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Summary
Discrete molecular dynamics (DMD) is a rapid sampling method used in protein folding and
aggregation studies. Until now, DMD was used to perform simulations of simplified protein models
in conjunction with structure-based force fields. Here, we develop an all-atom protein model and a
transferable force field featuring packing, solvation, and environment-dependent hydrogen bond
interactions. Using the replica exchange method, we perform folding simulations of six small proteins
(20–60 residues) with distinct native structures. In all cases, native or near-native states are reached
in simulations. For three small proteins, multiple folding transitions are observed and the
computationally-characterized thermodynamics are in quantitative agreement with experiments. The
predictive power of all-atom DMD highlights the importance of environment-dependent hydrogen
bond interactions in modeling protein folding. The developed approach can be used for accurate and
rapid sampling of conformational spaces of proteins and protein-protein complexes, and applied to
protein engineering and design of protein-protein interactions.
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Introduction
Computer simulations, from simple lattice Monte Carlo to all-atom molecular dynamics
methods, have proven to be essential in our understanding of proteins (Chen et al., 2007).
Among these simulation techniques is discrete molecular dynamics (DMD; see Methods), in
which the interaction potentials are approximated by discontinuous step functions, and the
simulations are driven by collisions (Rapaport, 1997). The discrete nature of the collision-
driven DMD simulations is akin the distinct move set in Monte Carlo simulations; thus, the
DMD algorithm features the fast sampling efficiency (Ding et al., 2005b) characteristic of
Monte Carlo algorithms. DMD has been used in studies of protein folding thermodynamics
and kinetics, protein evolution, protein domain-swapping, and amyloid fibril formation (Hall
et al., 2006;Urbanc et al., 2006;Dokholyan et al., 2000).
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DMD simulations of simplified protein models with structure-based force fields have been
used in previous studies of protein folding and aggregation (Dokholyan et al., 2000). Despite
the simplicity of the utilized protein models, the DMD simulations show strikingly predictive
power in uncovering the underlying molecular mechanisms of various biological processes
(Ding et al., 2005b;Dokholyan, 2006). With continued advances in our understanding of
proteins, there is an ever growing interest in the application of our knowledge toward medically
relevant studies (Chen et al., 2007), such as designing novel protein-protein interactions and
drug discovery. Such a shift of research focus requires higher resolution protein models and
transferable force fields (Shimada et al., 2001). Borreguero et al. devised an all-atom DMD
model to study the thermodynamic structure of a short ten-residue peptide from an amyloid
β polypeptide (Borreguero et al., 2005). The interactions were assigned according to the
experimentally-determined hydrophobicity. Additional examination of the hydrophobicity-
based force field with additional systems is necessary to assess the transferability. Zhou et al.
have developed an all-atom DMD model to study the folding dynamics of proteins using a
structure-based interaction function (Luo et al., 2007;Zhou et al., 2003). The built-in structural
information hinders broader applications due to the lack of transferability. Here, we develop
an all-atom DMD model with a transferable interaction function.

In the all-atom DMD force field, we use the van der Waals potential to model packing, and
Lazaridis-Karplus effective energy (Lazaridis et al., 1999) to model solvation. We also
explicitly model hydrogen bond interactions (Ding et al., 2003). Hydrogen bonds play a pivotal
role in protein folding (Baldwin, 2007b;Rose et al., 2006b). It has been experimentally shown
that hydrogen bonds stabilize globular proteins (Myers et al., 1996). Recent experimental
evidence (Deechongkit et al., 2004a) suggests that stability contribution of a backbone
hydrogen bond depends on its solvent-exposure in the native structure. Mutating backbone
amides with esters in the WW domain, Deechongkit et al. (Deechongkit et al., 2004b) illustrated
that a solvent-exposed hydrogen bond has a stability contribution of 1.0 to 2.0 kcal/mol while
a buried hydrogen bond contributes as much as 3.1±1.0 kcal/mol to the stability. To model the
environment-dependent hydrogen bond interaction, we assume that a hydrogen-bonded
backbone peptide has a weaker desolvation energy (approximately 2 kcal/mol) than that of the
non-hydrogen bonded one. As a result, the buried hydrogen bond will be effectively stronger
than the solvent-exposed one, therefore, mimicking the environment-dependent effect.

