perceived intensities of the

constituents.

In other words, given pleasantness values of the mixture

constituents, PA and PB, and their respective intensities,

IA and IB, we suggest a prediction paradigm for the pleasant-

ness of the mixture, PAB, using a linear combination (eq. 1)

of the components pleasantness, weighted by WA and WB

that are computed in different ways.

PAB = WA � PA + WB � PB: ð1Þ

In the ‘‘sin model’’, the weights of the mixture’s constitu-

ents, WA and WB, depend on the normalized intensities of

the separated constituents ( IA
IA + IB

and IB
IA + IB

) in a squared si-

nusoidal manner (eq. 2):

WA =
sin2

�
p
2
� IA
IA + IB

�

sin2
�
p
2
� IA
IA + IB

�
+ sin2

�
p
2
� IB
IA + IB

� : ð2aÞ

WB =
sin2

�
p
2
� IB
IA + IB

�

sin2
�
p
2
� IA
IA + IB

�
+ sin2

�
p
2
� IB
IA + IB

� : ð2bÞ

In the ‘‘arithmetic mean,’’ the pleasantness of the mixture

is simply an arithmetic average of the pleasantness of the

constituents:

Figure 3 Top: Medians of pleasantness ratings of the mixtures (blue) and their separated constituents (black and red). Green curves are the predicted
pleasantness values of the mixtures calculated with the sin model (eqs 1 and 2). An important distinction regarding this graph is that the percent values
of the X axis for each component reflect the ratios after equating the components’ perceived intensity. Thus, for example, the point of 50% L-carvone
mixed with 50% isovaleric acid in fact reflects a mixture of 3 l/min L-carvone mixed with 2.8 l/min isovaleric acid = 5.8 l/min (blue) and the corresponding
mixture constituents: 3 l/min L-carvone + 2.8 l/min clean air = 5.8 l/min (red) and 2.8 l/min isovaleric acid + 3 l/min clean air = 5.8 l/min (black). Bottom:
Observed versus predicted pleasantness of the mixtures with corresponding standard errors of the observed means. Linear black curve represents the
identity diagonal of the observed data (Y = X). Red dots are the predicted pleasantness values at the locations of the observed ones using the sin
model (eqs 1 and 2). In majority of cases, the predicted estimates fell within the standard errors of the observations. VA – LIN: n = 21, IVA – LC: n = 20,
BA – PEA: n = 22, VA – IVA: n = 21.

Figure 4 Left: Mean Z scores of pleasantness ratings of LC – LIN mixtures
(blue) and their separated constituents diluted with clean air to the overall
flow of the mixture. black, LC; red, LIN. Right: Intensity estimates of the LC –
LIN mixture separated constituents, with corresponding standard errors of
the means. black, LC; red, LIN. In spite of the increased sample size (n = 34),
significantly large intersubject variances were observed and only moderate
gradients of the intensity as a function of the constituents’ concentrations.
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WA = WB =
1

2
: ð3Þ

In the ‘‘intensity weights,’’ the weighted intensities of the

mixture’s constituents serve as the pleasantness summation

coefficients (eq. 1):

WA =
IA

IA + IB
; WB =

IB

IA + IB
: ð4Þ

And in the ‘‘squared weighted intensities,’’ the weighted

intensities in equation 4 were raised by the power of 2, result-

ing in the vector coefficients used in the interaction model of

odor quality and intensity (Olsson 1994):

WA =
I2A

I2A + I2B
; WB =

I2B
I2A + I2B

: ð5Þ

The performance of the models was summarized in Table 3.

The choice of a linear model (eq. 1) that does not include

mixing terms of Pa and Pb (e.g., Pa � Pb) stems from the lim-

itations of our system and the given results.

The problem in using sine or cosine elements in a prediction

model for the pleasantness of mixtures is that pleasantness,

unlike probability of identification of an odor, or its intensity

is a bidirectional psychophysical attribute. That is, it can be
assigned with both positive and negative values (e.g., a VAS

that ranges between –1 and 1), whereas intensity and prob-

ability of identification of an odor are always positive (e.g.,

a VAS that ranges between 0 and 1).

