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Abstract

A gene cluster encoding all of the enzymes for the biosynthesis of the antibiotic pentalenolactone
(1) has recently been identified inStreptomyces avermitilis. The biosynthetic gene cluster contains
theptlI (SAV2999) gene which encodes a cytochrome P450 (CYP183A1). PtlI was cloned by PCR
and expressed inEscherichia coli as a C-terminal-His6-tag protein. Recombinant PtlI bound
pentalenene (3) with high affinity (KD 1.44 ± 0.14 μM). Incubation of recombinant PtlI with (±)-3
in the presence of NADPH,E. coliflavodoxin and flavodoxin reductase, and O2 resulted in conversion
to a single enantiomer of pentalen-13-al (7), by stepwise allylic oxidation via pentalen-13-ol (6). The
steady state kinetic parameters for the oxidation of pentalenene (3) to pentalen-13-ol (6) werekcat
0.503 ± 0.006 min−1 andKm3.33 ± 0.62 μM for3.

Streptomyces are a rich source of bioactive secondary metabolites. The 9.03 Mb linear
chromosome of S. avermitilis, the producer of the widely used antiparasitic avermectins,
harbors 7,575 open reading frames (ORFs)1 of which 33 encode cytochrome P450 enzymes.
2 One of these CYP genes, ptlI (SAV2999, CYP183A1) is found within the gene cluster for
the biosynthesis of the sesquiterpene antibiotic pentalenolactone (1). This cluster lies in a 13.4-
kb segment, centered at 3.75 Mb in the S. avermitilis genome, that contains 13 unidirectionally-
transcribed ORFs (Figure 1).3 Among these ORFs, the 1011-bp ptlA, encodes pentalenene
synthase (PtlA), which catalyzes the cyclization of farnesyl diphosphate (FPP) (2) to
pentalenene (3), the established parent hydrocarbon of the pentalenolactone family of
antibiotics (Scheme 1).3,4 Besides the heme-dependent monooxygenase CYP183A1 (ptlI),2
seven of the remaining ORFs correspond to redox enzymes, including the non-heme iron
dioxygenase encoded by ptlH,5 and six additional monooxygenases and dioxygenases.

We recently showed that PtlH, an Fe2+/α-ketoglutarate-dependent hydroxylase, catalyzes the
conversion of 1-deoxypentalenic acid (4) to a new biosynthetic intermediate, 11β-hydroxy-1-
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deoxypentalenic acid (5).5 Although several presumptive intermediates of pentalenolactone
biosynthesis have been isolated from a wide variety of Streptomyces species,3,4 PtlH is the
only enzyme linking pentalenene (3) to pentalenolactone (1) that has been characterized to
date. Here we describe the biochemical characterization of PtlI, the cytochrome P450 that is
shown to catalyze the conversion of pentalenene (3) to pentalen-13-al (7) by stepwise oxidation
via pentalen-13-ol (6).

According to the proposed biosynthetic pathway (Scheme 1), the enzymes responsible for the
conversion of pentalenene (3) to pentalenolactone (1) must first oxidize pentalenene to the
corresponding unsaturated carboxylic acid 4. Cytochrome P450s are known to catalyze
numerous oxygenation reactions of nonactivated hydrocarbons.6 Amongst these reactions is
the three-step oxidation of a methyl group to a carboxylic acid.7–9 We therefore speculated
that PtlI might be responsible for all or part of the allylic oxidation of pentalenene (3) to 1-
deoxypentalenic acid (4) (Scheme 2).

PtlI was amplified by polymerase chain reaction (PCR) from DNA of S. avermitilis cosmid
CL_216_D07 and cloned between the NdeI and XhoI sites of the vector pET31b. The resulting
construct pET31b-PtlI was transformed into Escherichia coli BL21(DE3). After induction with
IPTG, the expressed PtlI protein, carrying a C-terminal His6-tag, was purified to homogeneity
by Ni-NTA chromatography.10 MALDI-TOF MS of purified protein showed subunit MD m/
z 51667±50 (calc. 51723 for apo-protein) and m/z 52078±50 (calc. 52339 for holo-protein).
Treatment of the sodium dithionite-reduced protein with carbon monoxide gave the
characteristic P450 UV difference spectrum.11

Titration of PtlI with pentalenene (3)12 resulted in the typical blue-shift from 420 nm to 390
nm (type I binding).13 The dissociation constant for 3 was determined by non-linear fitting of
the UV-difference spectra to give KD=1.44±0.14 μM. By contrast, the control sesquiterpene
(−)-trans-caryophyllene showed no type I binding when added to PtlI.

