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Abstract
Background & Aims—Colon epithelial cells are critical for barrier function and contain a highly
developed immune response. A previous study has shown hypoxia-inducible factor (HIF) as a critical
regulator of barrier protection during colon epithelial injury. However, the role of HIF signaling in
colon mucosal immunity is not known.

Methods—With the use of cre/loxP technology, intestinal specific disruption of Vhl, Hif-1α, and
Arnt were generated. Colon inflammation was induced using a dextran sulfate sodium (DSS)-induced
colitis model and the mice analyzed by histology, western blot analysis, and quantitative polymerase
chain reactions.

Results—In mice, colonic epithelium disruption of Vhl resulted in constitutively expression of HIF
which initiated an increase in inflammatory infiltrates and edema in the colon. These effects were
ameliorated in mice by disruption of both Vhl and Arnt/Hif1β (which inactivates HIF). In a DSS-
induced colitis model, increased HIF expression correlated with more severe clinical symptoms and
an increase in histological damage, while disruption of both Vhl and Arnt in the colon epithelium
inhibited these effects. Furthermore, colons with constitutive activation of HIF displayed increased
expression of pro-inflammatory mediators which were synergistically potentiated following DSS
administration and reduced by inhibition of the pro-inflammatory and direct HIF-target gene
macrophage migration inhibitory factor (MIF).

Conclusion—The present study demonstrates that a chronic increase in HIF signaling in the colon
epithelial cells initiates a hyper-inflammatory reaction that may have important implications in
developing therapeutic strategies for inflammatory bowel disease.

Introduction
Hypoxia, a deficiency in oxygen availability, was shown to regulate a large subset of genes
critical in both oxygen delivery and adaptation to oxygen deprivation 1, 2. Regulation of
hypoxia-mediated genes are dependent on the heterodimeric nuclear transcription factor,
hypoxia inducible factor (HIF) consisting of an oxygen sensitive alpha subunit, where three
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isoforms have been identified HIF-1α 3, 4, HIF-2α 5 and HIF-3α 6, and a ubiquitously
expressed beta subunit, also referred to as aryl hydrocarbon nuclear translocator (ARNT) 2. In
the presence of adequate oxygen levels (normoxia), HIF alpha subunits are rapidly degraded
via post-translational hydroxylation and ubiquitination. Oxygen-dependent prolyl-
hydroxylation is necessary for binding to the von Hippel-Lindau tumor suppressor protein
(VHL) and consequently to the E3 ubiquitin ligase complex 7, 8. Thus the absence of a
functional VHL results in constitutively active HIF in vivo 9. HIF signaling was shown to
activate transcription of genes critical in cell survival, angiogenesis, glycolysis and iron
homeostasis 10–13. The central role of HIF signaling in normal development and physiology
is underscored by the embryonic lethality observed in mice lacking HIF-1α, HIF-2α, ARNT
and VHL due to various vascular abnormalities 14–17.

Recently, using a two-step 2,4,6-trinitrobenzene sulphonic acid (TNBS) or oxazolone-induced
inflammatory bowel disease (IBD) model, it was shown that HIF-1α and VHL are critical
factors in maintaining intestinal epithelial integrity during increased local inflammation 18.
The two-step model initiates a delayed hypersensitive reaction. First, an epicutaneous treatment
with TNBS primes T-cells. A subsequent inter-rectal instillation of TNBS results in a
haptenization of the epithelial mucosa leading to a massive Th1 driven immune response to
self cells 19, 20. Mice containing an epithelial specific disruption of HIF-1α demonstrated an
increase in the intestinal permeability and clinically more severe colitis as compared to their
wild-type counterparts, whereas conditional targeting of Vhl in epithelial cells was protective.
The mechanism by which HIF-1α maintains colonic mucosal integrity was shown to be through
the induction of a number of barrier-protective genes 18. However, IBD is thought to be a
combination of a disturbance in function of the intestinal epithelial barrier and a dysregulation
of the mucosal immune system 21, 22. Intestinal epithelial cells that are critical in mucosal
immunity by expressing several immunomodulatory genes, act in concert with other immune
mediators to elicit a pro-inflammatory signal 23. Using the TNBS or oxazolone-induced colitis
model, it is difficult to assess the immunomodulatory role of HIF and VHL in mucosal
immunity due to a direct robust immune response caused by primed T-cells. Therefore, the
present study used a DSS-induced acute colitis model where the immune response is secondary
to disruption of the epithelial barrier 20. In addition, to gain a better insight into HIF signaling
in mucosal immunity, the present study used intestinal epithelial cell conditional knockouts of
HIF-1α, ARNT and VHL by use of the cre/loxP technology where the Cre transgene is under
the control of the murine villin promoter. The villin promoter was shown to target expression
of transgenes to the small and large intestine in both differentiated and undifferentiated cells
of the crypt 24.