Given the vast conformational space available to proteins, the ability to capture protein native
states (Dinner et al., 2000) provides an important benchmark test for a computational sampling
method. Using all-atom DMD method, we perform ab initio folding simulations (Yang et al.,
2007) of six structurally diverse proteins: Trp-cage (20 residues; a mini α/β protein; PDB code:
1L2Y), WW domain (26 residues; the central three-strand β-sheet (GLY5-GLU30) of the all-
β protein; PDB code: 1I6C), villin headpiece (35 residues; an all-α protein; PDB code: 1WY3),
GB1 domain (56 residues; an α/β protein; PDB code: 1GB1), bacterial ribosomal protein L20
(60 residues; an all-α protein; PDB code: 1GYZ), and the engrailed homeodomain (54 residues;
an all-α protein; PDB code: 1ENH). We demonstrate that our method enables proteins to reach
the native or near-native states in all cases. For three small proteins: Trp-cage, WW domain,
and villin headpiece, multiple folding transitions are observed and the computationally-
characterized thermodynamics are in quantitative agreement with experiments. Due to the
complex nature of protein folding and the fact that tested proteins are all small in size with
relatively simple topology, we do not expect our method to fully resolve the protein folding
problem. We do posit that our new all-atom DMD method can be used for the accurate sampling
of conformational spaces of proteins and protein-protein complexes, which is crucial for
protein engineering and design of protein-protein and protein-ligand interactions.
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Results
The all-atom DMD method employs a united atom protein model, where heavy atoms and polar
hydrogen atoms are explicitly modeled (Methods). We include van der Waals, solvation, and
environment-dependent hydrogen bond interactions. We adopt the Lazaridis-Karplus solvation
model and use the fully-solvated conformation as the reference state. The desolvation energy
of each atom is decomposed into pair-wise interactions with its surrounding atoms. For
example, unfavorable to be buried, a hydrophilic atom has repulsive Lazaridis-Karplus
interactions with other atoms. For simplicity, we do not include the long-range charge-charge
interactions in the current model. Due to the strong screening effect of solvent, charges far
away have weak polar interactions. For salt-bridges, we expect the hydrogen bonds to partially
account for their polar interactions. Similar neutralization of charged residues were also
employed in the implicit solvent model of the effective energy function of CHARMM19
(Lazaridis et al., 1999). In DMD, the interaction potential between two atoms is a step function
of their distance. We adapt the continuous energy functions of Medusa into step functions by
mimicking the attractions and repulsions (Methods). The Medusa force field has been used to
recapitulate the sequence diversity of protein folding families (Ding et al., 2006) and to predict
protein stability changes upon mutation (Yin et al., 2007).

In modern molecular dynamics force fields, the hydrogen bond interaction is often modeled
implicitly by the electrostatic interaction between dipoles. In contrast, our method explicitly
models hydrogen bond formation (Ding et al., 2003) by effectively considering the distance
and angular dependence of a hydrogen bond (Methods). To account for the environment-
dependent effect of hydrogen bonds, we assign weaker solvation energy to a hydrogen-bonded
backbone carbonyl oxygen atom compared to that of a non-hydrogen-bonded atom (Methods)

To efficiently explore the conformational space, we utilize replica exchange DMD (REXDMD)
simulations (Methods). In REXDMD simulations, replicas perform DMD simulations at a
given set of temperatures in parallel. The temperatures range from low to high. Periodically,
replicas with neighboring temperature values exchange their temperatures in a Metropolis-
based stochastic manner. Thus, each replica effectively follows a random walk in temperature
space (Supplementary Figure S2). A temporarily trapped state in a replica can be rescued by
simulating at a higher temperature, thereby enhancing the sampling efficiency of DMD
simulations.

For each of the six proteins, we start from fully extended conformations and perform REXDMD
simulations (Methods). Native or near-native conformations are observed for all six proteins
in at least one replica of REXDMD simulations. In Fig. 1, the computational structures with
the lowest root-mean-square deviation (RMSD) for the native states are aligned with
corresponding experimentally-determined structures. For three small proteins (Trp-cage, WW
domain, and villin headpiece), we observe multiple folding transitions in different replicas
(e.g., the trajectories of Trp-cage folding in the Supplementary Fig. S2A), suggesting an
equilibrium sampling of conformational space during DMD simulations. The remaining three
larger proteins (GB1 domain, bacterial ribosomal protein L20, and engrailed homeodomain)
take a long simulation time to reach the native or near-native states (Supplementary Fig. S1)
and lack multiple folding/unfolding transitions. The folding transition into lowest-RMSD
structures only occurs in one or two replicas, where temperatures remain low for the rest of
the simulations. However, the ability of the all-atom DMD model to capture the native or near-
native states in simulations for all six proteins highlights its predictive power.

