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Abstract

Chromosome movements are a general feature of mid-prophase of meiosis. In budding yeast, meiotic chromosomes exhibit
dynamic movements, led by nuclear envelope (NE)-associated telomeres, throughout the zygotene and pachytene stages.
Zygotene motion underlies the global tendency for colocalization of NE-associated chromosome ends in a ‘‘bouquet.’’ In
this study, we identify Csm4 as a new molecular participant in these processes and show that, unlike the two previously
identified components, Ndj1 and Mps3, Csm4 is not required for meiosis-specific telomere/NE association. Instead, it acts to
couple telomere/NE ensembles to a force generation mechanism. Mutants lacking Csm4 and/or Ndj1 display the following
closely related phenotypes: (i) elevated crossover (CO) frequencies and decreased CO interference without abrogation of
normal pathways; (ii) delayed progression of recombination, and recombination-coupled chromosome morphogenesis,
with resulting delays in the MI division; and (iii) nondisjunction of homologs at the MI division for some reason other than
absence of (the obligatory) CO(s). The recombination effects are discussed in the context of a model where the underlying
defect is chromosome movement, the absence of which results in persistence of inappropriate chromosome relationships
that, in turn, results in the observed mutant phenotypes.
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Introduction

Classical cytological studies have shown that during the

zygotene stage of meiosis, chromosome ends are tightly and

specifically associated with the nuclear envelope (NE) and move

coordinately into a ‘‘bouquet’’ configuration such that they are

localized within a sub-area of the nuclear periphery. Upon exit

from this stage, during early pachytene, telomeres again

redistribute throughout the nuclear periphery (reviewed in [1];

[2–4]). In budding yeast, these global effects are achieved by

means of highly dynamic, actin-dependent, telomere-led move-

ments, which, after initiating at the onset of zygotene, continue

into pachytene [2,5,6]. Recent work from one of our laboratories

shows that telomeres and associated nuclear envelope (NE)

segments move via passive association with nucleus-hugging

segments of dynamic cytoskeletal actin cables that tend to form

in the vicinity of the spindle pole body (SPB; [6]). A different

mechanism has been elucidated for fission yeast; telomeres are

tightly and specifically associated with the SPB and the entire

complex moves dynamically along microtubules via interaction

with the dynein motor complex [7].

Studies in fission yeast, budding yeast (references below), rat,

and mouse [8] have shown that, in accord with their special

functions, telomeres of meiotic chromosomes become robustly

associated with the NE in complexes comprised of both meiosis-

specific proteins and proteins recruited from the mitotic program.

In S. pombe meiosis, Bqt1 and Bqt2 connect the telomere binding

protein Rap1, which associates with telomeres through interac-

tions with Taz1, to the spindle pole body protein Sad1. Sad1 is a

member of the SUN domain family of proteins that localize to the

NE [3,9]. Sad1 is also known to interact with the spindle pole body

binding (SPB) protein Kms1 [10]. The final telomere/SPB cluster

is thought to form through interactions between Bqt1, Bqt2, Rap1,

Taz1, Sad1, and Kms1 [3,7]. In budding yeast, two components of

meiotic telomere-NE ensembles have been identified thus far:

Ndj1, also called Tam1 [11,12], and Mps3 [13]. Ndj1 is a meiosis-

specific protein that mediates association of telomeres to the NE;

as a result, in the absence of Ndj1, global and dynamic

chromosome movements are severely reduced ([2,11,12,14,15];

this work). Mps3, which is present in mitotic as well as meiotic

cells, most likely has two roles [13]. First, it interacts directly with

Ndj1 such that the two proteins display a mutually dependent

requirement for telomere localization to the NE. Second, Mps3 is

a SUN domain protein, which suggests that it may mediate

interactions between telomeres and cytoskeletal determinants.

Recent studies have shown that rapid movement of yeast
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pachytene chromosomes involves passive association of telomere/

NE ensembles to dynamically moving actin cables. Within this

mechanically integrated complex, force is exerted on the NE

component and transduced via telomere/NE complexes through

the NE to the associated chromosome end [6].

The functional role(s) of global and dynamic chromosome

movements for meiosis, though widely discussed, are not estab-

lished. In both fission yeast and budding yeast, situations in which

telomere localization is aberrant or the motion mechanism is

directly abrogated reveal diverse defects. In S. cerevisiae, ndj1D strains

show levels of crossing over similar to wild-type (WT), partially

disrupted crossover (CO) interference, modestly increased ectopic

recombination, delayed formation of tight juxtaposition of homo-

logs including delayed formation of the synaptonemal complex (SC),

defective progression of recombination intermediates into mature

recombinants, increased MI nondisjunction, and decreased spore

viability [11,12,16–18]. In S. pombe, similar phenotypes are observed

for mutants defective in telomere localization; however, in contrast

to budding yeast, CO-levels are significantly decreased (e.g. [3,19]).

Furthermore, in this organism, meiosis does not involve CO

interference or the SC, and it has been difficult to perform a detailed

analysis of recombination intermediates and their timing. These

findings have led to suggestions that motion might play a direct role

in recombination and/or homolog juxtaposition. However, the

pleiotropic nature of these effects have made it difficult to distinguish

defects that are direct consequences of the absence of motion rather

than indirect effects and/or those that result from aberrant telomere

biology irrespective of motion. We and others [1,6,20,21] have

argued that the primary role of movement is to eliminate aberrant

topological relationships among chromosomes, e.g. entanglements

or ‘‘interlocks’’ and/or other types of unprogrammed connections

among nonhomologous chromosomes, a possibility that has not yet

been directly assessed in any organism.

The present study began with a search for mutations that affect

recombination through telomere-dependent effects. The hallmark

phenotype conferred by the ndj1D mutation is increased nondis-

junction of homologs at the MI division, and a screen for mutants

defective in chromosome segregation during meiosis [22] identified

three additional genes with weak chromosome missegregation

phenotypes. We began by further characterizing these missegrega-

tion phenotypes. We show that one of these genes, CSM4, is

required specifically for regular segregation of homologs, analo-

gously to NDJ1, and by several additional criteria, encodes a third

participant in the meiotic telomere/NE interactions involved in

motion. We further show that the role of Csm4 is distinct from that

of either Ndj1 or Mps3. Finally, we analyzed diverse csm4D and

ndj1D phenotypes for motion at zygotene and pachytene, recom-

bination (by genetic and physical approaches), SC morphogenesis,

and meiotic progression. The observed phenotypes suggest a role for

chromosome motion that can explain all observed effects and also

supports the idea that the primary role of motion is regularization of

topological relationships among chromosomes. Related and

complementary findings are presented in the accompanying paper

by Shinohara and colleagues ([23], see also [24]).

Results

Analysis of Chromosome Mis-Segregation
Ndj1 (also called Tam1) was the first identified component of

yeast telomere/NE ensembles [11,12]. The hallmark phenotype of

ndj1D is nondisjunction of homologs at the first meiotic division,

with an accompanying modest decrease in spore viability, to 62–

82%, as compared to 92–98% in WT [11,12]. To identify new

mutations that affect chromosomal events during meiosis, and in

particular recombination, we focused on three genes, CSM2,

CSM3, and CSM4 (chromosome segregation in meiosis; [22]),

whose corresponding mutations confer phenotypes similar to those

of ndj1D: decreased spore viability and aberrant meiotic chromo-

some segregation.

MI Homolog Nondisjunction Occurs in csm4D Mutants
We began by further characterizing the nature of the

chromosome mis-segregation defect in csm mutants. Spore viability

patterns revealed that csm4D confers a pattern that is diagnostic of

homolog nondisjunction: an excess of tetrads containing 0, 2, or 4

viable spores as compared to 1 or 3 viable spores [25]. Of the three

csm mutants, only csm4D displays this pattern (Figure 1A, data not

shown). Csm4 was identified by bioinformatic analysis as a 156

amino acid tail-anchored membrane protein. Consistent with this

designation, Csm4 was observed in both the endoplasmic

reticulum and the perinuclear membrane when overproduced in

mitotic cells [26].

The homolog nondisjunction phenotype of csm4D was con-

firmed and extended as follows:

- One approach utilized congenic SK1 strains

EAY1108/EAY1112 in which one chromosome (XV;

1040 kb) is heterozygous for the centromere-linked

markers, URA3 and TRP1 ([27], Table S1). In this

background, analysis of asci containing two viable spores

can distinguish a MI segregation defect from random

spore death. In the former case, the two spores often

contain the same (sister) centromeric marker while, in

the latter case, there is no such tendency (e.g. [27,28]).

Consistent with an MI defect, 88% of two-spore viable

csm4D tetrads (n = 212) contained sister centromere

markers.

- In the absence of any other defect, nondisjunction of

the centromere-marked chromosome XV homologs will

result in two-spore viable tetrads in which each spore

contains one centromere from each homolog; as a result,

Author Summary

In meiosis, cells specified to become gametes (eggs or
sperm) undergo a single round of DNA replication
followed by two consecutive chromosomal divisions. In
most organisms, the proper segregation of chromosomes
at the first meiotic division is mechanically dependent
upon genetic exchange, or crossing over, at homologous
sites along chromosomes. This process is highly regulated
so that every pair of matched chromosomes, regardless of
size, receives at least one crossover. In humans, defects in
this recombination process can lead to a variety of
chromosome aneuploidy syndromes. During early stages
in meiosis, the ends of chromosomes, called telomeres,
associate with the envelope of the nucleus and undergo
highly dynamic movements. We identified a new compo-
nent of the movement-generating system, Csm4, in
budding yeast. In the absence of Csm4, the telomeres
associate with the nuclear envelope but are locked in an
immobile state. In addition, strains lacking Csm4 show
delayed recombination progression and high levels of
chromosome mis-segregation at the first meiotic division.
These findings suggest that, during meiosis, Csm4 is
involved in coupling telomere complexes to the move-
ment-generating system and that chromosome motion is
important for the completion of early steps in recombina-
tion.

Csm4 Is a Functional Partner of Ndj1
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both spore clones will be Ura+ Trp+. In csm4D 1.4 % of

the two-spore viable tetrads were of this type (n = 212).

This level of homolog nondisjunction is very similar to

that observed in the analysis of two recombination

mutants known to confer homolog nondisjunction:

mlh1D (1.2%, n = 324) and msh5D (3.4%, n = 994).

- Analogously, nondisjunction of the unmarked chro-

mosome III of these strains will yield two-spore viable

tetrads in which the two spores carry both yeast mating

types (MATa and MATa). Such spores can be detected

because they fail to mate with haploid tester strains of

either mating type. In csm4D, 7.8% (n = 103) were of this

type, with a similar level observed for msh5D (7.1%,

n = 56).

- In contrast, another common type of MI missegrega-

tion, precocious segregation of sister chromatids (PSSC),

occurs at a very low level in csm4D. PSSC can be

identified by analyzing two- and three-spore viable

tetrads [29]. In the EAY1108/EAY1112 strain set,

PSSC was not detectable in either WT or csm4D; in

another background (SK1 isogenic NH942/NH943;

Table S1) csm4D strains showed 5 PSSC events in 1284

tetrads (0.39%) and WT showed no PSSC events in 646

WT tetrads (difference between WT and csm4D values is

not statistically significant, Fisher’s Exact Test).

Taken together, these analyses show that the primary

segregation defect in csm4D mutants is homolog nondisjunction.

Similar results are reported by Kosaka et al. [23].

Csm4 and Ndj1 Play Functionally Related Roles for
Homolog Disjunction

Comparison of isogenic strains reveals that the phenotype of

csm4D is significantly stronger than that of ndj1D (Figure 1A). As

previously mentioned, csm4D mutants display a spore viability

pattern indicative of nondisjunction (4, 2, 0.3, 1 viable spores).

This pattern is more severe in csm4D vs. ndj1D (Figure 1B). Further,

a larger percentage of two-spore viable tetrads are sisters in csm4D
(88%) compared to ndj1D (69%). As judged by the first two of these

phenotypes, the double mutant defect is very similar to ndj1D, but

slightly weaker (Figure 1). These same patterns are also apparent

in the percentage of four viable spore asci and overall spore

viability (Figure 1A and B). These mutant phenotypes imply

functional interaction between Csm4 and Ndj1 with respect to MI

homolog disjunction. The observed epistatic relationship is

intriguing. First, it is the weaker phenotype that dominates (is

epistatic to) the stronger phenotype. Second, the occurrence of slight

synergy implies that not only is Ndj1 strongly required for the

csm4D phenotype but conversely, Csm4 is weakly required for the

ndj1D phenotype. Importantly, the above conclusions do not

reflect differences in sporulation efficiencies. For WT, 82% of cells

yielded asci with three or four spores and 89% yielded asci with at

least one spore (n = 234 cells examined); csm4D, ndj1D, and csm4D
ndj1D all exhibited similar reductions in both categories: 50, 51,

and 64% respectively, and 73, 59, and 78% respectively (n = 229,

221, and 238 cells examined, respectively).

Telomere/NE Analysis
Association of telomeres with the NE, occurrence of the

bouquet configuration, and dynamic telomere movements were

assessed, in SK1 isogenic strains (Table S1) by analyzing the

disposition of Rap1-GFP foci. Rap1 localizes prominently and

focally at telomeres and less markedly throughout chromatin

(Figure 2A, panel i; [5]). Our approach can detect foci that

correspond to single bivalent telomeres at pachytene (R. Koszul,

unpublished data), and thus, for earlier stages, should be sensitive

enough to detect clusters of two (or more) unpaired homolog

telomeres or four (or more) individual chromatids. Since bouquet

formation involves colocalization of telomeres near, but not at, the

SPB (Introduction), we used strains in which the SPB was also

labeled, with Spc42-RFP (Figure 2B, panel i; Figure S1; Table S1;

Materials and Methods).

