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Abstract
Glioblastoma is the most common astrocytic brain tumor in humans. Current therapies for this
malignancy are mostly ineffective. Photodynamic therapy (PDT), an exciting treatment strategy
based on activation of a photosensitizer, has not yet been extensively explored for treating
glioblastoma. We used 5-aminolevulinic acid (5-ALA) as a photosensitizer for PDT to induce
apoptosis in human malignant glioblastoma U87MG cells and to understand the underlying molecular
mechanisms. Trypan blue dye exclusion test showed a decrease in cell viability after exposure to
increasing doses of 5-ALA for 4 h followed by PDT with a broad spectrum blue light (400–550 nm)
at a dose of 18 J/cm2 for 1 h and then incubation at 37°C for 4 h. Following 0.5 and 1 mM 5-ALA-
based PDT (5-ALA-PDT), Wright staining and ApopTag assay showed occurrence of apoptosis
morphologically and biochemically, respectively. After 5-ALA-PDT, down regulation of nuclear
factor kappa B (NFκB) and baculovirus inhibitor-of-apoptosis repeat containing-3 (BIRC-3) protein
indicated inhibition of survival signals. Besides, 5-ALA-PDT caused increase in Bax:Bcl-2 ratio and
mitochondrial release of cytochrome c and apoptosis-inducing factor (AIF). Activation of calpain,
caspase-9, and caspase-3 occurred in course of apoptosis. Calpain and caspase-3 activities cleaved
α-spectrin at specific sites generating 145 kD spectrin break down product (SBDP) and 120 kD SBDP,
respectively. The results suggested that 5-ALA-PDT induced apoptosis in U87MG cells by
suppression of survival signals and activation of proteolytic pathways. Thus, 5-ALA-PDT can be an
effective strategy for inducing apoptosis in glioblastoma.
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1. Introduction
The most common and deadliest brain tumor is glioblastoma that defies all current therapies.
New treatment strategies are needed for controlling the growth of glioblastoma. 5-
Aminolevulinic acid (5-ALA), a physiological compound and heme precursor, is widely used
as a photosensitizer in treating various tumors [1]. Photodynamic therapy (PDT), which is an
emerging treatment strategy for various cancers, uses a photosensitizer for irradiation with
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specific wavelength of visible light [2,3]. PDT generates highly reactive oxygen species,
particularly singlet oxygen (1O2), from the photosensitizer leading to cell death [4,5]. The 5-
ALA-based PDT (5-ALA-PDT) causes mitochondrial and nuclear DNA damage [6]. After 5-
ALA-PDT, apoptosis occurs due to mitochondrial release of cytochrome c [5], endoplasmic
reticulum stress, decrease in Bcl-2 and Bcl-xL, and activation of caspase-9 and caspase-3 [3].
Besides, 5-ALA-PDT induces mitochondrial release of apoptosis-inducing factor (AIF) for
caspase-independent apoptosis [7]. Also, 5-ALA-PDT causes cytoskeletal changes in human
adenocarcinoma WiDr and glioblastoma D54MG cells [8]. Hyperthermia enhances the 5-ALA-
PDT cytotoxicity in glioblastoma spheroids [9]. However, the efficacy of 5-ALA-PDT has not
yet been explored in human glioblastoma U87MG cells.

Here, we examined the ability of 5-ALA-PDT for induction of apoptosis in U87MG cells and
explored the mechanisms involved in this process. We found that 5-ALA-PDT suppressed
expression of survival factors such as NFκB, BIRC-3, and Bcl-2 and activated calpain and
mitochondria-mediated caspase-dependent and caspase-independent pathways for apoptosis
in U87MG cells.