We use the weighted histogram analysis method (WHAM; see Methods) to compute the folding
thermodynamics from REXDMD simulation trajectories. The WHAM method computes the
density of states in a self-consistent manner (Kumar et al., 1992). An accurate estimation of

Ding et al. Page 3

Structure. Author manuscript; available in PMC 2009 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the density of states requires sufficient data points along the reaction coordinates. Therefore,
we do not attempt to determine the folding thermodynamics of GB1 domain, bacterial
ribosomal protein L20, and engrailed homeodomain due to insufficient sampling in
simulations. However, the achievement of equilibrium sampling of the three small proteins in
REXDMD simulations enables us to study the folding thermodynamics of these three proteins
and compare the results with experimental studies.

Trp-Cage
Trp-cage is a thermodynamically stable 20 residue mini-protein (Neidigh et al., 2001). Due to
its simple topology and fast folding nature, Trp-cage has been successfully folded in computer
simulations using different computational methods (Ding et al., 2005a;Pitera et al., 2003;Schug
et al., 2005;Snow et al., 2002;Zhou, 2004), including DMD simulations of a simplified protein
model (Ding et al., 2005a).

Starting from the fully extended conformation, the mini-protein is able to reach its native state
(Fig. 1a). In the lowest-RMSD structure of the folded state in simulations (Fig. 1a), we find
that the protein core is well packed and the sidechain rotamers of core residues are also
consistent with the NMR structure. The protein folds consistently in all replicas
(Supplementary Fig. S2A). For each replica, we observe multiple folding events during the
simulations and the protein is able to fold early in the simulation (within 20,000 time units,
Supplementary Fig. S2A), indicating that the Trp-cage is a fast folding protein (Neidigh et al.,
2001).

We use WHAM to analyze the folding thermodynamics (Fig. 2) from all the replica exchange
simulation trajectories. We find that the specific heat of the protein features a broad peak at
the temperature Tpeak~320K (Fig. 2A). To closely examine the folding thermodynamics, we
compute the two-dimensional potential mean force (2D-PMF) with respect to the fraction of
native contacts (Q) and radius of gyration (Rg) at T=320K (Fig. 2B). Here, the contacts are
defined by positions of Cβ atoms and a cutoff distance of 7.5 Å is used. We find that the PMF
features a broad peak with a wide range of Q values but compact dimensions. We also compute
the PMF as a function of the RMSD of the N-terminal α-helix (1–10) and the whole structure
at T=320K (Fig. 2C). Here, we choose the RMSD of the N-terminal α-helix as one of the
reaction coordinates since we observe independent folding of the α-helix at high temperatures.
At temperature Tpeak (Fig. 2C), we find that the 2D-PMF has two basins that correspond to the
folding/unfolding of the N-terminal α-helix. Interestingly, these two basins are almost
interconnected. The 1D-PMF with respect to the N-terminal RMSD at Tpeak shows that there
is a small barrier (< 1 kBT) for the N-terminal α-helix formation (Fig. 2D). At a lower
temperature T=300K (Supplementary Fig. 2B), the 2D-PMF has only one basin, which features
a wide spread of the RMSD (from 1.5 Å to 6 Å), corresponding to the non-cooperative docking
of the C-terminal coil to the N-terminal α-helix. Therefore, our simulations of Trp-cage suggest
that the protein features a small folding barrier, and thus, fast folding rate.

Villin Headpiece
The villin headpiece is a 35-residue α-helical protein. It has been heavily studied
experimentally (Buscaglia et al., 2005;Kubelka et al., 2003;Wang et al., 2003) and through
computational simulations (Pitera et al., 2003;Schug et al., 2005;Snow et al., 2002;Steinbach,
2004;Zhou, 2004;Duan et al., 1998) since it is perhaps one of the smallest, fastest folding, and
naturally occurring proteins. Folding-kinetics studies of villin headpiece in experiments
indicated the existence of a biphasic folding kinetics (Kubelka et al., 2003). Further solid-state
NMR studies suggests a two-step folding mechanism (Havlin et al., 2005). Several
computational groups have been investigating the folding of villin headpiece using all-atom
molecular dynamics simulations. Many of these computational studies were able to fold the
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protein with a RMSD from the native state of 3–4 Å. Notably, a recent MD simulation of villin
headpiece (Lei et al., 2007) using a replica exchange sampling technique is able to reach the
native state with sub-angstrom accuracy. Hence, this small protein serves an excellent
benchmark for the test of all-atom DMD methods.