Cells were taken through synchronous meiosis under standard

conditions (Material and Methods). In such cultures, at any given

time point, the majority of nuclei are in one particular stage.

Specifically, at t = 2, 3, 4 and 5 h, the majority of nuclei are in G2,

leptotene, zygotene, and pachytene respectively, as defined by

fluorescence activated cell sorter (FACS) analysis and SC status

(e.g. [6] and below). Zygotene and pachytene nuclei can thus be

defined operationally by the population average behavior of nuclei

at t = 4 and t = 5 h, respectively, albeit with some ‘‘contamination’’

from other stages at each time point.

WT Meiosis
Organization of Rap1-GFP foci was analyzed in nuclei of living

cells by 3D acquisition, in which a series of 400 nm optical z-

sections are taken over time (Figure 2A; n = 50 cells at every time

point; 10 planes total, exposure time of 900 ms; Material and

Methods). In WT mitotic cells (t = 0 h in SPM), nuclei could be

sorted by visual inspection into two categories (Figure 2A, panel i,

panel ii, t = 0): ,60% showed a ring of Rap1-GFP foci located in

the periphery of the main chromosomal mass, with no clearly

discernable internal foci, implying that telomeres are located

‘‘peripherally’’. The remaining ,40% clearly showed internal foci,

implying a ‘‘dispersed’’ disposition pattern. Similar categories have

been seen in other studies (e.g. [15]). In contrast, by 2 h after

initiation of meiosis, most nuclei were in the peripheral

configuration (Figure 2A, panel ii). This progression presumably

reflects complete migration of telomeres to the nuclear periphery

via formation of meiosis-specific telomere/NE complexes that

have assembled in early prophase. Since meiotic telomere/NE

association at G2/leptotene is a regular feature of meiosis in many

organisms (e.g. [30,31]), we infer that yeast exhibits this same

progression but with a prior ‘‘background’’ from mitotic telomere/

NE association.

Living cells were also analyzed for the movement of Rap1-GFP

foci. For this purpose, the focal plane of the microscope was set at

the top of each examined nucleus so that movements around the

nuclear periphery could be observed in apparent two dimensions.

Frames were taken at one-second intervals over a period of one

minute. The positions of the spots present in such focal planes

were recorded and analyzed using SpotTracker2D ImageJ plug-in

[32], when the amplitude of the displacement was limited, or

manually at t = 4 h (below). Such analysis was performed for 5–12

Figure 1. Distribution of viable spores in tetrads dissected from the indicated EAY1108/EAY1112 derived strains. A) In all plots the
horizontal axes correspond to the classes of tetrads with 4, 3, 2, 1, and 0 viable spores, and the vertical axes correspond to the percentage of each
class. The total number of tetrads dissected (n) and the overall spore viability (SV) are shown for each genotype. B) Histograms representing percent
total spore viability and the proportion of four viable tetrads for WT, csm4D, ndj1D, and ndj1D csm4D are presented.
doi:10.1371/journal.pgen.1000188.g001
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Rap1 foci taken from a minimum of 5 different nuclei (yielding a

total of 340 one-second step-sizes for both time points). At t = 2 h,

when telomeres have reached their peripheral localization, the

average velocity of movement (v) through two-dimensional space

was 0.0760.05 (S.D.) mm/sec. Further, these step sizes exhibit

nearly (but not perfectly) a Gaussian distribution, suggesting that

all foci are behaving similarly (Figure 2C, red curve; for details see

figure legend and Materials and Methods). The same features are

also seen previously at t = 0 h (average velocity 0.0660.05 mm/sec

with a near-Gaussian step-size distribution), in accord with the fact

that active motion has not yet begun by t = 2 h [6]. In contrast, at

t = 4 h, foci exhibit an increased average velocity of

0.2360.23 mm/sec, in accord with earlier studies [5,6]. Moreover

step-sizes no longer fit a Gaussian distribution (Figure 2C, red

curve); instead, there appear to be two types of movement, with a

majority of steps being smaller and corresponding to a near-

Gaussian distribution (Figure 2C, blue curve; ,77% of total) plus

a minority of much larger steps. The two apparent subpopulations

exhibit velocities of ,0.1 and ,0.45 mm/sec, respectively, both of

which are greater than the velocity observed at t = 2 h

(,0.07 mm/sec). The existence of two such populations is in good

agreement with the fact that, during the period of active actin-

Figure 2. Telomere organization and dynamics in WT, ndj1D, and csm4D mutants. A) Telomere organization in strains whose telomeres are
illuminated by Rap1-GFP. i Telomere organization in fixed prophase nuclei. Nuclei were distributed into two classes, ‘‘peripheral’’ (top panel; 10
frames from top to bottom) and ‘‘dispersed’’ (bottom panel) depending on the absence or presence of distinguishable Rap1-GFP foci within the
nuclear volume, respectively (Materials and Methods). ii The proportions of these two categories (left Y axis) in WT (NKY4000) and ndj1D, csm4D, and
ndj1D csm4D backgrounds (NKY3906, NKY3904, and NKY3905, respectively) were plotted as a function of time in sporulation media (SPM), with full
and empty symbols on black lines corresponding to peripheral and dispersed proportions, respectively (Note: the differences between the two
categories, while not absolute, is sufficiently robust that an untrained observer can place nearly all nuclei (.90%) in one category or the other
without ambiguity. This robustness is further supported by the regular progression of changes in disposition over time not only in WT but also in
mutants (below). The right Y axis and gray lines indicate the percentage of cells that have completed at least MI. B) Analysis of ‘‘bouquet’’ distribution
in fixed nuclei. i 2D projections from 3D acquisition of Rap1-GFP signals, with the position of the SPB indicated by a blue circle (Materials and
Methods). The nuclei presented here display peripherally localized telomere signals with either no evidence of bouquet colocalization or with ‘‘loose’’
and ‘‘tight’’ colocalization in the vicinity of the SPB. The region where most Rap1 foci co-localize is framed by a pink dotted rectangle. White dotted
line indicates the outline of the nucleus, as estimated from Rap1-GFP background. Complete sets of 3D Rap1-GFP images and definitions of the three
categories are provided in Figure S1. ii Proportion over time of nuclei exhibiting a ‘‘bouquet’’ configuration in WT, ndj1D, csm4D, and ndj1D csm4D
backgrounds (NKY4000, NKY3906, NKY3904, and NKY3905, respectively; ,100 nuclei per timepoint). C) Chromosome motion during prophase. i For
statistical convenience, the histograms of the x and y step-sizes of Rap1-GFP foci, recorded every second over 1 min, were plotted prior to zygotene
(t = 2 h for WT and ndj1D/csm4D mutants, respectively), and during zygotene stages (t = 4, 5, 6, and 5 h for WT, ndj1D, csm4D, and ndj1D csm4D
backgrounds, respectively; Materials and Methods). Red curves indicate the distribution expected when assuming that the displacements follow a
Normal distribution. For WT t = 4 h, the blue curve represent the expected Normal distribution of the step sizes included within v (t = 2 h)62 S.D. (i.e.
77% of total measurements). v indicates the mean velocity of telomeric 2D displacements over time. An accompanying asterisk indicates a statistically
significant difference in velocity the between pre-zygotene and zygotene stages (t-test, 0.05 significance level; Material and Methods). D) Csm4
localization in WT cells expressing Rap1-RFP and GFP-Csm4 (EAY1797). Fixed cells were spread and hybridized with anti-GFP antibodies. Pink and
turquoise lines outline the nuclear peripheral Csm4 signal and co-localization of Rap1 and Csm4 signals, respectively. All scale bars represent 2 mm.
doi:10.1371/journal.pgen.1000188.g002
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mediated movement, only a subset of telomeres are directly

coupled to the motion-generating mechanism while others are

either unaffected or dragged along passively [2,6,24].

To determine the overall disposition of telomeres at various

stages, formaldehyde-fixed nuclei were analyzed in 3D by

collection of an appropriate set of ‘‘z-sections’’ (Materials and

Methods; n = 100 nuclei for each time point). Nuclei in which

bright Rap1-GFP foci (i.e. the telomeres) were in a peripheral

configuration (above) were scored with respect to whether most of

the signals were or were not detectably clustered and, if so,

whether those clusters occurred in the vicinity of the SPB

(representative examples in Figure 2Bi; details in Figure S1).

SPB-associated colocalization was defined as ‘‘bouquet’’. Such

configurations include both ‘‘loose bouquet’’ and ‘‘tight bouquet’’

(Figure 2B, panel i), a distinction previously documented for yeast

and several other organisms (e.g. Sordaria, D. Zickler, personal

communication; [5,33], Kosaka et al., accompanying paper [23]).

Bouquet nuclei gradually increased in frequency from 2 h after

meiosis induction, peaked at t = 4–5 h (i.e. zygotene/pachytene),

and then diminished dramatically when cells entered pachytene in

accord with expected loss of the bouquet configuration at this stage

(Figure 2B, panel ii; analogous results obtained in a second

independent experiment, not shown). As also noted in early studies

(e.g. Ref. [5,13,15,24]), the proportion of bouquet nuclei is low

(,20%) even at the peak time points. This likely reflects the fact

that zygotene nuclei have the potential for telomeres to be in the

bouquet configuration but are undergoing such complex dynamic

telomere movements that all telomeres are only present in a

common area some fraction of the time [5].

ndj1D/csm4D Mutant Meiosis
ndj1D/csm4D mutants and WT were analyzed for telomere-

related events in parallel. All three mutants exhibit a WT mitotic-

like configuration at t = 0. However, during meiosis, ndj1D
telomeres fail to progress to a fully peripheral localization pattern

(as shown previously; [15]) while, in contrast, csm4D telomeres

behave indistinguishably from WT (Figure 2A, panel ii). Thus,

while Ndj1 is required for meiosis-specific telomere/NE associa-

tion, Csm4 is not, as also shown by Kosaka et al [23]. Further, the

ndj1D csm4D double mutant exhibits the ndj1D phenotype

(Figure 2A, panel ii), in accord with previous indications that

Ndj1 localizes to telomeres and directly mediates their meiotic NE

targeting [15].

ndj1D/csm4D mutants were analyzed for telomere movement at

t = 0 and at zygotene, the time of which was defined for all three

mutants by analysis of SC formation (below). Differences among

different situations were evaluated for significance by comparison

of step-size distributions by parametric tests (Materials and

Methods). By this criterion, the following patterns emerge: (i) At

t = 2 h, all three mutants exhibit velocities of movement similar to

that seen in WT. (ii) At zygotene, all three mutants exhibit

significantly less movement than WT, implying that Csm4, like

Ndj1 [2] is required for active motion (Figure 2C; see also [6,24].

Since telomeres are still NE-associated in the absence of Csm4,

these findings suggest that this molecule is involved in the motion-

producing force-generating process per se. (iii) Interestingly, from

t = 0 to zygotene, there is a small but significant increase in motion

in the absence of Ndj1 but no significant change in the absence of

Csm4 (Figure 2C). There is also no significant increase when both

proteins are absent. This suggests that csm4D is partially epistatic to

ndj1D with respect to zygotene motion (see Discussion). Other

studies further show that Ndj1 is not required for the NE

deformations that signal actin-mediated motion while absence of

Csm4 completely abrogates such motions [6]. Thus, the residual

Csm4-dependent movement observed in ndj1D appears to reflect

residual movement that is independent of meiosis-specific

telomere/NE association, e.g. via mitotic-like or non-specific

associations. In the absence of Csm4, in contrast, telomeres may

simply be ‘‘not moving’’ or may actually be ‘‘locked in place.’’

In accord with abrogation of telomere/NE association and/or

chromosome movement, there is no detectable bouquet formation

in ndjD, csm4D, or the ndj1D csm4D double mutant (Figure 2B,

panel ii). This is also consistent with data reported for ndj1D [15]

and for csm4D by Kosaka et al. [23].

Csm4 Co-Localizes with Telomeric Rap1-GFP at the
Nuclear Periphery

We also explored the cytological localization of Csm4 during

meiosis in relation to the localization of telomeres using a strain

(EAY1797) carrying an integrated Csm4-GFP fusion driven from

the native CSM4 promoter and the Rap1-RFP fusion (Materials

and Methods). Intrinsic Csm4-GFP fluorescence is sufficiently

weak so that localization can only be assessed with anti-GFP

antibody in fixed cells, and even then, with substantial background

staining. Nonetheless, at mid-prophase, Csm4 can be seen in foci

around the periphery of the nucleus (Figure 2D, left). These foci

often overlap with strong foci of Rap1-RFP (Figure 2D, right).

These images provide evidence suggestive of NE localization of

Csm4 and a tendency for association with telomeres. A strain

expressing only Rap1-RFP does not show such patterns (data not

shown; strain NKY4005).

Genetic Analysis of Recombination
Defects in MI homolog segregation often reflect defects in the

formation of crossovers (COs). Further, it would be interesting to

know whether/how telomere dynamics affect recombination. We

therefore examined recombination in csm4D by both genetic (this

section) and physical analyses (below).

Increased Crossing Over in csm4D
We examined crossing over in 12 different intervals by tetrad

analysis in WT and csm4D (Figure 3, Tables 1, S1, and S2). The

csm4D mutation conferred a 30–40% increase in the level of COs

for all four intervals in the SK1 congenic strains. In the analysis of

complete tetrads, the URA3-LEU2 and ADE2-HIS3 intervals were

significantly different from WT (G-test, p,0.007, 95% confidence

level, Dunn-Sidak correction, [34,35]) but the LEU2-LYS2

(p = 0.07) and the LYS2-ADE2 (p = 0.013) were not (Figure 3A).