The present study demonstrates that a chronic increase in HIF signaling in colon epithelial cells
triggers inflammatory response as assessed by an increase in pro-inflammatory mediators and
colon histology that were dramatically potentiated by administration of DSS in the drinking
water. Disruption of both VHL and ARNT in intestinal epithelial cells prevented development
of intestinal inflammation indicating a HIF-dependent mechanism. Moreover, the inhibition
of MIF activity, a direct HIF target 25, ameliorated the increase in pro-inflammatory mediators
demonstrating MIF as a critical factor in the HIF-induced pro-inflammatory cascade.

Methods
Animals

Vhl-floxed (VhlF/F) 9, Hif-1α-floxed (Hif-1αF/F) 26 and Arnt-floxed (ArntF/F) 27 mice
containing loxP sites flanking exons 1, 13–15, and 6 respectively, were crossed with mice
harboring the Cre recombinase under control of the villin promoter (villin-cre mice) 24. The
intestine specific knockout mice for Vhl, Hif-1α, and Arnt were designated VhlΔIE Hif-1αΔIE

ArntΔIE mice, respectively. Mice were housed in temperature and light controlled rooms, were
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given water and pelleted NIH-31 chow ad libitum. All animal studies were carried out in
accordance with Institute of Laboratory Animal Resources (ILAR) guidelines and approved
by the National Cancer Institute Animal Care and Use Committee.

Recombination efficiency and genotype determination
To assess recombination efficiency in the VhlF/F and VhlΔIE mice, intestine epithelium and all
other tissues were harvested and kept in liquid nitrogen. DNA was isolated using the DNeasy
kit (Qiagen, Valencia, CA) and the following primers were used to assess recombination Vhl-
FWD1 PRIMER 5′-CTGGTA CCCACGAAACTGTC-3′ Vhl-FWD2 PRIMER 5′
CTAGGCACCGAGCTTAGAGGTTTGCG-3′ Vhl-RVS PRIMER 5′-
CTGACTTCCACTGATGCTTGTCACAG-3′. The same primers were used for routine
genotyping of the mice. Routine genotyping for the Arnt and Hif-1α allele were previously
described 28.

Induction and assessment of colitis
Mice (6- to 8-weeks-old) were administered 2.5% or 5% (wt/vol) DSS (MW, 35,000–44,000)
(MP Biomedicals, Aurora, OH) in the drinking water for five days. In experiments using ISO-1
(Calbiochem, San Diego, CA), the inhibitor was resuspended in 5% DMSO and delivered to
the mouse daily via intraperitoneal injection at 20mg/kg and 5% DMSO was used as vehicle.
Daily changes in body weight, diarrhea, bleeding, and histological damage were assessed and
reported as previously described 29.

Intracellular MIF tautomerase activity assay
Colon extracts were prepared by homogenizing colon epithelial cells from VhlF/F and VhlΔIE

mice treated with vehicle or ISO-1 in non-denaturing tris buffer. L-Dopachrome methyl ester
was generated by mixing equal volumes of L-dopa methyl ester (4mM) and sodium periodate
(8mM) (Sigma). Colon extracts (0.7mL) were mixed with freshly prepared L-dopachrome
methyl ester (0.3mL) and the decay in absorbance was measured at 475nm.