In the simulations, we find that the protein consistently folds to its native state with an average
RMSD of 2–3 Å (Fig. 1b). The core residues Phe6, Phe17, Leu20, Gln25, and Leu28 are as closely
packed against each other as they are observed in the crystal structure. We perform WHAM
calculations to analyze folding thermodynamics using the replica exchange simulation data.
We calculate the specific heat as the function of temperature (Fig. 3A). Interestingly, we find
that there is a shoulder near T=358K beside the major peak at T=323K, suggesting non-two
state folding dynamics of the villin headpiece. We calculate the potential mean force as a
function of RMSD at T=300K, T=323K, and T=340K (Fig. 3D). We find that at T=300K, the
folded state is the dominate specie with the lowest free energy. At higher temperatures
(T=323K, T=340K), the protein is mainly present in the denatured state (RMSD~5–6 Å), and
there is a weak population of an intermediate state (RMSD~4–5Å). To better visualize the
folding free energy landscape, we compute the 2D-PMF at T=323K as a function of Q and Rg
(Fig. 3B). We find that there are three basins with high, medium, and low Q-values
corresponding to folded, intermediate, and unfolded states, respectively. These states all feature
a compact dimension with similar Rg values. Similarly, a 2D-PMF as a function of potential
energy and RMSD at T=300K (Fig. 3C) also features the folding intermediate state. The typical
conformations for the folded (F), denatured (D) and intermediate (I) states from the replica
exchange trajectories are illustrated as inserts in Fig. 3C. The intermediate state features a
compact conformation with partially folded helices. Therefore, the all-atom DMD simulations
are able to recapitulate the folding dynamics of villin headpiece.

WW domain
The full length WW domain is a three-stranded, all-beta protein with 39 residues. The termini
of WW domains feature unstructured and flexible loops. In this study, we use the central three-
stranded β-sheet with only 26 amino acids (GLY5-GLU30) as the reference structure. Starting
from the extended conformation, we perform replica exchange DMD simulations. We find the
specific heat of the WW domain (Fig. 4A) features a single sharp peak at Tf~350K, suggesting
a two-state folding behavior. The folded state from the simulations is in agreement with the
NMR structure (PDB code: 1I6C; Fig. 1c). We also compute the 2D-PMF at T=350K with
respect to Q and Rg (Fig. 4B) and with respect to the potential energy and backbone RMSD
(Fig. 4C). The 2D-PMF features two basins: a folded state with low energies, low RMSD, low
Rg, and high Q along with an unfolded state with high energies, high RMSD, high Rg, and low
Q. The inter-conversion between these two states results in a high specific heat. The 1D-PMF
as the function of RMSD at temperatures near Tf also confirms two-state folding
thermodynamics (Fig. 4D). Therefore, our simulations suggest that the WW domain folds in
a highly cooperative two-state manner as observed in experiments (Ferguson et al.,
2001;Ferguson et al., 2003).