However, in the spore analysis, only the LEU2-LYS2 interval

(p = 0.014) was not significantly different from WT (p,0.007,

Figure 3A). Similarly, in isogenic SK1 strains, CO frequencies

were increased in csm4D mutants at four out of eight analyzed

intervals in complete tetrads and at six out of eight intervals in the

spore analysis (G-test, p,0.05, 95% confidence level). At the

HIS4-LEU2 interval on chromosome III, CO levels were

indistinguishable between WT and csm4D in both data sets

(Figure 3B).

Oh et al. [36] showed that the sgs1DC795 mutation conferred an

,20% increase of map distance in SK1 strains that was primarily

due to an increase in the frequency of NPD tetrads. Based on this

observation the authors suggested ‘‘… that a fraction of the events

that would normally form single crossovers in WT cells gives rise

to closely spaced double crossovers in sgs1DC795 cells.’’ We did

not see a similar pattern in csm4D mutants. Three of four genetic

intervals (all but LEU2-LYS2) in the SK1 congenic strain displayed

significantly different PD:NPD:TT distributions in csm4D com-

pared to WT, even when the NPD class was ignored (G-test,
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p,0.05). This observation suggested that the csm4D mutation did

not increase map distances by specifically increasing the frequency

of closely spaced double crossovers. This conclusion is reinforced

by physical analysis of DNA events: species representing large joint

molecules are overrepresented relative to other types of joint

molecules in sgs1D [36] but not in csm4D (compare Figure 7C with

Figure S2C).

Reduced Crossover Interference in csm4D
In WT meiosis, occurrence of a CO in one region of a

chromosome is accompanied by a reduced probability that one

will also occur in a nearby region, a phenomenon known as "CO

interference’’. We assayed interference in csm4D by three different

methods.

One approach utilizes the method of Malkova et al. [37], which

evaluates the occurrence of interference in adjacent intervals by

utilizing all of the information contained in complete tetrads

(Figure 4, Table S3). In WT, interference was observed for all

three interval pairs. In contrast, csm4D strains showed reduced

interference in two intervals and no significant interference in the

third. One interpretation of these data is that interference does not

extend as far from the initial crossover site in csm4D strains as it

does in WT.

A second approach evaluated the ‘‘coefficient of coincidence’’

(COC). For a given pair of intervals, the COC is the ratio of the

observed frequency of double CO events to that expected if COs

in the two intervals occurred independently. In accord with results

obtained using the Malkova et al. [37] method, the csm4D mutant

exhibited a modest reduction in interference in all four intervals

analyzed (Table 2).

A third approach to interference analysis is the calculation of the

ratio of observed non-parental ditypes (NPD) which reflects the

occurrence of a four-strand double crossover, to that predicted by

the number of single crossovers detected (NPD ratio, [38,39]). By

Figure 3. Cumulative genetic distance (cM) in WT, csm4D, mlh1D, msh5D, and ndj1D strains. In panels A and B, each bar is divided in sectors
corresponding to genetic intervals in the region of the chromosome analyzed. A) Cumulative genetic distances between URA3 and HIS3 on
chromosome XV in EAY1108/EAY1112 derived strains measured from tetrads (T) and single spores (S). B) Cumulative genetic distances between ADE2
and LEU2 on chromosome III, URA3 and CUP1 on chromosome VIII, and LYS5 and TRP5 on chromosome VII in the NH942/NH943 derived strains
measured from tetrads (T) and single spores (S). See Tables 1 and S2 for raw data.
doi:10.1371/journal.pgen.1000188.g003
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Table 1. Genetic map distances (cM) and the distribution of parental and recombinant progeny for the EAY1108/EAY1112 strain
background in WT, csm4D, ndj1D, msh5D, and mlh1D strains on chromosome XV.

Relevant genotype Tetradsa Single sporesb

Number
analyzed cM PD TT NPD

Number
analyzed cM Parental Recombinant

URA3-LEU2:

wild-type 1068 21.8–23.8 607 456 5 4644 20.6–23.0 3635 1009

csm4D 531 33.3–36.9 203 319 9 2999 29.3–32.6 2072 927

ndj1D 472 34.9–39.1 173 289 10 2548 31.0–34.7 1712 836

mlh1D 616 10.3–12.5 486 128 2 3792 9.6–11.6 3393 399

msh5D 720 5.0–6.4 643 76 1 5674 5.1–6.3 5352 322

csm4D ndj1D 789 31.8–35.0 337 437 15 3836 27.4–30.3 2732 1104

csm4D mlh1D 418 15.4–19.2 298 115 5 4036 13.6–15.8 3446 590

csm4D msh5D 155 7.5–10.5 127 28 0 1624 8.2–11.1 1469 155

LEU2-LYS2:

wild-type 1068 26.6–28.4 496 569 3 4644 25.8–28.4 3388 1256

csm4D 531 29.7–32.5 216 312 3 2999 28.0–31.3 2110 889

ndj1D 472 31.3–34.3 192 274 6 2548 28.3–31.9 1782 766

mlh1D 616 11.8–13.6 459 157 0 3792 11.7–13.8 3309 483

msh5D 720 11.0–13.0 562 155 3 5674 10.3–11.9 5047 627

csm4D ndj1D 789 31.9–34.9 322 455 12 3836 29.1–32.0 2664 1172

csm4D mlh1D 418 14.4–17.4 295 121 2 4036 14.5–16.7 3407 629

csm4D msh5D 155 10.4–15.4 120 34 1 1624 10.0–13.2 1437 187

LYS2-ADE2:

wild-type 1068 12.1–13.7 803 263 2 4644 11.8–13.8 4052 592

csm4D 531 15.3–17.5 362 168 1 2999 16.0–18.7 2480 519

ndj1D 472 17.8–20.0 294 178 0 2548 16.6–19.7 2087 461

mlh1D 616 6.2–7.6 531 85 0 3792 6.5–8.1 3517 275

msh5D 720 3.7–4.7 659 61 0 5674 4.1–5.3 5409 265

csm4D ndj1D 789 18.7–21.3 514 267 8 3836 16.8–19.3 3145 691

csm4D mlh1D 418 6.1–7.7 360 58 0 4036 6.9–8.6 3726 310

csm4D msh5D 155 3.1–5.3 142 13 0 1624 3.1–5.1 1559 65

Relevant genotype Tetradsa Single sporesb

Number
analyzed cM PD TT NPD

Number
analyzed cM Parental Recombinant

ADE2-HIS3:

wild-type 1068 36.5–38.9 343 709 16 4644 33.3–36.1 3033 1611

csm4D 531 51.3–57.1 120 378 33 2999 40.2–43.8 1739 1260

ndj1D 472 53.3–59.9 108 330 34 2548 40.6–44.5 1464 1084

mlh1D 616 18.2–21.0 400 211 5 3792 16.9–19.4 3104 688

msh5D 720 17.2–20.2 496 215 9 5674 14.5–16.4 4797 877

csm4D ndj1D 789 52.4–57.4 193 542 54 3836 40.4–43.5 2228 1608

csm4D mlh1D 418 31.5–37.3 215 186 17 4036 23.6–26.3 3031 1005

csm4D msh5D 155 20.0–26.4 93 60 2 1624 14.9–18.6 1354 270

URA3-LYS2:

wild-type 1068 46.5–49.9 264 759 45 4644 38.0–40.8 2815 1829

csm4D 531 56.9–63.3 108 380 43 2999 41.7–45.3 1696 1304

ndj1D 472 59.5–66.9 105 321 46 2548 41.9–45.8 1430 1118

mlh1D 616 21.8–24.4 351 261 4 3792 20.2–22.9 2976 816

msh5D 720 15.5–18.1 513 200 7 5674 13.8–15.6 4843 831

csm4D ndj1D 789 56.1–61.1 145 588 56 3836 42.2–45.3 2158 1678

csm4D mlh1D 418 31.7–37.9 222 177 19 4036 23.5–26.2 3033 1003
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this criterion, we were unable to determine a difference in

interference between WT and csm4D in all three intervals measured

(Table 2). It is not clear why interference as assessed by NPD ratios

is less affected by csm4D than when assessed by other methods. One

possible explanation for the disparity between the COC and NPD

ratio measurements is that NPD measurements may be affected by

‘‘chromatid interference’’. Chromatid interference is a restriction on

the independence of chromatid selection during CO recombination

Figure 4. Crossover interference is partially disrupted in csm4D strains on chromosome XV. Crossover interference was analyzed as
described by Malkova et al. [37] and Martini et al. [34] using data obtained from the EAY1108/EAY1112 strain background (Table 1). The numbers
above the solid arcs are the average of the significance interference ratios for each interval pair. n.s. and dashed arc indicates that both members of
the interval pair did not show significant interference.
doi:10.1371/journal.pgen.1000188.g004

Relevant genotype Tetradsa Single sporesb

Number
analyzed cM PD TT NPD

Number
analyzed cM Parental Recombinant

csm4D msh5D 155 18.7–25.1 97 56 2 1624 16.5–20.3 1326 298

LYS2-HIS3:

wild-type 1068 46.0–49.6 278 744 46 4644 37.7–40.5 2829 1815

csm4D 531 64.0–71.2 103 370 58 2999 43.9–47.5 1628 1371

ndj1D 472 67.5–75.9 100 311 61 2548 43.6–47.5 1389 1159

mlh1D 616 24.7–28.3 344 261 11 3792 21.7–24.5 2917 875

msh5D 720 20.5–23.9 465 242 13 5674 17.3–19.3 4638 1036

csm4D ndj1D 789 62.3–68.3 174 532 83 3836 43.0–46.1 2127 1709

csm4D mlh1D 418 33.4–39.0 195 207 16 4036 26.3–29.0 2921 1115

csm4D msh5D 155 24.3–32.5 87 64 4 1624 17.5–21.4 1309 315

All mutants are isogenic derivatives of EAY1108/EAY1112. aIntervals correspond to the genetic distance calculated from tetrads +/- one standard error. Standard error
was calculated using the Stahl Laboratory Online Tools website (http://www.molbio.uoregon.edu/,fstahl/). bData shown as 95% confidence intervals around the
recombination frequency determined from single spores. To facilitate comparisons to the tetrad data, recombination frequencies obtained from single spore data were
multiplied by 100 to yield genetic map distances (cM). The recombination frequency in single spores determined by: Parental/(Parental+Recombinant) and cM indicates
the genetic distance in tetrads calculated using the formula of Perkins [38]: 506{TT+(66NPD)}/(PD+TT+NPD).
doi:10.1371/journal.pgen.1000188.t001

Table 1. cont.
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and has not been previously observed in yeast [37,40]. Corre-

spondingly, WT and the csm4D mutant both exhibited a 1:2:1 ratio

of exchanges involving two, three, or four chromatids in the URA3-

LYS2-HIS3 interval, implying an absence of chromatid interference

in both cases (data not shown).

CSM4 and Crossover-Promoting Factors Act
Independently

During meiosis, the formation of COs, as opposed to noncross-

overs (NCOs), is promoted by a large number of proteins that are

specifically dedicated to this process. Among these, the Msh4-Msh5

complex appears to act around the time of CO/NCO differentiation

[41], while Mlh1-Mlh3 appears to act later, likely during double

Holliday junction (dHJ) resolution ([42–44]; N. Hunter, personal

communication). In both the msh5D csm4D and mlh1D csm4D double

mutants, recombination levels are significantly lower at all examined

intervals than levels seen with the csm4D alone (G-test, p,0.007,

Dunn-Sidak correction, Figure 3, Table 1). This suggests that, while

absence of Csm4 affects the level of COs, those COs are still

occurring via the normal Msh5/Mlh1-dependent pathway. Con-

versely, in msh5D and mlh1D mutant backgrounds, absence of Csm4

increases CO levels about two-fold above the single msh5D and mlh1D
mutant levels, suggesting that the effect of csm4D on CO levels is

upstream and/or independent of the msh5D and mlh1D effects.

Although the msh5D is only significantly different from its

corresponding double mutant at the URA3-LEU2 interval in the

spore dataset, the mlh1D recombination levels differ significantly from

mlh1D csm4D at two out of four intervals in the tetrad dataset and

three out of four intervals in the spore dataset (G-test, p,0.025,

Dunn-Sidak correction). Furthermore, spore viability in the double

mutants (Figure 1; csm4D msh5D = 22%; mlh1D csm4D = 42%) was

much lower than any of the single mutants alone (Figure 1;

csm4D = 64%; msh5D = 36%; mlh1D = 68%). Taken together, these

genetic interactions suggest that Csm4 acts independently of Msh4-

Msh5 and Mlh1-Mlh3. Physical analysis of csm4 msh4 mutants by

Kosaka et al. [23] is consistent with this observation.

Ndj1 and Csm4 Have the Same Function(s) for CO Level
and Distribution

ndj1D conferred a 30–40% increase in CO frequencies at all

intervals, indistinguishable from the increase seen in csm4D (G-test,

p,0.007, Dunn-Sidak correction). Crossover interference is also

similarly affected in ndj1D and csm4D. These unusual phenotypes

in both mutants provide strong support for Ndj1 and Csm4

playing similar roles with respect to recombination. In direct

confirmation of this conclusion, the csm4D ndj1D double mutant is

indistinguishable from either single mutant with respect to

increases in CO levels in all four genetic intervals analyzed (G-

test, p,0.017, Dunn-Sidak correction, no intervals are signifi-

cantly different between csm4D and csm4D ndj1D and only one

interval is significantly different between ndj1D and the double

mutant, Figure 3, Table 1) and interference phenotypes (Figure 4;

Table 2). We note that a previous study also detected reduced

interference in ndj1D but did not detect increased CO levels [11].

Strain background effects are likely responsible for this difference.

Absence of Csm4 Does Not Dramatically Increase Non-
Mendelian Segregation (Table 3)

Non-Mendelian (non-2:2) segregation of an allele, often referred

to as ‘‘gene conversion’’, implies that a recombination interaction

Table 2. Interference in WT, csm4D, ndj1D, msh5D, and mlh1D strains.