2. Materials and methods
2.1. Treatment of U87MG cells

Human glioblastoma U87MG cell line was purchased from the American Type Culture
Collection (Manassas, VA, USA). Cells were grown at 37°C in 75-cm2 flasks containing 10
ml of 1xRPMI 1640 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin and
streptomycin (GIBCO-BRL, Grand Island, NY, USA) in a fully-humidified incubator
containing 5% CO2 and 95% air. Following trypsinization using a trypsin/EDTA solution, cells
were serially passaged to achieve about 80% confluency. Then, cells were incubated in a low
serum condition (1% FBS) for 24 h prior to any treatment and maintained in this low serum
condition during all treatments. It should be noted that a low concentration (0.5 – 1%) of serum
is the most extensively used method to obtain the synchronized cells in the G1 phase of the
cell cycle [10]. A freshly prepared 100 mM 5-ALA solution in 1xRPMI 1640 containing 1%
FBS was used. Dose-response (0.1 – 2 mM) studies were conducted to determine the suitable
doses of 5-ALA for induction of apoptosis [3]. Cells were treated with 0.5 and 1 mM 5-ALA
for 4 h followed by PDT with a broad spectrum blue light (400–550 nm) at a dose of 18 J/
cm2 for 1 h and incubation at 37°C for 4 h [3]. Control cells were not treated with 5-ALA but
exposed to blue light.

2.2. Trypan blue dye exclusion test for cell viability
Following all treatments the viability of attached and detached cell populations was estimated
by trypan blue dye exclusion test [11]. Trypan blue dye could not penetrate the intact plasma
membrane of viable (white) cells but crossed the derelict plasma membrane of dead (blue)
cells.

2.3. Detection of morphological and biochemical features of apoptosis
Cells from each treatment were washed with PBS, pH 7.4, and sedimented onto the microscopic
slide, fixed in 95% ethanol before examination of morphology with Wright staining as we
reported previously [12]. The morphology of the apoptotic cells included such characteristic
features as chromatin condensation, cell-volume shrinkage, and membrane-bound apoptotic
bodies. Four randomly selected fields were counted for at least 800 cells. The percentage of
apoptotic cells was calculated from three separate experiments. For detection of DNA
fragmentation as a biochemical marker of apoptosis, cells on the microscopic slides were
subjected to the TdT-mediated dUTP Nick-End Labeling (TUNEL) using the ApopTagR

Peroxidase assay kit (Intergen, Purchase, NY, USA). ApopTag positive cells were brown in a
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pale green background and considered as apoptotic cells. Experiments were conducted in
triplicate and percentage of ApopTag-positive cells was determined by counting the brown
cells from randomly selected fields under the light microscope [11,12].

2.4. Western blotting for detection of specific proteins
We used sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and
Western blotting [11,12] with necessary modifications. Mitochondrial and cytoplasmic
fractions were prepared from cells by a standard procedure [13]. Briefly, cells (107) from each
treatment were harvested, washed once with ice-cold PBS, and gently lysed for 1 min in 100
μl ice-cold lysis buffer [250 mM sucrose, 1 mM EDTA, 0.05% digitonin, 25 mM Tris-HCl,
pH 6.8, 1 mM 1,4-dithio-DL-threitol (DTT), 1 μg/ml leupeptin, 1 μg/ml pepstatin, 1 μg/ml
aprotinin, 1 mM benzamidine, and 0.1 mM phenylmethylsulfonyl fluoride (PMSF)], and
centrifuged at 12,000×g at 4°C for 3 min to obtain pellet (fraction containing mitochondria)
and supernatant (cytosolic extract without mitochondria). Pellets and supernatants were
analyzed by Western blotting. Also, total proteins were extracted following homogenization
of control or treated cells in ice-cold (4°C) protein homogenization solution (50 mM Tris-HCl,
pH 7.4, 320 mM sucrose, 0.1 mM PMSF, and 1 mM EDTA). CoomassieR Plus Protein Assay
Reagent (Pierce, Rockford, IL, USA) was used for colorimetric determination of protein
concentration at 595 nm. Protein samples were loaded onto the SDS–polyacrylamide gradient
(4–20%) gels, resolved by SDS-PAGE [14], and electroblotted to membranes using Towbin
transfer buffer [15]. Membranes were blocked for 2 h in Tris-buffered saline (TBS: 20 mM
Tris-HCl, pH 7.6, 137 mM NaCl) containing 5% (w/v) non-fat powdered milk and washed
three times in TBS containing 0.1% Tween 20 (TBST). Blots were incubated overnight with
a monoclonal or polyclonal IgG primary antibody appropriately diluted in TBST containing
1% (w/v) non-fat powdered milk, washed in TBST, and incubated for 45 min with (1:2000)
alkaline horseradish peroxidase (HRP)-conjugated anti-mouse IgG or anti-rabbit IgG
secondary antibody. Specific protein bands on the blots were detected by alkaline HRP-
catalyzed oxidation of luminol in presence of H2O2 using enhanced chemiluminescence system
(Amersham Pharmacia Biotech, Piscataway, NJ, USA) and autoradiography with exposure to
X-OMAT XAR-2 film (Eastman Kodak, Rochester, NY, USA). Film exposure times were
calibrated for analyzing the optical density (OD) of specific protein bands within the linear
range [16]. Autoradiograms were scanned to image and digitize the bands using PhotoShop
software (Adobe Systems, Seattle, WA, USA). The OD values of bands were estimated by
using Quantity One software [12].