A mixture of recombinant PtlI (0.57 μM), E. coli flavodoxin (Fld, 3.9 μM),14,15a E. coli
flavodoxin reductase (Fdr, 6.3 μM),14,15b NADPH (0.45 mM), and a NADPH-regeneration
system [glucose-6-phosphate (3.1 mM) and glucose-6-phosphate dehydrogenase (10 u)] in 3.0
mL of 50 mM phosphate buffer, 10% glycerol (v/v), pH 7.4, was incubated with (±)-(3) (1.1
mM) plus 0.8% DMSO for 16 h at room temperature. GC-MS analysis of the pentane extract
revealed exclusively two new peaks with m/z 218 (retention time 10.96 min) and 220 (retention
time 11.03 min), identical to authentic pentalen-13-al (7) and pentalen-13-ol (6), respectively
(Figure 2 and Supporting Information).12 The 1H NMR spectrum of the crude neutral extract
also showed the characteristic aldehydic and olefinic signals at δ 9.71 and 6.704 (d, J=0.8 Hz),
respectively for 7 (Figure S8). Chiral GC-MS analysis, under conditions in which individual
enantiomers of (±)-pentalen-13-ol (6) and (±)-pentalen-13-al (7) were well resolved, confirmed
that enzymatically-produced 6 and 7 were each single enantiomers. Preparative-scale
incubation with (±)-pentalenene (3) gave a mixture containing 6 and 7, which was dissolved
in methanol and treated with sodium borohydride to give alcohol 6, identical by 1H NMR to
chemically synthesized pentalen-13-ol (6). Incubation using alcohol 6 as substrate confirmed
that PtlI catalyzes the oxidation of 6 to aldehyde 7.16 By contrast, only trace amounts of 1-
deoxypentalenic acid 4 could be detected under a wide variety of incubation conditions.

PtlI showed a pH optimum of 8.0 for the oxidation of pentalenene to pentalen-13-ol. The
apparent steady-state kinetic parameters for the first oxidation step were determined by
carrying out a series of 10-min incubations with 4–40 μM of (±)-pentalenene (3) and
quantitation of the product pentalen-13-ol (6) by GC-MS. Under these conditions, further
oxidation of 6 was negligible.8b Fitting of the initial velocities to the Michaelis-Menten
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equation gave kcat 0.503±0.006 min−1 and a Km of 3.33±0.62 μM for the active enantiomer of
3.

These results establish that the ptlI gene product can catalyze the two-step oxidation of
pentalenene (3) to pentalen-13-al (7) (Scheme 2). At this point, it remains an open question
how aldehyde 7 gets converted to 1-deoxypentalenic acid (4). Although it remains possible
that PtlI might support the latter oxidation under the appropriate conditions,17 by analogy to
other P450s,7–9 it is also conceivable that another redox enzyme from within the biosynthetic
gene cluster could be responsible for this conversion. The work reported here sheds new light
on the biosynthetic gap between pentalenene (3), generated by PtlA-catalyzed cyclization of
FPP, and 11β-hydroxy-1-deoxypentalenic acid (5), the product of PtlH-catalyzed
hydroxylation of 1-deoxypentalenic acid. Biochemical characterization of the remaining ORFs
of the pentalenolactone biosynthetic gene cluster is in progress.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Pentalenolactone biosynthetic gene cluster from S. avermitilis. (See
http://avermitilis.ls.kitasato-u.ac.jp/.)
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Figure 2.
GC-MS analysis of incubation of PtlI with (±)-pentalenene (3). A, GC trace of pentane extract.
B MS of 6 from PtlI-catalyzed oxidation of 3. C MS of 7 from PtlI-catalyzed oxidation of 3.

Quaderer et al. Page 6

J Am Chem Soc. Author manuscript; available in PMC 2008 September 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 1.
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Scheme 2.
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