For example, if one wishes to assign the pleasantness of the

separated constituents (PA, PB) into a cosine function (e.g.,

Cos
�
p
2
� Pa

Pa +Pb

�
), the result of both negative and positive

elements might end up having the same sign.

Alternatively, using a sine function on the pleasantness of

the constituents (e.g., Sin
�
p
2
� Pa

Pa +Pb

�
) might again lead to loss

of directionality in cases where both Pa and Pb are negative.
Then, the weighted expression Pa

Pa +Pb
turns positive, and the

whole expression (Sin
�
p
2
� Pa

Pa +Pb

�
) changes its sign.

This adds to the fact that assigning the pleasantness values

(Pa and Pb) into a sinusoidal term requires prior radian nor-

malization, as demonstrated above, and causes masking of

the actual amplitudes because these functions are bounded

by their nature. One way of compensating for this disadvan-

tage is to add a correction factor as a multiplier, which we

tried to avoid.

For all these reasons, we chose a linear combination as our
initial working paradigm and used only the intensities for the

calculation of the vector weights, avoiding any mixing terms

or more complex functions.

The psychophysical rational behind the choice of a squared

sine function for the constituents’ coefficients in eq. 1 was

that the stronger constituents were consistently more influ-

ential on the mixture’s pleasantness than the weaker ones
and the squared sine function elicited best this perceptual no-

tion. An equivalent psychophysical rational stood behind the

composition of the coefficients in the ‘‘squared intensities

model’’ (Olsson 1994), only that this model gives even more

power to the stronger component in the mixture, as illus-

trated in the bottom panel of Figure 2. Therefore, the sin

model (eq. 2) and the squared weighted intensities (eq. 5) per-

formed significantly better than the ‘‘weighted intensities’’
(eq. 4) and the arithmetic mean (eq. 3), as shown in Table 3.

Comparison between models

Table 3 shows the performance level of the 4 prediction mod-

els detailed above (eqs 1 through 5). The performance was

quantified by theR2 values of the prediction curves.R2 equa-
tions are specified in the caption of Table 3. Although the

prediction curves were not linear by definition, the closer

the R2 to 1 the smaller the mean squared error of the predic-

tion from the experimental values, that is, the better the

performance.

Because the L-carvone and linalool (L>C – LIN) mixture

generated only minimal variance across dilutions but signif-

icant variances across subjects, we did not include this mix-
ture in our model testing.

The sin model and the squared weighted intensities model

performed equivalently better than the intensity weights and

the arithmetic mean. However, a closer look at Table 3

reveals that the sin model performed slightly better than

the squared weighted intensities in 2 cases: VA – LIN and

VA – IVA. In these mixtures, the less intense components

contributed more than expected to the pleasantness of the
mixtures. For this reason, both the sin model and the

squared weighted intensities, that give significant power to

the intense components over the less intense ones, performed

below 0.9. As the slope of the weights in the sin model is

Table 3 Performance levels of the 4 prediction models expressed by their
R2 values for each of the tested binary mixtures

Mixture type VA + LIN IVA + LC BA + PEA VA + IVA

R2 (sin model) 0.8848 0.9406 0.9042 0.8711

R2 (squared intensities) 0.8769 0.9463 0.9209 0.8585

R2 (intensity weights) 0.8969 0.9163 0.8395 0.8293

R2 (arithmetic mean) 0.7748 0.6409 0.5146 0.1415

R2 = 1 � SSE
SST

, SSE =
PE
i = A

�
Yi � Ŷi

�2
, and SST =

PE
i = A

ðYi � �YÞ2. (VA, valeric

acid; LIN, linalool; IVA, isovaleric acid; LC, L-carvone; BA, butanoic acid; PEA,
phenylethyl alcohol). First row is the sin model (eqs 1 and 2). Second row is
the squared weighted intensities model (eqs 1 and 5) followed by the
integrated model for odor quality (Olsson 1994). Third row is the weighted
intensities model (eqs 1 and 4), and fourth row is a simple arithmetic mean
(eqs 1 and 3).
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slightly more moderate than the slope of the weights assigned

by squared weighted intensities, it performed slightly better

in these cases (Figure 2, bottom panel).