2.5. Statistical analysis
Data were expressed as mean + standard error of mean (SEM) of separate experiments (n≥3)
and compared by one-way analysis of variance (ANOVA) followed by Fisher’s post hoc test.
Changes in Bax and Bcl-2 expression (n≥3) were presented as Bax:Bcl-2 ratios, which were
analyzed for statistical significance. Difference between two treatments was considered
significant at p≤0.05.

3. Results
3.1. Decrease in cell viability after 5-ALA-PDT

Dose-dependently, 5-ALA-PDT decreased cell viability in U87MG cells (Fig. 1). Compared
with control cells, 5-ALA-PDT induced morphological changes in dead cells (Fig. 1A).
Residual cell viability was determined by trypan blue dye exclusion test (Fig. 1B). Compared
with control cells, 0.5 and 1 mM 5-ALA-PDT significantly (p<0.0001) decreased cell viability
(29% and 41%, respectively) in U87MG cells (Fig. 1B).
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3.2. Induction of morphological features of apoptosis after 5-ALA-PDT
Following 5-ALA-PDT, Wright staining showed morphological features of apoptosis in
U87MG cells (Fig. 2A). 5-ALA-PDT induced morphological features such as reduction in cell-
volume, chromatin condensation, and/or presence of cell membrane blebbing in U87MG cells
indicating occurrence of apoptotic cell death, as we reported previously in other studies [10,
11]. Compared with control cells, treatment with 0.5 and 1 mM 5-ALA-PDT caused 26%
(p<0.0001) and 36% (p<0.0001) apoptosis, respectively.

3.3. Induction of DNA fragmentation after 5-ALA-PDT
Induction of DNA fragmentation as a biochemical feature of apoptosis (brown color cell) was
examined by ApopTag assay (Fig. 2B). Control cells showed no brown color, confirming
almost absence of apoptosis. After 5-ALA-PDT, many cells were apoptotic as indicated by
brown staining and also characteristic morphological changes such as cell shrinkage, pyknotic
nuclei, cell blebbing, and formation of apoptotic bodies (Fig. 2B). Compared with control cells,
treatment with 0.5 and 1 mM 5-ALA-PDT caused 24% (p<0.001) and 34% (p<0.0001)
apoptosis, respectively (Fig. 2B). Thus, both Wright staining and ApopTag assay confirmed
occurrence of similar amounts of apoptosis in U87MG cells after 5-ALA-PDT.

3.4. Suppression of cell-survival signals after 5-ALA-PDT
In many cancers, upregulation of nuclear factor kappa B (NFκB) exerts anti-apoptotic effect
leading to tumor cell-survival, transformation, and resistance to radiation and drug therapies
[17]. In contrast, down regulation of NFκB leads to apoptosis [18]. Besides, inhibitor-of-
apoptosis proteins (IAPs) exert anti-apoptotic effects by a positive feedback system with
NFκB [12]. Currently, there are eight IAPs that are also known as baculovirus inhibitor-of-
apoptosis repeat containg (BIRC) proteins [19]. Among these, BIRC-2 and BIRC-3 were
identified as possible oncogenes [20]. Therefore, we determined the levels of their expression
following 5-ALA-PDT. Western blotting showed the changes in levels NFκB and BIRC-3
expression in U87MG cells after 5-ALA-PDT (Fig. 3A), but no change in BIRC-2 expression
(data not shown). Level of β-actin expression remained almost unchanged (Fig. 3A). Both
doses of 5-ALA-PDT resulted in a similar decreased expression of NFκB and BIRC-3 in
U87MG cells (Fig. 3A).