Coefficients of coincidence (DCO observed/DCO expected) Nonparental Ditype Ratios (NPD observed/NPD expected)

Relevant
genotype URA3-LEU2-LYS2 LEU2-LYS2-ADE2 ADE2-HIS3 URA3-LYS2 LYS2-HIS3

Tetrads Spores Tetrads Spores

wild-type 0.717** 0.799** 0.458** 0.550** 0.215** 0.443** 0.469**

(177/246.9) (218/272.9) (65/141.9) (88/160.1) (16/74.5) (45/101.6) (46/98.0)

csm4D 0.905 0.932 0.828 0.910 0.582** 0.676** 0.824

(176/194.6) (256/274.8) (83/100.3) (140/153.8) (33/56.7) (43/63.6) (58/70.4)

mlh1D 0.573* 0.649* 0.646 0.628* 0.472 0.250** 0.618

(19/33.1) (33/50.8) (14/21.7) (22/35.0) (5/10.6) (4/16.0) (11/17.8)

msh5D 1.184 1.658*** 0.747 0.99 0.900 0.833 0.970**

(20/16.9) (59/35.6) (10/13.4) (29/29.3) (9/10.0) (7/8.4) (13/13.4)

ndj1D 0.936 0.963 0.729** 0.758** 0.661** 0.820* 0.970

(166/177.4) (242/251.3) (77/105.6) (105/138.6) (34/51.4) (46/56.1) (61/62.9)

msh5D csm4D 0.791 1.233 0.341 1.069 0.556 0.645 0.870

(5/6.3) (22/17.8) (1/2.9) (8/7.5) (2/3.6) (2/3.1) (4/4.6)

mlh1D csm4D 1.076 1.175 0.586 0.952 1.056 1.242 0.833*

(38/35.3) (108/91.9) (10/17.1) (46/48.3) (17/16.1) (19/15.3) (16/19.2)

ndj1D csm4D 0.804** 0.886* 0.793** 0.786** 0.663** 0.577** 0.862

(215/267.5) (299/337.3) (129/162.8) (166/211.1) (54/81.4) (56/97.0) (83/96.3)

Interference was calculated from data presented in Table 1. The coefficient of coincidence (COC) was examined by a two-tail binomial test from VassarStats (http://
faculty.vassar.edu/lowry/VassarStats.html) which tested whether the observed number of double crossovers (DCOs) deviated significantly from the expected number.
The expected number of non-parental ditypes (NPDs) and the presence or absence of interference was determined using the two-factor test from the Stahl Laboratory
Online Tools website (http://www.molbio.uoregon.edu/,fstahl/). Asterisks indicate that interference is present in the interval (* p,0.05; ** p,0.01). ***In this interval,
although DCOs deviated significantly from the expected number, the COC is greater than 1.
doi:10.1371/journal.pgen.1000188.t002
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has occurred between homologs rather than sisters. In budding

yeast, gene conversion events are usually manifested as 1:3 or 3:1

segregation patterns of individual alleles [45]. In the congenic SK1

background, gene conversion levels at TRP1, URA3, LEU2, LYS2,

ADE1, and HIS3 loci occurred at levels ranging from 0 to 0.8% of

tetrads in WT and at indistinguishable levels in csm4D. The

relatively low levels of gene conversion observed for these markers

may reflect the fact that they mostly involve 1–3 kb heterologies.

We also examined gene conversion at 11 loci marked by a variety

of mutation types (point mutations and insertions/deletions). In

these SK1 strains [46], non-Mendelian segregation frequencies

ranged from 0.2% to 5.3% of tetrads in WT and 0.2% to 5.2% in

csm4D derivatives. The total frequencies of gene conversion at all

loci were 14.7% in WT and 17.4% in csm4D, with no

chromosome- or locus-specific differences detectable. Gene

conversion frequencies reflect the combined effects of a couple

of variables: the frequency of recombination initiation at/near the

locus and the probability that an event initiated on one homolog

will chose a partner duplex on the other homolog rather than on

the sister chromatid. The simplest possibility is that csm4D has little

effect on either of these features, although a balanced effect on

both parameters cannot be excluded.

Homolog Nondisjunction in csm4D Does Not Result from
Absence of the Obligatory CO

Homolog disjunction requires the presence of at least one

interhomolog connection, created by the combined effects of a CO

and the cohesion between sister chromatids centromere-distal to

that CO. Homolog disjunction also requires appropriate reduc-

tional functioning of homolog centromere/kinetochore complexes

and the efficient release of chiasma-maintaining sister connections.

Because csm4D exhibits higher than WT levels of COs, it seems

unlikely that homolog nondisjunction in csm4D results from the

absence of a CO. On the other hand, in WT meiosis, special

mechanisms ensure that each homolog pair experiences at least

one CO (the so-called ‘‘obligatory’’ CO) even when overall CO

levels are reduced (for recent discussion see [34]). Thus, it

remained possible that Csm4 is required for the occurrence of the

obligatory CO.

We examined the presence or absence of COs on chromosomes

that had undergone nondisjunction using a system developed by

Rockmill et al. ([29]; Figure 5, Table S4). This system allows for

the selection, purification, and genetic analysis of spores disomic

for chromosome III in the BR strain background (Table S1,

Materials and Methods). As a baseline for this analysis, map

distances for six intervals spanning 167 kb of the 317 kb

chromosome III were determined from four-spore viable tetrads

in WT (390 tetrads dissected, 317 four-spore-viable, 93% spore

viability) and csm4D (697 tetrads dissected, 203 four-spore viable,

53% spore viability) in the BR strain background. This spore

viability pattern observed in csm4D was similar to that seen for

both the congenic and isogenic csm4D SK1 strains. However,

unlike what we observed in the SK1 strain background, the

recombination frequencies were similar in WT and csm4D (only

Table 3. csm4D does not significantly affect the percentage of non-mendelian segregation events observed in tetrads.

Chromosome XV

Tetrads TRP1 URA3 LEU2 LYS2 ADE2 HIS3 All Markers

wild-type 1087 0.0 0.0 0.2 0.6 0.1 0.8 1.7

csm4D 541 0.0 0.0 0.4 0.6 0.2 0.7 1.8

ndj1D 482 0.2 0.2 0.4 0.6 0.0 0.8 2.3

msh5D 757 0.1 0.1 1.6 1.2 0.8 1.2 5.0

mlh1D 635 0.0 0.2 0.8 0.6 0.5 0.9 3.0

ndj1D csm4D 806 0.0 0.0 0.7 0.4 0.2 0.9 2.2

msh5D csm4D 163 0.0 0.6 2.5 1.2 0.0 0.6 4.9

mlh1D csm4D 452 1.8 1.5 0.9 2.0 1.5 2.0 9.7

Chromosome III

Tetrads HIS4 LEU2 ADE2 MATa All markers

wild-type 491 2.4 0.4 0.2 0 3.1

csm4D 559 4.3 0.7 0.2 0 5.2

Chromosome VII

Tetrads LYS2 MET13 CYH2 TRP5 All markers

wild-type 491 1.6 2.9 0.4 0.6 5.5

csm4D 559 0.9 3.6 0.5 1.4 6.4

Chromosome VIII

Tetrads URA3 THR1 CUP1 All markers

wild-type 491 0.2 5.3 0.6 6.1

csm4D 559 0 5.2 0.5 5.7

aPercentage of gene conversion events on chromosome XV in the EAY1108/EAY1112 SK1 congenic background. Of the 167 aberrant segregation events detected, 161
were 3:1 or 1:3 single gene conversions and 6 were 4:0 or 0:4 double gene conversions. No post-meiotic segregation events were detected.

bGene conversion percentage on chromosomes III, VII, and VIII in the NH942/NH943 SK1 isogenic background. Of the 169 aberrant segregation events detected, 168
were 3:1 or 1:3 single gene conversions and 1 was a 4:0 or 0:4 double gene conversion. No post-meiotic segregation events were detected.

doi:10.1371/journal.pgen.1000188.t003
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two out of six intervals were significantly different, G-test,

p,0.025, Dunn-Sidak correction, see comment on strain

background effects below).

Tetrad analysis of the csm4D derivatives of these strains showed

that 9.3% (17/182) of the two-spore-viable tetrads dissected

displayed nondisjunction of chromosome III. This value is similar

to what was seen in the congenic SK1 strain background (7.8%).

Tetrad analysis also revealed that 85% (154/182) of csm4D two-

spore-viable tetrads were sisters, consistent with meiosis I

nondisjunction, and again, similar to that seen in the congenic

SK1 strain background (88%). These data, along with the spore

viability profile (data not shown), show that again, aberrant

segregation in csm4D strains resulted primarily from homolog

nondisjunction.

From sporulated csm4D cultures, we selected and analyzed 185

random spores disomic for chromosome III. In this analysis, CO

levels were examined in a manner that accounted for the inability

to detect homozygosity of dominant markers in the csm4D disomic

spores and all tetrad information was converted to single spore

data to allow direct comparison between the disome and tetrad

data (Materials and Methods). Interestingly, the distribution of

COs among the examined intervals was significantly different from

that observed among chromosomes that experienced regular

segregation: when compared to csm4D tetrads, csm4D disomes

displayed significantly increased levels in the iNAT-iLEU2 and

iLEU2-MAT intervals on the right arm of the chromosome and a

significantly decreased level of crossing over in the HIS4-iTHR1

region (G-test, p,0.025, Dunn-Sidak correction, Figure 5, Table

S4). In addition, the total map distance for six intervals on

chromosome III was higher for the disomes (85 cM) compared to

the WT (78 cM) and csm4D (71 cM) complete tetrads (Figure 5,

Table S4). Thus, homolog nondisjunction in csm4D does not

appear to result from absence of the obligatory CO.

More generally, chromosomes are not mis-segregating because

of lack of recombination events, too many recombination events,

or because they were only receiving crossovers in inappropriate

locations (e.g., telomeres, centromeres). The altered distribution of

crossovers seen in csm4D disomes also differed from what was

previously seen in disomes isolated from WT and sgs1D strains. In

these backgrounds, elevated levels of crossing over were seen at all

loci with the highest levels found at those closest to the centromere,

consistent with PSSC causing the majority of the mis-segregation

events detected [29]. Rockmill et al. [29] hypothesized that the

increase in centromere-proximal crossing over in WT and sgs1D
strains caused PSSC events through the loss of sister chromatid

cohesion. However, our data are not consistent with this scenario.

The crossovers seen in csm4D disomes were not consistently higher

or lower across the chromosome length, were not localized to a

specific chromosomal position (e.g. centromeres), and were clearly

not aiding in proper chromosome segregation. Thus there is no

clear pattern or trend from these data that can explain how such a

changed distribution can cause chromosome mis-segregation. A

Figure 5. An altered distribution and frequency of crossovers is seen in csm4D cells that have suffered a chromosome III
nondisjunction event. A) Cartoon showing the chromosome III locus in the BR strain background (Materials and Methods). B) Graphical
representation of recombination for WT and csm4D tetrads and csm4D disomic spores (from data in Table S4). Error bars indicate 95% confidence
intervals around the recombination frequency determined from single spores, calculated using VassarStats (http://faculty.vassar.edu/lowry/
VassarStats.html). ‘‘i’’ indicates insertion of the indicated marker at an ectopic locus. Recombination frequencies obtained from single spore data were
multiplied by 100 to yield genetic map distances (cM). *csm4D disomic recombination levels are significantly different (G-test, p ,0.025, Dunn-Sidak
correction) from the csm4D tetrad data.
doi:10.1371/journal.pgen.1000188.g005
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different type of explanation for homolog nondisjunction is

presented below (Discussion).

Physical Analysis of Recombination
To address the nature of recombination in csm4D/ndj1D meiosis

in more detail, we assayed, in synchronously initiated meiotic

cultures, physical events at the HIS4LEU2 locus of chromosome

III (Figure 6A), where virtually all events emanate from a single

DSB hot spot. Since Csm4 and Ndj1 are implicated in telomere

status and dynamics (below), we also asked whether mutant

recombination phenotypes depend upon the presence of chromo-

somal telomeres in cis to the assayed locus. For many phenotypes

we analyzed recombination between HIS4LEU2 loci present on

circular versions of chromosome III as well as on normal linear

chromosomes III. Presence of the circular chromosome was

confirmed for all analyzed strains (Figure S3A). All strains

examined are isogenic SK1 derivatives (Table S1).

High Levels of DSBs and CO/NCO Products
The levels of CO and noncrossover (NCO) products were

determined at the end of meiosis using a two-dimensional gel

approach (Figure 6B; [34]). In all three mutants (ndj1D, csm4D, and

ndj1D csm4D), both types of products were present at high levels

(Figure 6C). Correspondingly, DSBs form at the very similar levels

in all four strains, as assessed in a rad50S background [47] where

their turnover to later intermediates is blocked (Figure 6D and

S3B). Genetic analysis (above) detected modest increases in COs

and non-Mendelian segregations, which presumptively represent

total events and thus NCOs as well as COs. Such increases are not

obvious in the present study at HIS4LEU2 (Figure 6C; see also

Figure 7C ‘‘COs’’); however, slightly increased levels of DSBs are

reported from analogous analysis of a slightly different version of

HIS4LEU2 by Kosaka et al. [23].

Delays at Every Post-DSB Step of Recombination
rad50S data also show that DSBs occur in a timely fashion in all

three mutants, with small differences in timing among different

strains that are well within standard culture-to-culture variation

(Figure 6D). Since the timing of DSB formation reflects the timing

of DNA replication [48] this suggests that DNA replication also

occurs with normal timing, which we have confirmed directly in all

three mutants by FACS analysis (data not shown).