The only case where both the sin model and the squared

weighted intensities underperformed the intensity weights
was the case of VA – LIN mixture (R2

sin model = 0.8848,

R2
squared intensities = 0. 8769, R2

intensity weights = 0.8969). Spe-

cifically, differences in the performance were observed at

the 100% VA – 0% LIN mixture. In this case, the intensity

weights model gave less power to the intense unpleasant

component (100% VA) and slightly more power to the less

intense pleasant one (0% LIN) in comparison to the weights

assigned by the other models.

Pleasantness prediction

As shown by the large R2 values (Table 3) and by the fits
between the predicted and the observed pleasantness in all

mixtures (Figure 3), both the sin model and the squared

weighted intensities were capable of predicting the pleasant-

ness of a binary mixture from the pleasantness and intensities

of its constituents (with R2 value above 0.87). Specifically, in

the sin model, all predicted values but 3 outliers fell within

the standard errors of the mean observed pleasantness of the

mixtures at their various concentrations. No directional bias
was observed (Figure 3, bottom panel).

The large R2 values obtained for all cases, regardless the

chemical similarity or dissimilarity of the mixture’s constit-

uents, further convinced us that this prediction paradigm is

sufficiently reliable as an initial working model for solving

this complicated task.

Discussion

We set out to predict binary mixture pleasantness from the

pleasantness of the separated constituents of the mixture.We

found that in the majority of cases, the pleasantness value of
the mixture fell between the values of its separated constit-

uents and that it was influenced by the relative intensities of

the constituents. Based on these observations, we tested sev-

eral linear models that predict the pleasantness of a mixture

from the pleasantness of its constituents weighted by their

partial intensities in various ways. We found that the sin

model and the squared weighted intensities model outper-

formed the other coefficient models. Both these models
assign significantly more power to the relatively intense

component in the mixture over the power assigned to the less

intense one. They differ in that the sin model is slightly more

moderate in the power it assigns to the intense constituent

over the power assigned to the less intense constituent,

and so it performs better in cases where the relative contri-

bution of the less intense constituent is larger than expected.

The only presumption required for our prediction para-
digm is intermediacy of the mixture pleasantness with respect

to the pleasantness of its constituents.

Choice of odorants for the mixtures

Our choice of odorants was made intentionally such that 3

types of extreme cases were examined. In the first 2 cases, we
mixed the far ends of the pleasantness axis within themselves,

that is, pleasant with pleasant and unpleasant with unpleas-

ant. In these cases, we chose odorants that were as close to

each other chemically and perceptually as possible. Specifi-

cally, isovaleric acid and valeric acid for the unpleasant case

and L-Carove and linalool for the pleasant case. In the third

case, we mixed the far ends of the axis across each other, that

is, unpleasant odorants were mixed with pleasant ones. Be-
cause this type of mixture spans the pleasantness axis, we

double checked it with 2 mixtures that were as similar to each

other as possible. This was done by choosing again the 2 sim-

ilar unpleasant odorants and the 2 similar pleasant ones and

mixing them across each other.

The only mixture we opted not to use for testing our pre-

diction model was the one that did not show a significant

gradient of pleasantness as a function of concentration
(and as a function of intensity, in turn). Also, the variances

of both the intensities and the pleasantness estimates of this

type of mixture were so large that one could not distinguish

between the attributes of the mixture and its separated con-

stituents in almost all concentrations. Thus, for proof of

principle, the actual pleasantness of the mixture was not sig-

nificantly different from the pleasantness of its constituents.

Or, under the notation of our model, PA � PB � PAB and
IA � IB � IAB. If we were to use the model, we would get

the same result as this hand-waving approximation.

Hyper and subadditivity in mixture pleasantness

As mentioned above, we observed an insignificant subaddi-

tivity in the mixture of butanoic acid and phenylethyl

alcohol. We speculate that, as a rule, subadditivity of mix-

ture’s pleasantness occurs in cases where at least one of the
components shows steep decline in pleasantness as a function

of its intensity.