We provide the movies of a folding event of WW domain as well as movies of villin headpiece
and GB1 domain (http://dokhlab.unc.edu/research/Abinitio/). It is interesting that although the
folding thermodynamics of WW-domain is two-state, a particular folding event features the
initial formation of the first two β-strands. This is consistent with the experimentally observed
kinetics where the first two strands are more ordered in the folding transition state than the rest
(Deechongkit et al., 2004c). However, detailed comparison of folding kinetics between
simulations and experiments requires systematic kinetic studies in the future.
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Discussion
The contribution of backbone hydrogen bonds to protein stability has been controversial. Some
believe that the peptide hydrogen bond is destabilizing since formation of intra-peptide
hydrogen bonds break peptide-water hydrogen bonds despite desolvation of the backbone
peptide (Honig et al., 1995;Yang et al., 1995). Others propose that backbone hydrogen bonds
stabilize proteins given the experimentally observed α-helix propensity of short poly-alanine
peptides at low temperatures (Baldwin, 2007a;Rose et al., 2006a). Kelly and co-workers
(Deechongkit et al., 2004d) designed elegant experiments to target specific backbone-hydrogen
bond donors or acceptors by mutating the backbone amides to esters. They found that indeed
the disruption of a buried hydrogen bond destabilizes the proteins more than a solvent exposed
hydrogen bond does, and the difference of ΔΔG can be as large as 2–3 kcal/mol. Such a
difference can be explained by the redistribution of partial charges in the hydrogen bonded
peptides, which in turn, affects their solvation energies. Such an environment-dependence
effect of the hydrogen bond interaction can be readily modeled using the “reaction” algorithm
for hydrogen bonds in DMD (Ding et al., 2003), where donors and acceptors change their types
upon hydrogen bond formation (see Methods). With the environment-dependent hydrogen
bond model, we are able to reach native or near-native conformations in DMD simulations of
six proteins. As a control, we also perform DMD simulations without the solvent-dependent
effect: With weak hydrogen bond strength (1–2 kcal/mol), proteins neither fold into specific
structures nor form regular secondary structures. In contrast, a strong hydrogen (>3 kcal/mol)
bond strength tends to fold proteins into all-α helices, including the natively all-β proteins (data
not shown). Therefore, our study suggests that the environment-dependent hydrogen bond is
important for protein folding.

Since multiple folding/unfolding transitions are observed for three small proteins, we are able
to analyze the folding thermodynamics from simulations. We found qualitative agreement
between the simulation-derived thermodynamics and experimental observations. In our
simulations, we discover that native states always correspond to the lowest free energy state
at room temperature (300K; Fig. 2–Fig 4). Although these native states often have low potential
energies, there are still individual conformations with low potential energies but high RMSD
values. This observation suggests that potential energy alone is not an appropriate reaction
coordinate for protein folding. Hence, ensemble analysis of the protein conformations, such as
clustering, is necessary for structure determination applications (Bradley et al., 2005b).

We attribute the success of the all-atom DMD method to its ability to rapidly sample protein
conformational space. Proteins usually fold in the milliseconds to seconds range: the fast-
folding Trp-cage protein was experimentally shown to fold within microseconds (~µs). During
our simulations we find that this mini protein folds very rapidly, where the folding time is on
the order of 104 time units (104 × 50 fs = 0.5 ns; see Methods), and multiple folding events are
observed in all replicas (Fig. 2a). The observation of multiple folding events during Trp-cage
DMD simulations is mainly due to faster protein dynamics in the absence of explicit solvent.
The speed-up in this case is over 1,000-fold. Additionally, the application of replica exchange
increases the conformational sampling efficiency (Okamoto, 2004). As a result, we are able to
observe the folding of all six proteins to their native or near-native states within an accumulative
1.6×107 time units in REXDMD simulations.

We believe that the success of the current model is also due to the fact that these six proteins
are fast folders and their topologies are relatively simple. As the protein size increases and the
topology becomes more sophisticated, longer simulations will be required and the folding of
these proteins may become practically intractable, even in all-atom DMD simulations. For
example, we do not observe multiple folding events of the relatively larger proteins (GB1
domain, bacterial ribosomal protein L20, and the engrailed homeodomain) in the DMD
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simulations due to the insufficient sampling. Therefore, a multi-scale folding method may be
required where simplified protein models are used to sample the large scale conformational
changes and the all-atom protein model is used to sample the conformational spaces at smaller
time scales (Bradley et al., 2005a). The applicability of the current approach to folding of larger
proteins requires further investigation.

Protein flexibility modeling with accurate sampling of the protein conformations near its native
states is essential in protein design (Kuhlman et al., 2003), protein stability estimation (Yin et
al., 2007), and protein-protein, protein-ligand designs (Kortemme et al., 2004). Due to the fast
conformational sampling efficiency of DMD and the ability to capture the folding free energy
landscape of proteins under study, we believe that the current all-atom model is able to rapidly
and accurately sample the available conformations near the target states of proteins. We expect
applications of the all-atom DMD method in protein engineering, protein-protein interface
design, and protein-ligand design by combining the dynamics sampling method with protein
design methods.

Methods
Discrete molecular dynamics

A detailed description of the DMD algorithm can be found elsewhere (Dokholyan et al.,
1998;Rapaport, 1997;Zhou et al., 1997). Briefly, inter-atomic interactions in DMD are
governed by square-well potential functions. Neighboring interactions (such as bonds, bond
angles, and dihedrals) are modeled by infinitely high square well potentials. During a
simulation, an atom’s velocity remains constant until a potential step is encountered, where it
changes instantaneously according to the conservations of energy, momentum and angular
momentum. Simulations proceed as a series of such collisions, with a rapid sorting algorithm
employed at each step to determine the following collision.