After DSB formation, however, progression through ensuing

steps of recombination is severely delayed, for both linear and

circular chromosomes. These steps were analyzed by one-

dimensional gels that display DSBs and CO products plus two-

dimensional gels that display single-end invasions (SEIs) and

double Holliday junctions (dHJs), two branched species on the

pathway to formation of CO products ([49,50,51]; Figure 7A and

B; Figure S3C). All three intermediates (DSBs, SEIs, and dHJs)

occur at higher than normal levels and peak at later than normal

times in all three mutants, with very similar results for linear and

circular chromosomes (Figure 7C). This pattern is indicative of

delayed progression, as discussed in detail below. Correspondingly,

while CO products form at high levels in all cases, they appear

with a substantial delay in all three mutants, for both linear and

circular chromosomes (Figure 7C). An additional type of one-

dimensional gel analysis of the linear chromosome strains reveals

that the same is also true for NCO products, which are delayed to

the same extent as CO products in all three mutants (Figure S2A

and B).

The detailed effects of ndj1D/csm4D mutations on recombina-

tion progression are elucidated by further analysis of the primary

data, by two approaches [51]. First, the lifespan of an

intermediate, given by the area under the corresponding primary

data curve, defines the time spent by a given intermediate at that

stage; thus, an increase in the lifespan of a species implies a delay

in progression out of the corresponding step. The lifespans of

DSBs, dHJs and SEIs all increased in each of the three mutants,

relative to WT, for both linear and circular chromosomes, with the

biggest increase for DSBs (Figure 7D). Thus, all three mutants

confer defects in all three corresponding steps, with the biggest

delay in progression out of the DSB stage and lesser delays in

progression from SEIs to dHJs and progression from dHJs to COs.

Second, cumulative curve analysis defines the percentage of cells

that have ‘‘entered’’ a particular stage as a function of time after

initiation of meiosis, with ‘‘time of entry’’ defined as the time at

which 50% of cells have carried out the corresponding step. Once

again, a delay in progression is seen as an increase in the time

interval between the entry time for one step and the entry time for

the successive step. Among the three transitions examined, the

biggest effect of the mutations is on the difference between the

time of DSB formation and the time of SEI formation (i.e. the

DSB-to-SEI transition), as expected from lifespan analysis, with

smaller (or no) differences seen for the other two other transitions

Figure 6. Meiotic recombination analysis at HIS4LEU2 in WT,
csm4D, ndj1D, and csm4D ndj1D, Part I. A) Physical map of the
HIS4LEU2 hotspot. Parental homologs, ‘‘Dad’’ and ‘‘Mom,’’ are distin-
guished via restriction site polymorphisms (circled X = XhoI). The
locations of the relevant XhoI (X), parental, and DSB sites are indicated.
B, C) 2D gel analysis of CO and NCO products at HIS4LEU2. B 2D gel of
CO and NCO tester constructs. XhoI digested DNA was electrophoresed
in the first dimension gel for 24 h, digested in situ with BamHI, and then
electrophoresed in the second dimension gel. C) Analysis of CO to NCO
products from B. D) Synchronous meiotic cultures of rad50S-KI81
mutants bearing the csm4D, ndj1D, and csm4D ndj1D mutations were
analyzed by Southern blot for DSBs at the HIS4LEU2 locus. Quantitation
is shown for gels presented in Figure S3B.
doi:10.1371/journal.pgen.1000188.g006
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(SEI formation to dHJ formation, dHJ formation to CO

formation; Figure 7E). We note that similar effects have been

observed not only in the two complete experiments presented in

Figure 7C but in a third set of experiments involving a different set

of linear chromosome strains (Figure 7D and E, ‘‘Lin2’’). We also

note that while previous work suggested no delay in the DSB-to-

SEI transition in ndj1D [16], reanalysis of that data suggests that

the same delay was observed in that study as is reported here.

We conclude that: (i) absence of Ndj1 and/or Csm4 confers

delayed progression at every individual assayable step of recombi-

nation but most prominently at the DSB to SEI transition; (ii) that

linear and circular chromosomes behave quite similarly with respect

to these effects, though minor differences are not excluded; and (iii)

that delays are not accompanied by any significant reduction (or

obvious increase) in the level of final CO and NCO products. There

is also a strong tendency for csm4D to confer the strongest effects

among the three analyzed mutations (Figure 7D and E).

Effects of ndj1/csm4 mutations on three other aspects of

recombination were also examined for both linear and circular

chromosomes (Figure S2C and D). First, ‘‘large joint molecules’’

(LJMs), indicative of multi-chromatid interactions [36], occur in

ndj1/csm4 mutants as in WT meiosis (Figure S2C). Moreover,

direct comparison of LJM and dHJ levels reveals that the two

species are affected coordinately, with no indication that the

mutants have increased LJM levels as observed in certain other

mutants (Figure S2D; [36]). Second, ectopic recombination, which

occurs between the molecularly-inserted LEU2 locus at HIS4LEU2

and the endogenous leu2 locus [52], is slightly elevated in all three

mutants, as compared to WT, as seen at very late time points

(Figure S2C), and as previously observed for ndj1D [18]. Third, for

the linear chromosome, all three mutants exhibit a significant, but

somewhat reduced, ratio of inter-homolog versus inter-sister dHJs

(,2.7:1 versus ,5:1 for WT; Figure S2C). This difference could

reflect: (i) defective homolog partner choice at the time that choice

is made (concomitant with DSB formation; [53], K.K. and N.K.

unpublished); (ii) deterioration of homolog bias thereafter; and/or

(iii) a differential role of Ndj1/Csm4 in progression of inter-

homolog CO interactions versus inter-sister CO interactions. No

such difference is observed for the circular chromosome; perhaps

this is related to the fact that it does not exhibit such strong inter-

homolog bias in WT (Figure S2C).

We note that related analysis of linear chromosome recombi-

nation in csm4D by Kosaka et al. [23] also reveals delays at all

assayable steps, very similar to the delays reported here, and,

coordinately, delays in formation of COs and NCOs. The two

studies differ somewhat with respect to reported effects on the

levels of COs and NCOs, perhaps because slightly different assays

and HIS4LEU2 alleles were used. However, in both cases, high

levels of both products do occur.

Recombination-Dependent MI Delay
All three ndj1/csm4 mutations confer delays in the occurrence of

MI. The extent of the delay is greatest for csm4D, smallest for

ndj1D, and intermediate for the double mutant. This is a highly

reproducible effect. It has been observed in both linear and

circular chromosome experiments (Figure 7C) and in all of the

many other experiments performed with these mutants in the

current and previous studies using the SK1 background ([6,16];

data not shown). In a number of mutants, delayed and/or

inefficient occurrence of MI results from delayed recombinational

progression. This is also true for ndj1D/csm4D mutants: elimination

of recombination initiation completely eliminates the MI delay in

all three mutant strains (see below).

Appearance of COs and NCOs marks the end of recombina-

tion. Since MI delays are due to delays in recombination, it might

be expected that, once these products appear, the mutants should

exhibit no further delay in progression. Specifically: occurrence of

MI should be delayed to the same extent as occurrence of COs.

However, there are hints that this is not the case: occurrence of MI

is even further delayed than is occurrence of COs, dramatically for

two csm4D experiments and less dramatically for other mutants

and/or other experiments (Figure 7D). Moreover, since all MI

delays are completely dependent upon recombination initiation

(below), this discrepancy seems to imply that, even after the

majority of recombinational interactions are completed (as seen by

appearance of the high levels of COs and NCOs as detected by

DNA analysis at HIS4LEU2), a minority of interactions (which do

not make a significant contribution to total DNA-detected events)

remain unresolved and are either completed much later or not at

all (Discussion).

We further find that the delays in occurrence of MI in all three

mutants (Figure 7, also shown in Figure 8B, left panel) are

completely eliminated if initiation of recombination is eliminated

by the spo11(Y153F) mutation (Figure 8B, right panel), as seen

previously for ndj1D [16] and for csm4D by Kosaka et al. [23]. This

effect is in accord with the fact that recombination defects trigger

MI defects in several other situations (e.g. [41,54]). For csm4D we

further determined that the MI delay was eliminated by a rad17D
mutation (Figure S4), which is known to alleviate MI delays

resulting from recombinational blocks in other situations (e.g.

ndj1D; [55]). Spore viability in rad17D csm4D was dramatically

reduced as compared to either single mutant, as would be

expected from the compromise of a checkpoint that monitors

aberrant recombinational progression [55,56].

SC Morphogenesis
Morphogenesis of the SC is readily monitored in whole cells

using Zip1-GFP as described previously [41,57]: cells containing

focal Zip1-GFP are in leptotene; those with an incomplete

Figure 7. Meiotic recombination analysis at HIS4LEU2 in WT, csm4D, ndj1D, and csm4D ndj1D, Part II. A, B) DNA physical analysis of meiotic
recombination in WT, csm4D, ndj1D, and csm4D ndj1D. A Synchronous meiotic cultures of the indicated WT and mutant strains analyzed by 1D
Southern blot. ‘‘Ects’’ are DNA signal resulting from ectopic recombination involving HIS4LEU2 and leu2::hisG (see [36]). B) 2D gel analysis of
recombination intermediates isolated from the indicated WT and mutant strains at times following meiotic induction; same cultures as in A. The
positions of single end invasions (SEIs) and double Holliday junctions (dHJs) are indicated by a fork line in the left panel. C) Kinetics of meiotic
recombination and MI division in WT, csm4D, ndj1D, and csm4D ndj1D containing linear (NKY3890-3893) or circular chromosome III (NKY3894-3897).
Levels of DSBs, SEIs, dHJs, and COs are shown for each time point sample as percentages of total DNA. Occurrence of MI shown as percentage of cells
that have completed MI (assayed as in Materials and Methods) regardless of whether they have or have not also completed later steps. D) Lifespans of
all three assayed intermediates in the two experiments shown in A–C and in a third experiment involving WT, csm4D, and csm4D ndj1D for the same
HIS4LEU2 alleles (Figure 6A) but a slightly different strain background. E) Analysis of the effects of analyzed mutations on inter-event intervals. For
each strain analyzed, a cumulative curve was calculated for entry into the DSB, SEI and dHJ stages, and COs and MI were plotted as % of their
maximum levels. From each of these plots, the time at which 50% of cells had ‘‘entered the stage’’ was determined. Then, for each pair of successive
events, the interval between the corresponding 50% points was determined. Finally, for each strain examined, and for each such interval, the
difference between the interval in the mutant and the interval in WT was determined and plotted.
doi:10.1371/journal.pgen.1000188.g007
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Figure 8. Synaptonemal complex formation and sporulation in ndj1D/csm4D mutants. A) Meiotic progression, as measured by the
formation of synaptonemal complex (SC). Meiotic progression was monitored in strains where the SC was illuminated by Zip1-GFP(700) (for details,
see [2,6]). i The various steps of SC formation are shown for a WT strain (NKY3834): after diffuse fluorescence, dots appear that correspond to
formation of DSBs. Later, short lines correspond to the zygotene onset, whereas at the pachytene stage SC appears as linear, contiguous ribbons. ii
For WT, ndj1D, ndj1D csm4D, and csm4D strains (NKY3834, NKY3837, NKY4003, and NKY4002, respectively), fixed nuclei where examined at hourly
intervals and scored for zygotene (triangle symbol) or pachytene (square symbol) categories. The proportions of nuclei within one or the other
categories are plotted as a function of time in SPM. Completion of MI (MI+MII) for each time course is indicated by a dotted line curve. iii zygotene
and pachytene lifespan as deduced from the cumulative curve analysis for WT and ndj1D, and csm4D mutants. iv Cumulative curve analysis of
zygotene and pachytene progression. The upper two panels indicate zygotene and pachytene for WT (top) and csm4D (bottom). The lower two
panels show the onset of zygotene (top) and pachytene (bottom) for all strains. Color code is the same as in ii. v For WT, ndj1D, ndj1D csm4D, and
csm4D strains, differences between the time when 50% of the nuclei have progressed through MI and the time when 50% have exited pachytene. B)
Meiotic progression, as measured by completion of MI divisions in WT (NKY3834), and in ndj1D and csm4D mutants without (full symbols, upper
panel; strains NKY3837 and NKY4002, respectively) and with the spo11-Y135F mutation (empty symbols, lower panel; strains NKY3907 and NKY3908,
respectively). All scale bars represent 2 mm.
doi:10.1371/journal.pgen.1000188.g008
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complement of Zip1 linearities are in zygotene, corresponding to

formation of SC; and those containing a maximum complement of

Zip1 linearities are in pachytene, a morphology corresponding to

full length SC (Figure 8A, panel i; e.g. [57]).

csm4D, ndj1D, and ndj1D csm4D mutants all exhibit abnormal

kinetics of progression into and out of the zygotene and pachytene

stages (Figure 8A, panels ii). Lifespan analysis (described above)

further shows that all three mutants remain in both stages longer

than WT (Figure 8A, panel iii). Cumulative curve analysis

(described above) further shows that all three mutants exhibit

delayed onset of zygotene and delayed onset of pachytene

(Figure 8A, panel iv). These defects can be attributed to defects

in progression of recombination (above): onset of zygotene is

triggered by CO-designation [58], progression from zygotene to

pachytene mirrors the progression of CO-designation and/or SC

formation, and exit of pachytene is dependent upon completion of

recombination [41,54]. In accord with these defects, some nuclei

(,20%) exhibit large aggregates of Zip1-GFP, i.e. polycomplexes

(data not shown). In our analysis, pachytene appears more

prolonged than zygotene; Kosaka et al [23] suggest that zygotene

is more severely affected than pachytene. This may represent slight

differences in progression in the two experimental protocols or

between the particular strains examined.