3.5. Increase in Bax:Bcl-2 ratio after 5-ALA-PDT
Alterations in expression of pro-apoptotic and anti-apoptotic proteins of the Bcl-2 family
regulate the commitment of cells to apoptosis. Levels of expression of Bax (pro-apoptotic) and
Bcl-2 (anti-apoptotic) were altered so as to increase the Bax:Bcl-2 ratio significantly by 235%
(p<0.01) and 267% (p<0.003) after treatment with 0.5 and 1 mM 5-ALA-PDT, respectively,
compared with control cells (Fig. 3B). The increase in Bax:Bcl-2 ratio after 5-ALA-PDT
indicated a commitment of U87MG cells to apoptosis.

3.6. Mitochondrial release of pro-apoptotic factors after 5-ALA-PDT
Mitochondrial release of several pro-apoptotic molecules such as cytochrome c and AIF can
lead to apoptosis via caspase-dependent and caspase-independent pathways, respectively
[21–23]. Mitochondrial release of cytochrome c is a well known precondition for formation of
apoptosome and activation of caspases for apoptosis [24], as we also reported [12]. After 5-
ALA-PDT, cytochrome c level was increased in the cytosolic fraction and decreased in the
mitochondrial fraction of U87MG cells (Fig. 4A). Moreover, 5-ALA-PDT markedly increased
the cytosolic level of AIF (Fig. 4A), indicating induction of caspase-independent pathway of
apoptosis as well. Increased release of both cytochrome c and AIF after 5-ALA-PDT indicated
mitochondrial involvement in apoptosis in U87MG cells.
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3.7. Increased activation of calpain, caspase-9, and caspase-3 after 5-ALA-PDT
Calpain is a neutral Ca2+-dependent cysteine protease that plays an important role in apoptosis
[11,12]. Co-operation between calpain and caspase-3 has been demonstrated in apoptotic cells
[25]. After 5-ALA-PDT, activation of calpain, caspase-9, and caspase-3 was increased (Fig.
4B). Activation of calpain was detected in the generation of 76 kD active calpain (Fig. 4B).
We also observed activation of caspase-9 in the generation of 35 kD active caspase-9 (Fig. 4B)
that, in turn, activated caspase-3 with the formation of 20 kD active caspase-3 (Fig. 4B).
Activation of caspase-3 is known to cause cleavage of specific substrates at the late phase of
apoptosis [26].

3.8. Activation of calpain and caspase-3 cleaved α-spectrin after 5-ALA-PDT
Activation of calpain and caspase-3 can cause cleavage of 270 kD α-spectrin at specific sites
to generate 145 kD spectrin breakdown product (SBDP) [27] and 120 kD SBDP, respectively,
in apoptotic cells [28]. After 5-ALA-PDT, Western blotting used to assess the calpain and
caspase-3 activities in U87MG cells (Fig. 4B). Compared with control cells, 5-ALA-PDT
increased the formation of 145 kD SBDP and 120 kD SBDP (Fig. 4B). Our current observation
of activation of these proteolytic pathways is in line with our previous reports [11,12].

4. Discussion
Current investigation showed that 5-ALA-PDT induced apoptosis in human malignant
glioblastoma U87MG cells. After 5-ALA-PDT, decrease in cell viability (Fig. 1) occurred due
to induction of cell death in U87MG cells (Fig. 2) with characteristic morphological and
biochemical features of apoptosis [29,30], as we also reported previously [12,31]. Earlier
studies showed that 5-ALA-PDT could induce apoptosis in human leukemia Reh cells [7] and
K562 cells [32]. However, this is the first report showing that 5-ATAL-PDT is capable of
suppressing survival factors and activating caplain and michotochodria-mediated caspase-
dependent and caspase-independent pathways for apoptosis in U87MG cells.