A possible reason for subadditivity in the pleasantness of

mixtures is an increase in the intensity of the mixture above

the intensity of its constituents, which, in turn, induces re-

duction in the pleasantness even below the values of the less

pleasant constituent. Because we were primarily interested in

predicting the pleasantness of the mixture, we did not check
for the intensities of the mixtures and therefore can only

speculate that this was the case here too.

Clear hyperadditivity in the mixture’s pleasantness was

observed in the case of 2 pleasant substances (LC – LIN,

Figure 4). This effect can also be accounted for by an additive

effect in intensity of the mixture in cases where both constit-

uents show gradual increase in pleasantness as a function of

their intensity.
As mentioned, this case did not serve us for building the

prediction model because variances in both the pleasantness
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and the intensity attributes of the mixture and its constitu-

ents were too large. We speculate that the reason for these

large variances was the small change in the intensity at this

range of concentrations in both of the mixture’s constituents,

that is, because pleasantness and intensity are interrelated
attributes, the insignificant change in intensity associated

with large variances induced an insignificant change in pleas-

antness with corresponding variances. Subjects reported dif-

ficulty in rating the pleasantness as well as the intensity of the

stimuli of this mixture; they reported that they were all mild

and pleasant, as expressed by the large variances in the psy-

chophysical attributes.

Pleasantness intensity dependence in binary mixtures

Our results support the observation made by Laing et al.

(1984) that the perceptual interaction between the compo-

nents in a mixture is strongly influenced by their intensities.

They also concur with the integrated model of intensity

and quality by Olsson (1994, 1998), which predicted the cat-

egorical identification probabilities of the components in

mixtures based on their intensities. For example, in three

cases out of four (Figure 3: valeric acid/linalool, isovaleric
acid/L-carvone, and butanoic acid/phenylethyl alcohol),

the pleasantness of the 25:75% mixture was significantly

closer to the 75% diluted component than to the 25% one,

which was also in accordance with their perceived intensities.

The only mixture that deviated from this behavior was the

isovaleric acid/valeric acid, which showed equal intensities

of the components in the 25:75%mixture and equal pleasant-

ness values of both the separated constituents and their mix-
ture. This, of course, does not contradict the above claim

regarding the strong influence of intensity on the quality

of the mixture.

Predicting the pleasantness of binary mixtures

Our results emphasize the notion that relative intensities influ-

ence the resultant pleasantness of binary mixtures (Lawless
1977; Moskowitz and Barbe 1977). All models but the arith-

metic mean build on this observation. Specifically, the

weights in the linear summation of the pleasantness (eq. 1)

depend on the intensities of the separated constituents in

various ways.

The weighting coefficients of the sin model (eq. 2) and of

the squared weighted intensities (eq. 5) outperformed the

simple arithmetic mean (eq. 3) and the direct substitution
of the constituent’s weighted intensities (eq. 4).

As observed in the bottom panel of Figure 2, the weights

assigned by the squared weighted intensities were very close

to the weights assigned by the sin model. This was also em-

phasized by their similar levels of performance as shown in

Table 3. Whereas the reason for this was simply the math-

ematical definition of the coefficients, the psychophysical

implication of the weights gives rise to the fine tuning of the

constituents’ contribution to the pleasantness of the mixture

in each of the models.

Specifically, both these models give rise to a sigmoid curve

as a function of the normalized intensity. However, the

squared weighted intensities exerts a steeper slope resembling
a step function, in comparison to the sin model that gives rise

to a slightly smoother sigmoid.

The outcome of this feature is that the sin model performs

slightly better in cases where the relatively mild constituent

in the mixture had more influence on the mixture’s pleasant-

ness than expected. Or, in other words, it assigns greater

power to the more intense constituent in the mixture over

the power assigned to the less intense constituent, but not
in an exaggerated manner that will diminish the influence

of the mild one.

This character is pivotal in mixture’s pleasantness espe-

cially in cases where an addition of small quanta of a sub-

stance to a mixture increases its pleasantness in a nonlinear

manner.