Noted above, however, was the peculiar fact that, in all three

mutants, onset of MI is delayed more than completion of

recombination product formation. We favor the idea that there

are a small minority of recombinational interactions which persist,

undetected by DNA analysis, after most interactions are fully

completed (Discussion). If this were true, and given that exit from

pachytene is dependent on completion of recombination, and in

turn, licenses onset of MI, it could be expected that all mutation-

dependent effects would be complete by the end of pachytene,

with no further mutant-dependent delay between pachytene exit

and MI. This appears to be the case: in all three mutants, exit from

pachytene is followed by MI by an interval of time that is the same

as, or less than, that observed in WT (Figure 8A, panel v).

Discussion

The current study: (i) identifies Csm4 as a direct participant in

meiotic telomere/NE dynamics with a role that is distinct from

that of the previously-identified components of this process; (ii)

reveals important roles for Csm4 in both the outcome of

recombination, notably in limiting formation of COs and

promoting CO interference, and in progression of recombination,

notably between DSB formation and onset of stable strand

exchange; and (iii) reveals that nondisjunction in the absence of

Csm4 is not attributable to absence of COs, perhaps implicating

this molecule in the status of intersister connections. The

accompanying paper by Kosaka et al. [23] provides related and

complementary findings as indicated above.

Csm4 Is Required for Linkage of Meiotic Telomere/NE
Ensembles to the Force Generation System for
Chromosome Movement

Our work defines Csm4 as a direct participant in meiotic

telomere/NE dynamics, in functional linkage with Ndj1: (i) Csm4

is required for telomere dynamics, similarly to and dependent

upon Ndj1-mediated telomere/NE association. (ii) Csm4 partially

colocalizes with telomeres along the NE and, correspondingly,

deletion of its putative membrane-spanning domain confers a

nearly-null phenotype (S. Z. and E. A., unpublished observations).

(iii) Similar phenotypes and strong genetic interactions are

observed for csm4D and ndj1D mutations with respect to

recombination, recombination-coupled SC formation, and occur-

rence of the MI division.

The absence of Csm4 does not discernibly alter meiosis-specific

association of telomeres with the NE but strongly abrogates rapid

zygotene telomere movements (as well as dynamic telomere-led

movements of pachytene chromosomes; [6]), and the tendency for

telomeres to colocalize in the vicinity of the SPB at zygotene (the

‘‘bouquet’’). This latter tendency, seen on a population average

basis, likely reflects spatial biasing of rapid telomere movements

due to the preferential colocalization of actin cables near the SPB

[6]. Moreover, the absence of Csm4 places telomeres in an

immobile state that can be partially reinvigorated if meiosis-

specific telomere/NE association is absent (with ndj1D). Telomere-

led chromosome movement is dependent upon actin [2,5,6]. This

movement occurs because of association of telomeres to nucleus-

hugging cytoplasmic actin cables which are, themselves, dynamic

[6]. Thus, an obvious specific basis for the csm4D motion defect

would be a failure of NE-associated telomeres to become

physically and/or functionally coupled to these actin cables.

Effects of csm4D/ndj1D Mutations on Progression of
Meiotic Recombination Could Explain the Effects of
These Mutations on the Outcome of Recombination

CO Patterns Can Be Explained by Increased CO-

Designation. Differentiation of recombination intermediates

into CO- and NCO-fated types appears to involve a process in

which a subset of events is specifically designated for eventual

maturation into COs; once this process is complete, remaining

interactions are automatically fated for maturation as NCOs as the

‘‘default option’’ [34]. Given this situation, all of the effects of

csm4/ndj1 mutations on CO level and distribution could be

explained by an increased number of CO-designation events. (i)

The total number of COs (allelic and ectopic) could be increased

without a corresponding increase in the total number of

recombinational interactions, and without altering the pathway

by which CO recombination occurs, as is observed. (ii) As more

and more COs occur, the additional events will tend to occur in

regions that are less susceptible to CO-designation (and thus still

relatively free from the effects of CO interference), thereby altering

relative levels along the chromosome. (iii) Continued CO

designation would tend to override the inhibitory effects of

crossover interference, which would thus appear to be reduced

(e.g. [59]). By this scenario, alterations in CO interference, as

defined experimentally, would not require any defect in the

underlying mechanism by which CO- designation at one site

influences the probability of CO-designation at nearby sites.

Consistent with this argument, Getz et al. [60] observed a 10–20%

increase in crossing over as well as reduced interference at five

genetic intervals in ndj1 mutants (compared to WT, two different

strain backgrounds). Based on these and other observations, they

conclude that their work offers ‘‘evidence of a specific ndj1-induced

increase in crossovers that are non-interfering... [60].Ó An

alternative scenario could involve a primary defect in CO

interference which, in turn, would permit additional CO-

designation events, e.g. via effects of ndj1/csm4 mutations on

Tel1/Mec1 (ATM/ATR)-mediated signal transduction (e.g. [61]).

Increased CO Dsignation Could Be Explained by

Prolongation of the CO Designation Period. CO-

designation is thought to occur at the end of the DSB stage,

after a DSB has found its partner but prior to onset of stable strand

exchange, and, thus, at DSB exit [41]. Prolongation of the CO-

designation period could explain increased CO levels (and

resultant patterning changes) in csm4/ndj1 mutants. In accord

with this model, the DSB stage is greatly prolonged in all three

Csm4 Is a Functional Partner of Ndj1

PLoS Genetics | www.plosgenetics.org 17 September 2008 | Volume 4 | Issue 9 | e1000188



mutants. csm4/ndj1 SC phenotypes are also in accord with this

model. In WT meiosis, each CO-designation event leads to local

nucleation of SC installation, which then spreads only a limited

distance in either direction (for discussion, see [62]). In csm4/ndj1

mutants, the period of incomplete SC (zygotene) is prolonged

(Figure 8), in accord with occurrence of CO-designation over a

longer-than-normal period of time.

Prolongation of CO-Designation Could Reflect Defects in

Partner Identification or Presynaptic Homolog

Juxtaposition. Once a DSB occurs, it must find a

homologous partner duplex (on a homolog). The resulting

association then mediates the juxtaposition of homolog axes to a

close distance of ,0.4 mm. CO-designation is thought to occur

during/after this latter step. In most organisms, these events occur

asynchronously throughout the genome of a single nucleus such

that partner interaction, homolog juxtaposition, and CO-

designation may already have occurred at some loci while, at

other loci, DSBs have not yet reached the stage where CO-

designation can occur (reviewed in [1,62]). It would not be

surprising if timely exit from the CO-designation period (and thus

onset of SEI formation and zygotene) were dependent upon

completion of pre-designation events at most or all DSB sites.

Correspondingly, prolongation of the CO-designation stage could

occur if even a minority of DSBs were significantly delayed in

either partner identification or presynaptic homolog juxtaposition.

Analogy to the Drosophila ‘‘Interchromosomal

Effect’’. The above idea may seem ad hoc. However, the

alterations in CO patterns observed here for csm4/ndj1 mutants

are strongly reminiscent of the ‘‘interchromosomal effect’’

observed for Drosophila [63], a phenomenon in which the

presence of a structural heterozygosity (e.g. an inversion on one

chromosome relative to its homolog) results in an elevated level of

COs plus reduction, but not elimination, of CO interference, i.e.

the same phenotype seen in csm4/ndj1 mutants in the present

study. Structural heterozygosity is predicted to delay partner

identification and/or immediately ensuing events that require

closely proximal coalignment of interacting regions. Thus, this

analogy supports the idea that the primary defect in csm4/ndj1

recombination might occur at these early step(s). Moreover, since

in Drosophila the irregularity that triggers these effects is confined to

the sub-region of the genome affected by the inversion, this

analogy supports the notion that, in yeast, late occurrence of

immediate post-DSB steps at a minority of DSB sites could trigger

a genome-wide effect on CO-designation levels.

Delays at Later Stages Could Also Reflect Defects in Early

DSB/Partner Interactions. Absence of Csm4/Ndj1 also

results in delayed progression of later recombination steps that

occur during pachytene, as well as exit from pachytene as observed

by SC analysis. These phenotypes could also be explained by a

primary defect at early stages by assuming that (i) some

uncompleted DSB/partner interactions persist even after most

events, and associated SC formation, have been completed and (ii)

that these persisting interactions are sensed by the global

regulatory mechanisms that permit eventual progression of

prophase events through the leptotene/zygotene transition.

Support for this idea is provided by the fact that delayed onset

of MI in the mutants is dependent upon recombination but tends

to be more exaggerated than completion of (bulk) CO formation:

such an effect could be explained by ‘‘checkpoint’’ sensing of still

incomplete recombinational interactions. Since incomplete

recombination results in delayed pachytene exit, which then

licenses onset of MI, this interpretation is supported by the fact

that no additional mutant-dependent delay is apparent after

pachytene.

csm4/ndj1 Recombination Defects Could Be a Direct
Consequence of Abrogation of Telomere-Led
Chromosome Movement

Our work confirms and extends results from analyses of ndj1D
showing that a mutation(s) which affects telomere/NE dynamics

also affects meiotic recombination [2,11,12,16]. While it is difficult

to be certain that alterations of recombination are a direct

consequence of reduced chromosome movement, rather than

being a secondary or unrelated effects of altered telomere biology,

the current study provides evidence supportive of a direct

connection and of a synthetic model for exactly how abrogation

of motion might confer such effects.

Evidence Pointing to a Cause-and-Effect Relation-

ship. Chromosome movement is strongly reduced in csm4D and

substantially reduced, but to a lesser extent, in ndj1D. This pattern is

readily understood by supposing that the absence of normal meiotic

telomere/NE association in ndj1D releases the chromosomes from

more constrained NE/actin cable-associated state found in csm4D.

The same relationship is observed for the delayed occurrence of MI,

which in turn is a result of defects in recombination, and is also

strongly suggested by DNA analyses of progression at HIS4LEU2.

Since onset of motion can occur independent of recombination [6],

motion would be required for normal progression of recombination

rather than the other way around.

Motion Could Promote Recombination by Regularizing

Topological Relationships among Chromosomes. We have

argued elsewhere that the primary role for chromosome

movement during meiotic prophase should be the regularization

of topological relationships among chromosomes, i.e. removal of

chromosomal interlocks or nonspecific connections among

unrelated chromosomes [6]. A specific prediction of this

hypothesis is that, in the absence of motion, some DSBs within

a nucleus may be impeded either from finding a partner region on

a homolog or, if a partner is found at the DNA level, from

mediating the close juxtaposition of homolog axes to the

presynaptic coalignment distance as required for normal

recombinosome/axis association and, thereafter, SC formation

and continued recombinosome/axis interplay. We have outlined

above a scenario in which a failure of a minority of DSBs to

identify a partner duplex and/or mediate ensuing homolog

juxtaposition could explain the recombination and progression

defects of csm4/ndj1 mutants. Thus, our hypothesis for

chromosome movement provides a coherent explanation for the

diverse defects of csm4/ndj1 mutants while, conversely, the

phenotypes of csm4/ndj1 mutants provide circumstantial evidence

for our proposal regarding the role of chromosome movement.

Explaining Recombination Defects on Circular

Chromosomes. The current study presents the intriguing

finding that absence of Csm4/Ndj1 affects recombination

between circular chromosomes very similarly to recombination

between normal linear chromosomes. Formally, this result implies

that effects on recombination do not require (or at least are not

very strongly dependent upon) the presence of telomeres in cis to

the affected interacting regions. At first glance, this result would

seem to suggest that abrogation of movement is not responsible for

recombination defects. However, this is likely not a correct

conclusion. Cytological analysis in S. cerevisiae of a circular

chromosome tagged with a fluorescent repressor/operator array

reveals dynamic movement during mid-prophase despite the

absence of telomeres (K. Kim, unpublished results). Furthermore,

Koszul et al. [6] have found that nearby linear pachytene

chromosomes tend to move coordinately despite the absence of

telomere clustering at this stage, and the same is presumably true

at zygotene. Thus, a defect in the motion of chromosomes
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possessing telomeres could be transmitted to chromosomes without

telomeres, as required by the model proposed above.

Other Models. It has often been proposed that telomere

movement promotes telomere clustering, which in turn promotes

homologous telomere/telomere interactions, which in turn

promotes efficient interactions in other regions. Homologous

telomere/telomere interactions do appear to promote the

identification of homologous interactions elsewhere in the

genome (e.g. [18,64]). However, in the case of S. pombe, telomere

colocalization as such is not sufficient to confer regular

recombination; movement is also necessary for some other

reason(s) [19].

Another often-proposed model is that motion provides ‘‘stirring

forces’’ needed for DSBs to search for and identify homologous

partner sequences [65]. Our proposition differs from this idea

because it envisions that motion is required (primarily) to eliminate

residual topological impediments rather than to positively promote

homology searching irrespective of such impediments. One

possibility is that homology searching might be promoted by

other types of motion which, while less in magnitude, are still

significant [6]. Also, once a pair of homologs comes into effective

contact at one position (e.g. telomeres; [43]), the problem for

further pairing may not be contact between homologous regions as

much as making sure that such contacts do not produce

entanglements.

There are several arguments against the idea that motion is

needed for primary pairing. The most obvious of which is that

motion begins concomitant with onset of zygotene [6] which is

likely later than the point at which (most) DSBs identify partners.

We also note that while mutants with defective telomere/NE

ensembles are found to exhibit delayed chromosome ‘‘pairing’’

(e.g. for budding yeast, [11,12]), the ‘‘one spot/two spot’’ assays

used for such studies have significant limitations. First, the level of

‘‘one spot’’ nuclei reflects not only formation of initial contacts but

occurrence of events all the way through SC formation, which is

certainly delayed in csm4/ndj1 mutants. Second, given that

homologs are periodically connected along their lengths, the level

of ‘‘one spot’’ nuclei also reflects chromosome stiffness: greater

stiffness results in higher levels of ‘‘one spot’’ nuclei because a

contact at one position is propagated farther along the

chromosome. And in budding yeast, formation of axial elements,

which is likely an indicator of development of chromosome

stiffness, normally occurs at the leptotene/zygotene transition [66]

and is delayed in ndj1D [12]. These complexities imply that

definitive monitoring of initial DSB/partner interactions requires

some different type of assay other than those applied thus far.