RNA analysis
RNA was extracted from colon epithelium and qPCR was performed as previously described
29. All primers sequences are available upon request.

Western blot analysis
Colon epithelium or HCT116 cells were lysed using NE-PER nuclear extraction kit for nuclear
extract(Pierce, Rockford, IL) or RIPA buffer for whole cell extract. The membranes were
incubated with an antibody against Hif-1α, Hif-2α (Novus Biologicals, Littleton, CO), and
Arnt and MIF (Santa Cruz Biotechnology Inc, Santa Cruz, CA) the signals obtained were
normalized to HNF4α (Santa Cruz) or GAPDH (Chemicon International, Temecula, CA).

Data analysis
Results are expressed as mean ± S.D. P values were calculated using multifactorial Anova test
and Independent T Test. p < 0.01 was considered significant.

Results
Intestine specific disruption of Vhl, Arnt and Hif-1α genes via Cre-loxP–mediated
recombination in mice

To estimate the extent of cell-specific disruption of the Vhl locus, PCR analysis was used. The
Vhl null allele amplifies as a 260 bp product, and was detected in genomic DNA isolated from
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intestinal epithelium cells of VhlΔIE mice and was not detected in intestinal epithelium DNA
isolated from VhlF/F mice (Fig 1A). In contrast, the intact floxed allele was the only band
evident in the intestinal epithelium from VhlF/F mice and from all non-gut derived tissues in
VhlΔIE mice (Fig 1A). The expression of the Vhl mRNA was markedly decreased in the colon
and throughout the small intestine of VhlΔIE mice (Fig 1B), whereas, Vhl mRNA levels were
unchanged in non-gut-derived tissues (data not shown). Next, western blot analysis was
performed using nuclear protein extracts isolated from colonic epithelium from VhlF/F and
VhlΔIE mice. Interestingly, while no specific signal was observed for HIF-1α from colonic
epithelium extracts, a robust HIF-1α expression was detected in the HCT116 colon cancer-
derived cell line following a 24 hour incubation in 1% O2. However, induction of HIF-2α was
observed in VhlΔIE compared to their wild-type littermate VhlF/F mice, hepatic nuclear factor
4 alpha (HNF4α) used as a loading control for the nuclear fraction (Fig 1C). qPCR analysis
demonstrated an increase in mRNAs encoding well-characterized HIF target genes (Fig 1D).
As previously shown 28, Hif-1α and Arnt expression was significantly impaired in the colon
epithelium from Hif-1αΔIE and ArntΔIE mice when compared to their wild-type counterparts
Hif-1αF/F and ArntF/F, and no decrease was observed in non-gut-derived tissues (Fig 1E and
F). Together these data demonstrate that inactivation of the Vhl gene leads to an increase in
HIF signaling. Interestingly, no HIF-1α protein expression was observed suggesting the
increase in HIF gene expression may be due solely to HIF-2α.

Colon inflammation as assessed by histology and pro-inflammatory gene expression was
increased in VhlΔIE mice

Macroscopic examination of the colons in Hif-1αF/F, Hif-1αΔIE, ArntF/F and ArntΔIE mice
demonstrated no apparent abnormalities (Fig 2A). However, histological examination of
colons from VhlΔIE mice, demonstrated edema in the submucosa layer and marked increase in
inflammatory infiltrates (Fig 2A). In addition, 6-month-old VhlΔIE mice demonstrated
inflammatory polyps in the colon. Of the 72 VhlΔIE mice assessed at 6-months of age, 27%
contained polyps consisted of regenerative epithelium and were accompanied by ulceration
and covered by exudates including cell debris, and fibrin. Infiltration of inflammatory cells
and micro hemorrhage were also noted. The incidence increased to over 50% in 1-year-old
mice, whereas no colon abnormalities were observed in VhlF/F wild-type littermate mice (Fig
2B). The inflammatory polyps were similar to those described in patients with Crohn's Disease
and other IBDs such as ischemic colitis and ulcerative colitis. Consistent with the increase in
the histological signs of inflammation, all pro-inflammatory mediators assessed by qPCR were
increased in the VhlΔIE compared to VhlF/F (Fig 2C). Interestingly, no changes were observed
in Hif-1αΔIE or ArntΔIE mice compared to their wild-type littermates (Fig 2C). These results
clearly indicate that disruption of Vhl in the colon epithelium results in a marked increase in
inflammation.