Unlike former prediction models aiming at predicting mix-

ture pleasantness, our prediction scheme does neither require
prescaling of an interaction constant between the compo-

nents of the mixture nor require experimental parameteriza-

tion of the prediction equation, which is specific for

each chemical substance. Its only requirement is that we

have solid estimates of the pleasantness and intensity attrib-

utes of the mixture’s constituents, regardless of their

chemistry.

The main drawback of our model lies in its presumption of
pleasantness intermediacy. In other words, it cannot predict

pleasantness values of mixtures that exceed in either direc-

tion (above or below) of the pleasantness of their unmixed

constituents.

Two approaches may offer future solutions to this draw-

back. The first is to introduce interaction elements into the

equation, in the form of PA � PB with suitable weights,

WA
AB andW

B
AB, that will rely on the expectation values of

the mixture’s intensity. Such elements should correct the

mixture’s pleasantness primarily in cases where the intensity

of the mixture is significantly larger than the intensities of its

separated components. Several efforts in this direction have

been made with no reported success. We think that with

given solid estimates of the mixture’s intensity, this problem

might be solved.

The other approach, which might capture the behavior of
odd outliers, is a piecewise gradient approach. This approach

relies on the observation that the pleasantness of different

odorants behaves differently as a function of their intensity.

For example, many unpleasant odorants tend to decrease in

pleasantness sharply with increasing intensity, whereas as

observed here, many pleasant odorants tend to have only

amoderate increase in pleasantness until they reach a plateau

(Doty 1975).
With this in mind, one could calculate the local gradient of

the pleasantness as a function of the intensity of each

Prediction Models for the Pleasantness of Binary Mixtures 607



component,
�
DPA

DIA
; DPB

DIB

�
, and then introduce these derivatives

into the weights of pleasantness of each component in the

correction terms, WA

�
DPA

DIA

�
; WB

�
DPB

DIB

�
. In other words,

the pleasantness of the mixture will remain a linear combi-

nation of the pleasantness scores of the constituents, but the

weights of the constituents, WA and WB, will be added as

a differential term.

Outliers in prediction

Two outliers were of significant interest. The first was the

case of 50:50% linalool and valeric acid (Figures 2 and 3).

In this case, the observed pleasantness of the mixture was

nearly the same as the pleasantness of linalool. However,

the predicted pleasantness of the mixture was in the midway
between that of linalool and valeric acid. This means that the

weight the model assigned to valeric acid was too high and

that, unexpectedly, the slightly weaker component had a far

greater contribution to the pleasantness of the mixture. This

could be explained by an increase in intensity of the mixture

above the intensity of the components, which, in turn, caused

the unexpected increase in pleasantness. We speculate that

an additive interaction of binary mixture’s pleasantness oc-
curs only when the intensities of the constituents are nearly

the same and both pleasantness attributes of the constituents

are positive.

The other outlier was the case of 50:50% phenylethyl alco-

hol and butanoic acid (Figures 2 and 3). Here, the intensity of

the unpleasant component, butanoic acid, was nearly 3 times

higher than the intensity of the pleasant one, phenylethyl

alcohol. The pleasantness of butanoic acid was nearly zero,
whereas the pleasantness of phenylethyl alcohol was high

and positive. Surprisingly, the pleasantness of the mixture

went below the pleasantness of butanoic acid but was not

significantly different from it. As butanoic acid was the

stronger component, our prediction value for the pleasant-

ness of the mixture was almost equal to the pleasantness of

this component. In this case, our prediction ‘‘missed’’ be-

cause it cannot exceed the pleasantness of the unmixed com-
ponents. Furthermore, phenylethyl alcohol did not have any

positive contribution to the pleasantness of the mixture in

the experimental values, in spite of its positive scores in the

unmixed state. This negative interaction is also of unique

character.

To conclude, we proposed a working paradigm for the

prediction of binary mixtures’ pleasantness from the pleas-

antness of the mixture’s constituents. Although this para-
digm generated accurate predictions, it fell short of

a universal predictive framework. That said, we provided

data collected under strict conditions, which, combined

with future data, may make it possible to construct a model

that will also account for mixture outcomes of the type

currently unaccounted for.
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