Progression versus Execution
The csm4/ndj1 recombination phenotypes are different from

those conferred by most recombination mutants because they

involve delays in progression, at multiple steps, through what

appears otherwise to be a normal and efficiently executed process.

The existence of this phenotype supports the idea that particular

factors are required specifically for timing of events rather than

execution. A very similar timing phenotype has recently been

described for the budding yeast pch2D mutant [57], although this

mutation confers delays primarily in pachytene events rather than

at immediate post-DSB steps. The effects of pch2D are proposed to

be mediated via the regulatory signal transduction kinase Mec1/

ATR. The same could be true in the present case, with the

addition that earlier events might involve both Mec1/ATR and its

relative, Tel1/ATM, which is implicated in events immediately

following DSB formation [61].

MI delays of csm4D (above) and ndj1D [55] are fully alleviated by

elimination of Rad17, implying alleviation of effects triggered by

delays at any and all stages of recombination. In accord with

action at multiple stages in the current situation, absence of

Rad17, or one of its collaborators, is known to alleviate MI arrest

conferred by defects at diverse stages of recombination: including

DSB exit (dmc1D; [56]), progression of CO-designated DSBs to

later stages (zip1D; [55,56]) and timely progression through

pachytene (pch2D; [55]).

Cytological studies suggest that impediments to completion of

presynaptic coalignment can also trigger a local response that

includes destabilization of chromosome axes around the affected

position(s), e.g. at the site of an interlock in Bombyx [20] or a

structural heterozygosity in mouse [67]. Thus, Rad17-dependent

progression delays in csm4/ndj1 mutants may be part of a standard

‘‘checkpoint damage response’’. We note, however, that Mec1/

ATR and Tel1/ATM are involved in promoting progression of

unperturbed WT meiosis, as well as ‘‘checkpoint damage sensing’’

(for discussion see [57]). The same might well be true of Rad17

and its collaborators, in both WT (as shown by Grushcow et al.

[52]) and, at least to some extent, in csm4/ndj1 meiosis. Perhaps

these components function to ‘‘gate’’ the signal transduction

response such that the rate of progression is appropriately sensitive

to the status of the entire population of recombinational

interactions in a given nucleus rather than proceeding on a more

autonomous clock.

What Is the Basis for Homolog Nondisjunction in csm4D/
ndj1D?

The ultimate raison d’être of meiotic prophase is the proper

segregation of homologs at the MI division. This process, in turn,

requires the presence of one or more COs between homologous

non-sister chromatids. Correspondingly, MI mis-segregation

events are often associated with decreased reciprocal recombina-

tion levels [25,68–73]). However, the current work provides three

lines of evidence that, surprisingly and contrary to earlier

presumptions, homolog nondisjunction in csm4D is not attributable

to an absence of COs or, more specifically, to absence of the first

‘‘obligatory’’ CO. First, homologs that have nondisjoined in csm4D
do not exhibit a deficit of COs (Figure 4). A caveat in our analysis

is that we were unable to measure telomere distal crossovers in the

strains that displayed nondisjunction. Second, the ndj1D and csm4D
mutations have very similar effects on CO formation while ndj1D
has a much less severe effect on homolog nondisjunction than

csm4D; in the double mutant, it further reduces nondisjunction

below the csm4D level. Third, the primary defect of recombination

and downstream events is a temporal delay of a process that

eventually proceeded to completion. Nondisjunction events would

more likely result from the inefficient execution of a particular

process.

One interesting possibility is that some of the COs in csm4/ndj1

mutants ‘‘fail to ensure disjunction’’ because of a defect in the

relationships between sisters. Indeed, there are hints of abnormal

sister relationships from detectable increases in PSSC events in

these mutants, as shown previously by Conrad et al. [13] in tetrad

analysis. Sister relationships are important in three respects: First,

sister chromatid cohesion distal to the site of exchange is vital for

the stabilization of the physical manifestations of crossing over,

chiasmata, which hold the homologous pair together [74–76].

Second, at the sites of crossovers, cohesion must be relaxed in

order to allow for exchange of the chromosome arms [77–79].

Third, sister cohesion along arms distal to the sites of COs must be

released during anaphase I. Thus, the csm4D/ndj1D defect could

be either a deficit of cohesion or, more intriguingly, a failure of
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cohesion to be properly released either at the site of the CO, along

arms distal to the CO site, or specifically at telomeres.

The scenario presented above, in which a deficit of motion

results in defective immediately post-DSB steps of recombination,

could also explain a defect in sister relationships. It has recently

been shown that CO-designation at leptotene/zygotene is

accompanied by local destabilization of chromosome axes;

presumably as the first step in differentiation and separation of

sister chromatids specifically at these sites [80]. At a site where an

initiating DSB fails to establish a normal recombinosome/axis

relationship, CO-designation might still occur with respect to

DNA events but without accompanying effects on sister relation-

ships. Alternatively, impeded completion of DSB/partner inter-

actions could trigger a local loss of sister connectedness which

extends down the chromosome arm(s). Linkage of all csm4/ndj1

phenotypes to a single common cause is supported by the fact that,

for homolog nondisjunction as for other effects, csm4D confers a

stronger defect than ndj1D.

On the other hand, Csm4/Ndj1 could be involved directly in

sister chromatid cohesion, along arms or in centric regions, as an

independent aspect of their molecular functions. Indeed, the third

component of yeast telomere/NE dynamics, Mps3 has been

implicated as a direct general participant in sister chromatid

cohesion, in both mitotic and meiotic cells [13,81].

The ndj1D csm4D double mutant nondisjunction defect is slightly

weaker than that of ndj1D, rather than being the same as or slightly

greater than in ndj1D. Thus, for this phenotype, the defect in each

single mutant is subtly dependent upon the presence of the WT

gene product corresponding to the other mutation (‘‘partial

reciprocal epistasis’’). In the context of effects on sister cohesion,

a possible explanation is that both mutations have two effects,

conferring both a reduction in the number of sister chromatid

connections and defective release of those connections that do

occur. In this case, each mutation would reduce the number of

connections and thus, synergistically, the number of aberrant

connections remaining to interfere with MI homolog segregation.

Explanations for homolog nondisjunction that do not involve

sister cohesion can also be envisioned. For example, nondisjunction

could simply be an additional consequence of the presence of

entanglements, which might affect one or more homolog pairs.

Alternatively, homolog nondisjunction may result from an excess of

COs (e.g. [82]). Our genetic data argue against such a model for

csm4D mutants: we observed that the csm4D mutation decreased the

meiotic viability of msh5D and mlh1D mutants (Figure 2) and this

would not be expected if it resulted in more COs. A third possibility

would attribute homolog nondisjunction to an excess of multi-

chromatid events resulting from failure to resolve precursor large

joint molecules (e.g. as in sgs1 [36]). However, there is no evidence

that csm4D/ndj1D mutants exhibit a sgs1-like defect (above).

Summary
We construct a coherent model where abrogation of motion

confers a defect in completion of early DSB/partner interactions

(partner identification or ensuing creation of bridges between

homolog axes) which, in turn, explains all other observed mutant

defects as described above and in earlier studies. Phenotypes of

motion-defective mutants in S. pombe have been explained

similarly, though in less detail, as a partial defect in recombination

and ‘‘pairing’’ [3,9,19]. However, diverse alternative explanations

for some or all of the observed effects are not critically excluded.

Future studies must now critically address predictions of this

model, for yeast and for other organisms, e.g. assessment of local

DSB/partner interactions and occurrence of aberrant topological

relationships, on a per-cell basis.

Materials and Methods

Media, Strains, and Plasmids
Yeast strains are listed in Table S1. Strains were grown in either

yeast extract-peptone-dextrose (YPD) or minimal selective media

[83]. Sporulation plates were prepared as described previously

[84]. All incubations were performed at 30uc for the experiments

presented in Figures 1, 3, 4, 5, and S4, Tables 1–3, and Tables S1,

S2, S3 and S4. When required, geneticin (Invitrogen), nourseo-

thricin (Hans-Knoll Institute fur Naturstoff-Forschung), and

hygromycin B (Calbiochem) were included in YPD media as

described [85,86]. Plasmids and integrating vectors were intro-

duced into yeast strains using standard methods [87].

The EAY1108 and EAY1112 SK1-congenic strains were

described in Argueso et al. [27] and the NH942 and NH943

SK1-isogenic strains were described in de los Santos et al. [46].

The BR4635-8Ba and BR4256-5Ba strains are derivatives of those

described in Rockmill et al. [29]. This BR strain set was used

because it was specifically designed to measure crossing over on a

chromosome that had experienced a nondisjunction event [29].

All diploids homozygous for coding region deletion mutations in

CSM4, NDJ1, MSH5, MLH1, and RAD17 were created by

sequential transformation of the parental strains and the mutations

were marked with the KANMX4, NATMX4, or HPHMX4 as shown

in Table S1 [85,86]. Details on how the mutations were

introduced into these strains are available upon request.

CSM4 was mutagenized by overlap PCR [88] to create the

single-step integrating plasmid bearing the N-terminal GFP-Csm4

integrating vector pEAI242. Details on how this plasmid was made

are available upon request. pEAI242 was linearized with SacI and

SphI prior to transformation. We tested the functionality of the N-

terminal GFP-Csm4 construct by integrating it into the

EAY1108/EAY1112 background where WT displays 97% spore

viability (n = 1199 tetrads) and csm4D displays 64% spore viability

(n = 1164). The integration strains displayed 92% spore viability

(n = 40), indicating that the GFP-Csm4 fusion is functional.

Tetrad Analysis. Diploids derived from EAY1108/

EAY1112 and NH942/NH943 were sporulated using the zero

growth mating protocol [89]. Briefly, haploid parental strains were

patched together, allowed to mate for 4 h on complete minimal

plates, and then transferred to sporulation plates where they were

incubated at 30uc for 3 days. Tetrads were dissected on minimal

complete plates and then incubated at 30uc for 3–4 days. Spore

clones were replica-plated onto relevant selective plates and

assessed for growth after an overnight incubation. EAY1871-1873

diploids derived from BR4635-8Ba/BR4256-5Ba were created by

mating MATa and MATa haploids overnight on YPD and then

identifying zygotes.

Genetic map distances were determined by the formula of

Perkins [38] and the expected number of non-parental ditype

tetrads (NPD) was calculated using the equation of Papazian [39].

Interference calculations from three-point intervals were conduct-

ed as described [46,90–92]. Statistical analysis was done using the

Stahl Laboratory Online Tools (http://groik.com/stahl/) and

VassarStats (http://faculty.vassar.edu/lowry/VassarStats.html)

and the Handbook of Biological Statistics (http://udel.edu/

,mcdonald/statintro.html). Interference was measured by the

Malkova method [34,37]. When multiple statistical comparisons

using the same dataset were made, we applied the Dunn-Sidak

correction as described in Martini et al. [34] and Hoffman et al.

[35]. For example, three comparisons were made using the ndj1D
data from the congenic strain background (ndj1D versus WT,

csm4D, and ndj1D csm4D) therefore p values must be below 0.017 to

be considered significant. Comparisons of map distances between
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disomes and tetrads were done by converting data from complete

(non-aberrant) tetrads into single spore data. The WT, mlh1D, and

msh5D data presented in this paper were published previously in

Argueso et al. [27].

Disome Selection Assay. HygR Ura+ spores were selected

from purified spores obtained by sporulating EAY1873 (WT) and

EAY1871 (csm4D) as described in Rockmill et al. [93]. HygR Ura+

diploids that escaped this selection were subsequently eliminated

from further study because they could be induced to enter meiosis

and form spores that fluoresced when exposed to UV light (254

nM [94]). In contrast, haploid spores disomic for chromosome III

can enter meiosis, but do not form spores. In this assay, the HygR

Ura+ clones obtained from the spore purification procedure were

replica plated from vegetative media onto a sporulation plate

overlayed with a nitrocellulose filter. Cells were sporulated for 3–4

days at 30uc, and then screened using UV light to eliminate

diploids as described above. Remaining HygR Ura+ clones that

also tested positive for disomy based on an Arg+ phenotype were

scored for crossover events as described [29]. Briefly, crossovers in

specific intervals were detected based on the following criteria: 1.

HIS4-iTHR1 interval-disomic spore clones required histidine but

not threonine for growth, or vice-versa. 2. iTHR1-iURA3 interval-

disomic spore clones required threonine for growth. 3. iURA3-

iNAT interval-disomic spore clones were sensitive to

nourseothricin. 4. iNAT-iLEU2 interval-disomic spore clones

required leucine for growth but were resistant to nourseothricin,

or vice-versa. 5. iLEU2-MAT-disomic spore clones did not require

leucine for growth and were able to mate, or vice-versa. 6. MAT-

iADE2-disomic spore clones that were unable to mate and

required adenine, or vice-versa. Recombination values were

multiplied by two to account for the inability to detect disomes

homozygous for dominant markers. Recombination frequencies

obtained from single spore and disome data were multiplied by

100 to yield genetic map distances (cM). In these strains, ‘‘i’’ refers

to insertion of the indicated marker at an ectopic location.

Disomes were only compared to complete tetrads because we were

interested in comparing spores that had undergone a mis-

segregation event to those that had not.

Meiotic Time Courses and Physical Assays. Yeast

pregrowth and synchronous sporulation were performed as

described [51] except that all media were preequilibrated at

30uc prior to use. The synchrony of meiosis was monitored by

measuring pre-meiotic DNA replication (FACS analysis) and the

progression of MI and MII divisions (DAPI staining [66,95]).