The difference between discrete molecular dynamics and traditional molecular dynamics is in
the interaction potential functions. Approximating the continuous potential functions with step-
functions of pair-wise distances, DMD simulations are reduced to event-driven (collision)
molecular dynamics simulation. The sampling efficiency of DMD over traditional MD is
mainly due to rapid processing of collision events and localized updates of collisions (only
collided atoms are required to update at each collision). At an adequately small step size, the
discrete step-function approaches the continuous potential function and DMD simulations
become equivalent to traditional molecular dynamics.

All-atom protein model
We use a united-atom representation to model proteins, in which all heavy atoms and polar
hydrogen atoms of each amino acid are included (Fig. 5a). In order to maintain the protein
backbone and sidechain geometries, we introduce three types of bonded constraints between
neighboring atoms: (a) consecutive atoms (i, i+1) covalently bonded, (b) next-nearest
neighbors (i, i+2) under angular constraints, and (c) atom pairs (i, i+3) linked by dihedral
interactions. For covalent bonds and bond angles, we use a single-well potential (Fig. 5b) with
two parameters: effective bond length dAB, and its variance, σAB. The dihedral interactions are
modeled by multi-step potential functions of pair-wise distance as introduced in Ref. (Ding et
al., 2005a), which is characterized by a set of distance parameters, {dmin, d0, d1, d2, dmax} (Fig.
5b). We obtain these parameters by sampling the corresponding distance distribution in a non-
redundant database of high-resolution protein structures. These bonded interaction parameters
are listed in the Supplementary Table S1. For the non-bonded interactions, we include the van
der Waals (VDW), solvation, and hydrogen bond interactions (Ding et al., 2003):
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VDW and solvation interactions—The VDW and solvation interactions are pair-wise
functions of distances, while the hydrogen bond interactions are angular- and distance-
dependent, making them multi-body interactions. Therefore, we combine the VDW and
solvation together as the pair-wise interactions. We use a standard 12-6 Lennard-Jones

potential to model the Van der Waals interactions: 
Here, the van der Waals radii σij and interaction strengths εij betweem atoms i and j are taken
from CHARMM19 force field:  We use the Lazaridis-Karplus (Lazaridis
et al., 1999) solvation model:

Here, parameters of reference solvation energy (ΔGfree), volume of atoms (V), correlation
length (λ) and atomic radius (σ). are taken from Lazaridis and Karplus (Lazaridis et al.,
1999). The discrete potential functions mimic the continuous potential

 by capturing the attractions and repulsions (Fig. 5c). We keep the
number of steps minimal since increasing the amount of steps reduces the computational
efficiency of DMD. The discrete potential function is characterized by the hardcore distance
dhc and a series of potential steps {di, ei}. Here, di is the distance where potential energy E has
a step E(di−1,di)-E(di,di+1)=ei (dhc<d1<d2<⋯<dn). We use a cutoff of 6.5 Å as the interaction
range between all atom pairs. Details of the discrete potential function are provided in the
Supplementary Table S2.

Hydrogen bonds—We use the reaction algorithm to model the hydrogen bond interaction
as described in Ref. (Ding et al., 2003). Briefly, after the formation of a hydrogen bond, the
acceptor (A) and hydrogen (H) change their types to A' and H', respectively. The interaction
potential between an atom and A(H) can be different from its interaction potential with respect
to A'(H'). Thus, the formation of a hydrogen bond depends on its neighbors. To mimic the
orientation-dependent hydrogen bond interaction, we introduce auxiliary interactions in
addition to the distance-dependent interaction between the hydrogen and the acceptor (Fig.
5d). The auxiliary interactions are between the acceptor (A') and the donor (D), and between
the hydrogen (H') and the nearest heavy atoms bonded to the acceptor (X). For example, once
the hydrogen Hi and the acceptor Aj (Fig. 5d) reach the interaction range, we evaluate the
distances between HiXj and DiAj which define the orientations of the hydrogen bond. The total
potential energy change, ΔE, between Hi/Aj and other surrounding atoms are also evaluated
before and after the putative hydrogen bond formation:

 Here, σk is the other atoms. If these
distances satisfy the pre-determined range and the total kinetic energy is enough to overcome
the potential energy change ΔE, we allow the hydrogen bond to be formed, and forbid its
formation otherwise. We include all possible interactions between backbone-backbone,
backbone-sidechain, and sidechain-sidechain. The donors include backbone amide hydrogen
atoms and sidechain polar hydrogen atoms of His, Trp, Tyr, Asn, Gln, Arg, and Lys. The
acceptors include backbone carbonyl oxygens; sidechain oxygens of Asp, Glu, Ser, Thr, and
Tyr; and the sidechain nitrogen of His. The interaction parameters of both donor-acceptor and
auxiliary interactions are described in the Supplementary Table S3A.

Environment-dependence of hydrogen bonds—To model the environment-dependent
effect, we assume that the hydrogen bonded peptide has weaker solvation energy than the non-
hydrogen bonded backbone peptide. For simplicity, we use the carbonyl oxygen as the
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solvation center of a peptide. We assign a weaker reference solvation energy ΔGfree value (3.85
kcal/mol) to a hydrogen-bonded backbone carbonyl oxygen atom than that of a non-hydrogen-
bonded atom (5.85 kcal/mol). In the Lazaridis-Karplus solvation model, it is unfavorable to
bury a backbone carbonyl oxygen atom. The desolvation energy depends on its environment:
the more it is buried, the higher the total desolvation energy. The formation of a buried hydrogen
bond leads to a less unfavorable desolvation of the carbonyl oxygen, and thus, results in a
higher potential energy gain ΔE than a solvent-exposed hydrogen bond. The environment-
dependent hydrogen bond model features the multiple body interaction, which is akin to the
polarizable force field. Therefore, this approach effectively models the environment-dependent
effect of a hydrogen bond. The discontinuous potentials between a hydrogen bonded carbonyl
oxygen atom and other atoms are listed in the Supplementary Table S3B.

Units in all-atom DMD—In the all-atom DMD simulations, the units of mass, length, and
energy are dalton (1.66×10−24 gram), angstrom (10−10 meter), and kcal/mol (6.9×10−22 joule),
respectively. Given the units of mass [M], length [L], and energy [E], the time unit can be

obtain as  which is approximately 50 femtoseconds. The temperature unit is
kcal/mol·kB or 5.03×102 Kelvin, where kB is the Boltzmann constant.

Replica exchange DMD
Efficient exploration of the potential energy landscape of molecular systems is the central
theme of most molecular modeling applications. The ruggedness and the slope toward the
energy minimum in the landscape govern sampling efficiency at a given temperature. Although
escape out of local minima is accelerated at higher temperatures, the free energy landscape is
altered due to larger entropic contributions. To efficiently overcome energy barriers while
maintaining conformational sampling corresponding to a relevant free energy surface, we
utilize the replica exchange sampling scheme (Okamoto, 2004;Zhou et al., 2001). In replica
exchange computing, multiple simulations or replicas of the same system are performed in
parallel at different temperatures. Individual simulations are coupled through Monte
Carlobased exchanges of simulation temperatures between replicas at periodic time intervals.
Temperatures are exchanged between two replicas, i and j, maintained at temperatures Ti and
Tj and with energies Ei and Ej according to the canonical Metropolis criterion with the exchange
probability p, where p=1 if Δ=(1/kBTi−1/kBTj)(Ej − Ei) ≤ 0,and p=exp(−Δ), if Δ > 0. In DMD
simulations, we use an Anderson thermostat to maintain constant temperature in simulations
(Andersen, 1980).

For each protein, we start from a fully extended conformation. We perform eight replicas with
temperatures ranging from 0.50 (~250 Kelvin) to 0.75 (~375 Kelvin) with an increment of
0.035 (~17.5 Kelvin). Here, the temperature unit is kcal/mol·kB or 5.03×102 Kelvin. The
exchange takes place every 1×103 time units. The length of each simulation is 2×106 time units.