Exacerbation of colitis in VhlΔIE mice treated with low-dose (2.5%) DSS
VhlΔIE mice showed an increased susceptibility to DSS-induced colitis and the study was
stopped following five days of 2.5% DSS administration due to marked increase in the
pathological phenotype of VhlΔIE mice. VhlΔIE mice had significantly more severe disease as
assessed by rectal bleeding, diarrhea, body weight, and colon length as compared to VhlF/F

mice (Fig 3A and B). Furthermore, histological analysis revealed increased inflammation in
the mucosa, thickening and edema in the submucosa, and muscularis propria with complete
loss of the crypts and surface epithelia, and increased recruitment of inflammatory infiltrates
in VhlΔIE mice when compared to the VhlF/F mice (Fig 3C). Consistent with the increase in
pathological phenotype and histological score following 5 days of DSS administration in
VhlΔIE mice, several pro-inflammatory mediators demonstrated robust potentiation in
expression following DSS administration (Fig 3D). These data suggest that Vhl is critical in
maintaining the mucosal immune response homeostasis following an inflammatory insult.
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Colon specific double disruption of Vhl and Arnt genes via Cre-loxP–mediated
recombination in mice

To assess the influence of the HIF-dependent pathways on the hyper-inflammatory response
in the colons of VhlΔIE mice, mice with a disruption of both Vhl and Arnt were made. To use
background matched littermate control mice, VhlF/FArntF/+ mice hemizygous for villin-cre
were mated to each other and four genetic littermate strains were used for comparison; 1)
VhlF/FArnt+/+ 2) VhlΔIEArnt+/+ 3) VhlF/FArntF/F 4) VhlΔIEArntΔIE. The expression level of Arnt
and Vhl mRNAs were assessed in the four-littermate genetic strains. As expected, no difference
in Arnt mRNA expression levels were seen in the VhlF/FArnt+/+, VhlΔIEArnt+/+ and
VhlF/FArntF/F mice, however in the VhlΔIEArntΔIE mice, Arnt expression was abolished. No
change in Vhl expression was observed in the VhlF/FArnt+/+ and VhlF/FArntF/F, but the mRNA
expression was completely reduced in VhlΔIEArnt+/+ and VhlΔIEArntΔIE mice (Fig 4A). Next,
western blot analysis was performed on nuclear extracts for HIF-1α, HIF-2α, ARNT, and
HNF4α as a loading control. No HIF-1α expression was observed with VhlF/FArnt+/+ (lanes 1
and 2) and VhlF/FArntF/F mice (lanes 5 and 6) and consistent with what was observed n the
VhlΔIE mice (Fig 1C), no induction of HIF-1α was observed in VhlΔIEArnt+/+ mice (lanes 3
and 4). Interestingly, HIF-1α expression was increased in the VhlΔIEArntΔIE mice (lanes 7 and
8) (Fig 4B). As expected, HIF-2α expression was induced in both the VhlΔIEArnt+/+ and
VhlΔIEArntΔIE mice, whereas ARNT protein expression was abolished only in the
VhlΔIEArntΔIE mice (Fig 4B). Interestingly, Hif-1α mRNA levels were reduced in the colons
of VhlΔIEArnt+/+ mice, whereas no change in expression was observed in VhlF/FArnt+/+,
VhlF/FArntF/F and VhlΔIEArntΔIE mice (Fig 4C). The expression of Hif-1α mRNA in
VhlΔIEArnt+/+ mice was similar to that observed in Hif-1αΔIE mice (Fig 1E), suggesting a
complete disruption of expression. In addition, no change in Hif-2α expression was seen in
any genotype (Fig 4C). The data suggest a HIF-dependent negative feedback, which will be
further discussed below. As observed with the VhlΔIE mice (Fig 1D), VhlΔIEArnt+/+ mice
demonstrated an increase in several HIF target genes, which were inhibited in the
VhlΔIEArntΔIE mice (Fig 4D), indicating that HIF alpha subunit function is dependent on
binding to its obligate heterodimer partner ARNT.