Physical analysis of chromosomal DNA isolated in the meiotic

time courses presented in Figures 6, 7, S2 and S3 was performed

as described [34,41,51]. DNA species identified in one-

dimensional (1D) and two-dimensional (2D) gel electrophoresis

were quantified using a Bio-Rad phosphoimager and

QuantityOne software. The timing of DSB, SEI and dHJ

intermediates was evaluated using a life span program kindly

provided by Neil Hunter. Analysis of linear and circular versions

of chromosomes III by pulse-field gel electrophoresis (PFGE) was

performed according to the Bio-Rad CHEF instruction manual

(1% Seakem Gold agarose gel at 14uc, 6V/cm, switch times of 60-

to 120-sec, and a switch angle of 120 degrees). For every

parameter analyzed, data are presented for cultures that have

carried out WT or mutant meiosis with ‘‘characteristic kinetics’’ as

defined by FACS, Zip1-GFP or MI division analysis of many

cultures over time (hundreds for WT and tens for each mutant).

Experience tells us that careful analysis of one really good time

course is worth many repetitions of less good time courses and that

the variability from day-to-day is no different from the variability

from culture-to-culture on the same day. Thus, detailed analysis of

suitable single cultures is thus presented. However, every finding

emphasized above as a significant result emerging from time

course analysis has been observed in two or more independent

experiments.

CSM4 Immunofluorescence. Cell samples were taken at

hourly intervals over meiotic time courses of strains EAY1797 and

NKY4005. Cells were fixed in formaldehyde and prepared for

immunofluorescence using previously described methods [96].

Rap1-RFP was imaged using a Texas Red filter set. Csm4-GFP

was visualized using rabbit anti-GFP antibodies (Invitrogen)

followed by goat anti-rabbit Alexa488 (Invitrogen). 20 Z-sections

of 0.2 mm were taken of each field of cells for RFP, Alexa488 and

DAPI. Appropriate z-sections were compared to assess localization

of the proteins.

Cell Imaging. Cells were observed at room temperature

using an epifluorescence microscope (Zeiss) equipped with GFP,

DAPI and TexRed filters, a Cascade 512b CCD camera (Roper

Scientific), and a PIFOC piezo device (Physik Instrumente) to

drive a 100X oil immersion objective (NA 1.45) for acquiring Z-

stacks. Images were acquired using Metamorph software.

Live-cell: Cells samples of RAP1-GFP meiotic cultures were

vortexed at full speed for 10 sec and 3–4 ml of suspended cells

were rapidly spread onto a glass slide (plain, non-treated) as

described [6]. Briefly, for telomere disposition analysis, Z-stack

time-series were recorded at a distance of 0.4 mm between each

plane (10 planes total, 1.2 sec intervals, 900 ms exposure), every

15 sec for 1 min. For telomere 2D tracking, the focal plane was

positioned at the top of each nucleus, and the Rap1-GFP signal

was acquired at one-second intervals over 1 minute (exposure time

700 ms).

Fixed-cell: Rap1-GFP, Spc42-yECFP (except ndj1D NKY3906

cells containing only Rap1-GFP) cell aliquots were sampled at

hourly intervals after transfer to sporulation media and crosslinked

with 1% formaldehyde for 1 hr on ice. Tris HCl pH 7.4 was added

to 50 mM final concentration. Samples were incubated on ice for

one hour, and then centrifuged in a microcentrifuge for 5 sec at

full speed, resuspended in water and stored at 4uc overnight. Cells

were then spread onto glass slides and series of z-stack pictures,

,100–150 cells per time point, were analyzed (0.2 mm615 frames

with 900 ms exposure for the GFP signal, and 0.4610 frames with

900 ms exposure for the RFP signal).

Image Analysis
All images were analyzed using ImageJ [97] and/or Meta-

morph functions. Deconvolution of 2D and 3D acquisitions was

performed using AutoDeblur.

Tracking of LacO-Telomeres in Live-Cells. To overcome

technical difficulties incurred by 3D time-lapse recording of

dynamic telomeres, Rap1-GFP spots present in the focal plane of

nuclei tops were tracked over time until they moved out of focus.

The X- and Y-coordinates of the LacI-GFP spot centroid were

determined using the SpotTracker2D ImageJ Plug-in [32] when

movement was limited, and manually in WT (t = 4 h). Spot

relocation between two successive frames was calculated and

apparent velocity was deduced. The apparent velocity of a spot

observed in this single focal plane was assumed to be a reasonable

approximation of actual velocity. 5 to 12 foci from at least 5

independent nuclei were tracked for 10 to 60 sec, yielding to a

minimum of 340 one-second step-sizes for WT, 4 h and up to a

maximum of 1200 measurements for ndj1D csm4D, 2 h (most other

sets of data comprise between 580–800 measurements). For

statistical convenience, the step-size histograms of x, y coordinates

displacement of Rap1-GFP spots were constructed. All the data

sets, except the one corresponding to WT t = 4 h, exhibit a
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distribution close to a Normal distribution, as revealed by the use

of a Kolmogorov-Smirnov goodness-of-fit test (http://www.

physics.csbsju.edu/stats/KS-test.html, 1% level; for each data set

a relatively small (,5–10%) subset of points diverge from the

hypothesized continuous distributions, as compare to WT t = 4 h

(,35%). In order to perform further parametric tests between data

sets, and because of the closeness to Normal distribution the

assumption of Normality was postulated for all distributions, but

WT at t = 4 h. Mean velocities and variances were compared

using t-test and f-test, respectively (significance level 5%).

Telomere Localization in Live Cells. 3D time-lapses of

prophase cells (0.4 mm610, every 15 sec for 1 min) were

deconvoluted and the position of telomere foci in each plane

was visually monitored (comparison of focal planes over time

improve the detection of telomere foci) and nuclei where

categorized either in the ‘‘peripheral’’ or in the ‘‘dispersed’’

class, depending on the absence of presence of spots within the

nuclear volume, respectively (Figure 2B, panel i). The position of

the nuclear periphery (corresponding approximately to the

position of the nuclear membrane) was defined as the limit of

the diffuse GFP signal that result from global Rap1-GFP proteins

binding to chromatin.

Bouquet Formation in Fixed Cells. Telomere organization

was examined in formaldehyde-fixed nuclei by manual inspection

of complete series of 3D sections (top to bottom of 1560.2 mm z-

series). All nuclei contain many bright Rap1-GFP foci representing

single and/or coalesced telomeres. Nuclei were first scored with

respect to whether bright Rap1-GFP foci did or did not exhibit full

peripheral localization (defined in Figure 2A). Nuclei without

peripheral localization are, by definition, not in the bouquet stage.

For nuclei in which all bright Rap1-GFP foci are NE-associated,

inspection of the entire set of images makes it possible, with only

rare exceptions, to reproducibly assign each nucleus to a condition

in which those foci either tend to occur in a single sub-region of

the NE (Figure S1A, not quantitatively but qualitatively

approximated to be ,1/4 of the surface area), or give no

evidence of such colocalization (Figure S1B). In the former case,

there is a further distinction as to whether the colocalization region

is, or is not, near the SPB. For this analysis we have defined the

bouquet ‘‘rigorously’’ as colocalization in the vicinity of the SPB

(illuminated by Spc42-RFP; inspection from top to bottom of

1060.5 mm z-series), although there is reason to suspect that this is

not an absolute requirement for defining this stage [6]. Among

bouquet nuclei, an additional distinction can be made as to

whether virtually all signals colocalize in a single region (‘‘tight

bouquet’’, Figure S1, panel Ai, SPB position indicated by a

turquoise line on the 2D projection image above) or whether a

significant fraction of signals are present outside the main area of

colocalization (‘‘loose bouquet’’, Figure S1, panel Aii). This same

categorization has been made in other organisms (e.g. Sordaria, D.

Zickler, personal communication) and in our earlier work (O.

Nanassy and N.K., unpublished). For the ndj1D mutant

(NKY3906), the SPB is not labeled, however almost no

‘‘bouquet’’ clusters were observed as any time. 100–150 nuclei

were analyzed at each time point.

Movements of Zip1-GFP Illuminated Chromosome. Time-

lapse series of pachytene nuclei from strains expressing Zip1-

GFP(700) were recorded at one second intervals over one minute.

All the nuclei movies of all the strains, including WT, were pooled

and assigned random names. They were subsequently categorized by

‘‘blind testers’’ within three groups according to the amount of

observable chromosomal motion (fast motion corresponding to

pachytene WT nuclei, the other two categories reflecting two type

of nuclei exhibiting hardly or little motion, respectively). Results

clearly revealed a difference between csm4D and ndj1D mutants.

Double mutant was more ambiguous, and will necessitate

quantitative analysis to be interpreted.

Supporting Information

Figure S1 Bouquet classification. Same nucleus as in Figure 2B,

panel i, of cells expressing Rap1-GFP and categorized according

to whether or not those foci either (A) tend to occur in a single sub-

region of the NE or (B) give no evidence of such colocalization. For

each nucleus, the 2D projections of the complete series of 3D

sections of nuclei showing either Rap1-GFP (15 frames, bottom

left) or Spc42-RFP signal (10 frames, bottom right). In the case of

A, there is a further distinction as to whether the colocalization

region is, or is not, near the SPB (indicated with the turquoise line

in the 2D projection) allowing further categorization in ‘‘tight

bouquet’’ (i) or ‘‘loose bouquet’’ (ii). All scale bars represent 2 mm.

Found at: doi:10.1371/journal.pgen.1000188.s001 (3.8 MB TIF)

Figure S2 Further analysis of recombination in WT, csm4D,

ndj1D, and csm4D ndj1D strains. A, B) Formation of COs and NCOs

were assayed by the approach of Storlazzi et al. [98]. This method

monitors the appearance of two species which, in WT meiosis, are

known from tetrad analysis to arise specifically in association with

CO and NCO recombination (‘‘COs’’ and ‘‘NCOs’’; Panel A, top).

Appearance of both types of products is delayed in csm4/ndj1

mutants (Panel A, bottom) in accord with appearance of COs as

observed by standard one-dimensional gel analysis (Figure 7

legend). When the levels of the two types of products are compared

directly, by plotting levels as ‘‘percentage of the maximum level’’, it

is further seen that the two types of products are delayed almost

identically (Panel B). It can also be noted that the levels of both the

CO and NCO species are reduced in the mutants as compared to

WT (Panel A, bottom). The basis for this effect, which is not seen by

other types of product analysis (Figures 6 and 7 legends) is unknown.

However, detection of products in this assay is specifically

dependent upon the way that heteroduplex DNA at the DSB site

is formed and its mismatches repaired [98]. Thus, it could be the

case that ndj1/csm4 mutants affect one or both of these processes. C)

Quantification of large joint molecules (LJMs) from 2D gels, and

ectopic recombination from 1D gels, and the ratio of interhomolog

dHJs to intersister dHJs as determined from 2D gels. D Direct

comparison of LJMs and dHJs with normalization to maximum

level of LJMs in csm4D, showing that the two species are affected

identically in all mutant situations.

Found at: doi:10.1371/journal.pgen.1000188.s002 (0.8 MB TIF)

Figure S3 DSB formation and meiotic recombination analysis of

HIS4LEU2 hotspot in WT, csm4D, ndj1D, and csm4D ndj1D strains.

A) Pulse-field electrophoresis gel showing the migration of linear

and circular chromosome III in linear and circular chromosome

III strains of each genotype, respectively (Table S1). B)

Synchronous meiotic cultures of rad50S-KI81 mutants bearing

the csm4D, ndj1D, and csm4D ndj1D mutations (Table S1) were

analyzed by Southern blot for DSBs at the HIS4LEU2 locus. The

probe shown in Figure 6 was used for hybridization. C)

Synchronous meiotic cultures of WT, csm4D, ndj1D, and ndj1D
csm4D strains bearing a circular chromosome III examined by

Southern blot for recombination species present at the HIS4LEU2

locus. DSBs, COs and ectopic recombination products (Ects) were

quantified from 1D gels; SEIs, IS-dHJs, and IH-dHJs were

quantified from 2D gels. The hybridization probes and Southern

blot methodologies were the same as described in Figure 6. {,

meiosis-specific cross hybridizing signal.

Found at: doi:10.1371/journal.pgen.1000188.s003 (2.3 MB TIF)
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Figure S4 csm4D confers a defect in meiotic progression that is

suppressed by the rad17D mutation. Synchronized meiotic cultures

of WT (diamond, EAY1553), csm4D (square, EAY1554), rad17D
(triangle, EAY2201) and csm4D rad17D (cross, EAY2202) were

analyzed for the completion of at least MI (MI+MII) as measured

by DAPI staining. A representative experiment is shown. Tetrads

dissected from sporulated strains displayed the following percent

spore viability: WT-93% (Figure 1), csm4D-65% (Figure 1), rad17D-

17% (175 tetrads dissected), and csm4D rad17D-1.1% (87 tetrads

dissected).

Found at: doi:10.1371/journal.pgen.1000188.s004 (0.07 MB TIF)

Table S1 Strains used in this study.

Found at: doi:10.1371/journal.pgen.1000188.s005 (0.1 MB DOC)

Table S2 Genetic map distances (cM) and the distribution of

parental and recombinant progeny for the NH942/NH943 strain

background in WT and csm4D on chromosomes III, VI, and, VIII.

Found at: doi:10.1371/journal.pgen.1000188.s006 (0.1 MB DOC)

Table S3 Interference as measured by the Malkova method.

Found at: doi:10.1371/journal.pgen.1000188.s007 (0.2 MB DOC)

Table S4 Crossing over in WT tetrads, csm4D tetrads, and csm4D
disomic spores.

Found at: doi:10.1371/journal.pgen.1000188.s008 (0.03 MB

DOC)
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