Weighted Histogram Analysis Method
We use the MMTSB tool (Feig et al., 2004) to perform WHAM analysis using replica-exchange
trajectories. In short, the WHAM method utilizes multiple simulation trajectories with
overlapping sampling along the reaction coordinates. The density of states ρ(E) is self-
consistently computed by combining histograms from different simulation trajectories (Kumar
et al., 1992). Given the density of states, the folding specific heat (Cv) can be computed at
different temperatures according to the partition function, Z = ∫ρ(E)exp(−E/KBT)dE. To
compute the potential of mean force (PMF) as the function of reaction coordinate A, we
compute the conditional probability P(A | E)of observing A at given energy E, which is
evaluated from all the simulation trajectories. The PMF is computed as PMF(A) = −ln(∫P(A |
E)ρ(E)exp(−E/KBT)dE) + C. Here, C is the reference constant and we set it in such a way that
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the lowest PMF always corresponds to zero. Since our simulations start from fully extended
conformations, we exclude the trajectories from the first 5×105 time units and use those of the
last 1.5×106 time units for WHAM analysis. We use the trajectories from all replicas to compute
the histograms.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Ab initio folding of six small proteins in all-atom DMD simulations
(A) In the lowest-RMSD Trp-cage structure from simulations, the protein core is well packed
and the sidechain rotamers of core residues (in stick representation) are also consistent with
the NMR structure. The structure from simulations is in cyan and the one determined by
experiments is colored in gray. The same color code is used in the following panels. (B) In
simulations of villin headpiece, we find that the protein consistently folds to its native state
with an average RMSD of 2–3Å. The core residues Phe6, Phe17, Leu20, Gln25, and Leu28 are
as closely packed against each other as they are observed in the crystal structure. For the WW
domain (C) and engrailed homeodomain (D), the secondary structures from simulations align
well with respect to the experimentally determined structures except that loops have larger
deviations. In the simulations of GB1 (E) and bacterial ribosomal protein L20 (F), the near
native states are observed in DMD simulations.
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Figure 2. All-atom DMD simulation of the Trp-cage
(A) The specific heat computed from simulations is shown as the function of temperatures. (B)
The contour plot of the 2D-PMF at T=320K is plotted as the function of Q and Rg. The free
energy difference between two consecutive contours is 0.6 kcal/mol in all contour plots. (C)
The 2D-PMF at T=320K as a function of RMSD of the N-terminal a-helix (RMSD1–10) and
the whole structure (RMSD1–20). (D) The 1D-PMF as a function of the RMSD1–10 at T=320K.
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Figure 3. The all-atom DMD simulation of villin headpiece
(A) The specific heat computed from simulations is shown as the function of temperatures.
The contour plot of the 2D-PMF at T=323K is presented as the function of (B) Q and Rg, and
(C) of potential energy and RMSD. The typical structures corresponding to the three basins
are shown in cartoon representation. (D) The 1D-PMF at different temperatures (300K, 323K,
and 340K) are shown as the function of RMSD.
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Figure 4. The all-atom DMD simulation of the WW domain
(A) The specific heat computed from simulations exhibits a sharp peak at T~350K. The contour
plot of the 2D-PMF at T=348K is plotted as the function of (B) Q and Rg, and of (C) potential
energy and RMSD. (D) The 1D-PMF at different temperatures (325K, 350K, and 360K) are
shown as the function of RMSD.
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Figure 5. The all-atom protein model
(A) Schematic diagram for the all-atom protein model. Only two consecutive residues are
shown. The solid thick lines represent the covalent and the peptide bonds. The thin dash lines
denote the effective bonds which are needed either to fix the bond angles, model the sidechain
dihedral angles or to maintain the planarity of the peptide bonds. (B) Parameterization of the
bonded interactions for representative atom pairs. The first column shows the distribution of
the distances in serine, between N-Cα, N-Cβ and N-Oγ respectively. The second column shows
the corresponding histogram for the distribution of each atom pair. The third column shows
the resulting constraint potentials schematically. For bonds (e.g., N-Cα) and bond angles (e.g.,
N-Cβ), the left and right boundaries of the constraint potential corresponds to d−σ and d+σ,
respectively. Here, d is the average length and σ is the standard deviation of the distance
distribution. (C) Parameterization of non-bonded interactions in all-atom DMD. The
continuous red line corresponds to the van der Waals and solvation interaction between two
carbon atoms. The black step function is the discretized potential for DMD. (D) A schematic
for the hydrogen bonding interaction between hydrogen Hi and acceptor Aj. Atom Di is the
donor and Xj is the heavy atoms directly bonded to Aj. Besides the distance between hydrogen
and acceptor dHA, we also assess the auxiliary distances of dDA (distance between atoms Di
and Aj) and dHX (distance between atoms Hi and Xj).
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