Colon inflammation induced in VhlΔIE mice is dependent on HIF signaling
Examination of the colon in VhlΔIEArnt+/+ mice demonstrated an increase in the histological
signs of inflammation (Fig 5A). In addition, of the 54 VhlΔIEArnt+/+ mice assessed at 6-months
of age, 25% displayed inflammatory polyps in the colons similar to what was observed in
VhlΔIE (data not shown). These effects were ameliorated in the VhlΔIEArntΔIE mice (Fig 5A
and data not shown). The induction of pro-inflammatory mediators observed in
VhlΔIEArnt+/+ mice were inhibited in the VhlΔIEArntΔIE confirming that HIF signaling is
required for the increase in inflammation following Vhl disruption (Fig 5B). To clarify whether
the increase in susceptibility to DSS-induced colitis in VhlΔIE mice was dependent on intact
HIF signaling, VhlF/FArnt+/+, VhlΔIEArnt+/+, VhlF/FArntF/F, and VhlΔIEArntΔIE mice were
subjected to 2.5% DSS treatment. VhlΔIEArnt+/+ mice developed severe bloody diarrhea and
body weight loss, while the body weight loss, diarrhea, and rectal bleeding were only
marginally changed in VhlF/FArnt+/+, VhlF/FArntF/F and VhlΔIEArntΔIE mice (Fig 6A). The
colon length of VhlΔIEArnt+/+ mice treated with 2.5% DSS was dramatically decreased
compared to 2.5% DSS-treated colons from VhlF/FArnt+/+, VhlF/FArntF/F and VhlΔIEArntΔIE

mice (Fig 6B). The histological injury score obtained from VhlΔIEArnt+/+ mice was
significantly higher than that from VhlF/FArnt+/+, VhlF/FArntF/F and VhlΔIEArntΔIE mice (Fig
6C). In addition, using a 5% DSS dose demonstrated that VhlΔIEArnt+/+ mice had a decreased
survival when compared to VhlF/F/Arnt+/+, VhlF/FArntF/F and VhlΔIEArntΔIE mice
demonstrating 100% survival following seven days of 5% DSS treatment (Fig 6D). These
findings indicate that the disruption of Vhl in the colon epithelium exacerbates colitis, due to
an increase in HIF signaling.
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MIF inhibition decreased the expression of pro-inflammatory mediators in VhlΔIE mice
MIF was shown to be a direct target of HIF signaling 25. To assess whether MIF is critical in
HIF-induced colonic inflammation, the protein expression and enzyme activity were measured.
Western analysis demonstrated an increase in MIF protein expression from colonic extracts
(Fig 7A). In addition, MIF activity was measured by utilizing the unique catalytic domain
capable of tautermirizing L-dopachrome to indole derivates 30. Colon extracts from VhlΔIE