After 5-ALA-PDT, we examined the changes in expression of cell survival factors. Our results
showed for the first time that 5-ALA-PDT caused down regulation of both NFκB and BIRC-3
in U87MG cells (Fig. 3A) for suppressing survival signals. An elevation in Bax:Bcl-2 ratio
(Fig. 3B) was associated with mitochondrial release of cytochrome c (Fig. 4A), suggesting that
mitochondria played an important role in apoptosis in U87MG cells following 5-ALA-PDT.
Also, mitochondrial release of AIF (Fig. 4A) indicated involvement of caspase-independent
pathway of apoptosis as well. So, mitochondria played an essential role in apoptosis in U87MG
cells after 5-ALA-PDT.

It has repeatedly been reported that calpain has a significant role in cell death [11,12,31,33].
Calpain can cause Bax translocation to mitochondria to trigger release of cytochrome c for
caspase-dependent apoptosis [34] and also AIF for caspase-independent apoptosis [35,36].
Activation of caspase-9 and caspase-3 in U87MG cells after 5-ALA-PDT (Fig. 4B) suggested
an important role of caspase-dependent pathway in apoptosis. A network between calpain and
caspase proteolytic systems can work together during apoptosis [25]. Indeed, 5-ALA-PDT
activated both calpain and caspase cascades for induction of apoptosis in U87MG cells (Fig.
4B).

Degradation α-spectrin at specific sites can indicate induction of calpain and caspase-3
activities in apoptosis. For example, generation of 145 kD SBDP is specific for calpain activity
[27] and 120 kD SBDP is specific for caspase-3 activity [28]. We measured the calpain and
caspase-3 activities in the generation of 145 kD SBDP and 120 kD SBDP, respectively (Fig.
4B). Increases in generation of 145 kD SBDP and 120 kD SBDP after 5-ALA-PDT confirmed

Karmakar et al. Page 5

Neurosci Lett. Author manuscript; available in PMC 2008 September 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increases in proteolytic activities of calpain and caspase-3 for apoptosis in U87MG cells. This
observation of α-spectrin cleavage is consistent with an earlier study where we demonstrated
induction of calpain and caspase-3 activities for α-spectrin cleavage during apoptosis in
glioblastoma cells [12].

In conclusion, 5-ALA-PDT induced apoptosis in U87MG cells via suppression of cell survival
factors (NFκB, BIRC-3, and Bcl-2) and induction of calpain and mitochondria-mediated
caspase-dependent and caspase-independent pathways of apoptosis. Further exploration of 5-
ALA-PDT as a treatment strategy in pre-clinical models of glioblastoma may pave the path to
combat this malignancy in humans in the future.
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Fig. 1.
(A) Effect of 5-ALA-PDT on morphology of U87MG cells. (B) Trypan blue dye exclusion test
for residual cell viability after 5-ALA-PDT. Bar graph shows residual cell viability. Significant
difference from control was indicated by **p<0.001.
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Fig. 2.
(A) Wright staining for determination of morphological features of apoptosis in U87MG cells
following 5-ALA-PDT. Bar graph shows percent apoptosis based on Wright staining. (B)
ApopTag assay for determination of morphological as well as biochemical features of apoptosis
following 5-ALA-PDT. Bar graph shows percent apoptosis based on ApopTag assay.
Significant difference from control was indicated by **p<0.001.
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Fig. 3.
(A) Western blotting showed decreases in expression of 65 kD NFκB and 68 kD BIRC-3 in
U87MG cells following 5-ALA-PDT. (B) Western blotting for examining changes in Bax and
Bcl-2 expression and determining the Bax:Bcl-2 ratios. Significant difference from control was
indicated by **p<0.001.
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Fig. 4.
(A) Western blotting to examine mitochondrial release of cytochrome c and AIF in U87MG
cells following 5-ALA-PDT. (B) Western blotting showed formation of 76 kD active calpain,
35 kD active caspase-9, and 20 kD active caspase-3, and activities of calpain and caspase-3 in
the generation of specific SBDPs.
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