mice demonstrated an 8-fold increase in MIF tautomerase, and the specific MIF tautomerase
inhibitor ISO-1 completely inhibited MIF activity thus demonstrating the specificity of the
assay (Fig 7B). VhlΔIE mice treated with ISO-1 exhibited a significant decrease in pro-
inflammatory mediator expression (iNOS, IFNγ, TNFα, IL-6, IL-10 COX-2, ICAM-1, TLR2
and IL-1β) when compared to vehicle treated VhlΔIE mice. As expected, ISO-1 had no effect
on MIF expression as it functions as an enzymatic inhibitor. Moreover, MIF antagonism was
shown to be specific for HIF-induced pro-inflammatory mediators; no decrease in mRNA
expression was observed for any pro-inflammatory mediators in VhlF/F mice treated with ISO-1
compared to vehicle treated VhlF/F mice (Fig 7C). The enzymatic activity of COX-2, a direct
pro-inflammatory target of HIF 31, was also shown to be increased in VhlΔIE mice
(Supplemental Fig 1A and B). However when VhlF/F and VhlΔIE mice were treated with
nimelsulide, a COX-2 specific inhibitor, no decrease in any pro-inflammatory expression was
observed when compared to vehicle treated VhlF/F and VhlΔIE mice (Supplemental Fig 1A and
B). Interestingly IL-1β levels were significantly increased in nimesulide treated VhlΔIE mice,
possibly due to intestinal side effects known to be associated with COX-2 inhibitors 32. In
addition, VhlF/F and VhlΔIE mice treated with ISO-1 were protected from DSS-induced colitis.
Due to robust response observed in both VhlF/F and VhlΔIE mice on 5% DSS, the study was
stopped following five days DSS administration. VhlΔIE mice had a significantly more severe
response as assessed by rectal bleeding, diarrhea, body weight, and colon length as compared
to VhlF/F mice. However ISO-1 administration protected both VhlF/F and VhlΔIE mice (Fig 7D
and E). Mortality was also slightly higher (2/10) in VhlΔIE mice, when compared to VhlΔIE

mice administered ISO-1 (0/10) following DSS treatment (data not shown). The pathological
findings were consistent with histological analysis revealing an improvement in mucosal
inflammation, thickening and edema in the submucosa, and muscularis propria loss of the
crypts and surface epithelia, following ISO-1 treatment (data not shown). These data
demonstrates a critical role for MIF in the HIF-induced pro-inflammatory cascade and colitis.

Discussion
Individuals in a chronic hypoxic state, such as patients with chronic obstructive pulmonary
disease demonstrate systemic inflammation 33. Interestingly, when a focused case report
review was performed on respiratory disorders leading to whole-body hypoxia, cardio-
pulmonary disorders were more frequent among patients with IBD than previously considered
34. In addition, hyperbaric oxygen treatment has been demonstrated to be effective in animal
models of acute colitis and patients with severe IBD 35, however the molecular mechanism
leading to either observation is currently unclear. The present study provides evidence
demonstrating a molecular link between dysregulation of oxygen signaling and an increase in
inflammation. Utilizing conditional VhlΔIE, Hif-1αΔIE, ArntΔIE and VhlΔIEArntΔIE mutant
mice, a chronic increase in colon epithelial HIF-2α signaling resulted in a hyper-inflammatory
response with an increase in colon inflammation and pro-inflammatory mediators. Hif-1αΔIE

and ArntΔIE mice demonstrated no significant difference in response to the susceptibility of
DSS-induced colitis compared to their wild-type littermates possibly due to a limited role of
hypoxia during the initial stage of DSS-induced colitis (Supplemental Fig 2). An increase in
HIF signaling was shown to be a late event following low dose DSS administration
(Supplemental Fig 2), therefore suggesting a mechanism whereby increased physiological HIF
signaling predisposes mice to an inflammatory insult such as DSS. This hypothesis is further
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supported by the finding that all basal level pro-inflammatory mediators measured are
increased in VhlΔIE mice, whereas no change in basal level expression was observed in
Hif-1αΔIE and ArntΔIE mice.

Previous work has revealed that HIF-1α signaling is critical in the intestinal epithelial barrier
and several HIF-1α target genes are also barrier protective 18. Paradoxically, the loss of VHL
in the epithelial cells demonstrated a protective role in TNBS-induced colitis. This observation
is different from that of the present study, and several possibilities may account for the
differences in phenotype. A protective role for HIF in colitis was shown by use of a Cre-
recombinase under transcriptional control of the fatty acid–binding protein (Fabp) promoter
demonstrating less than 60% cre-mediated recombination of the Vhl allele, whereas in the
present study using the villin promoter to drive the Cre gene, almost complete recombination
was observed and the residual floxed allele in total gut tissue was thought to be due to
inflammatory cells within the colon epithelium. Interestingly, gene dosage effects of Hif-1α
have indeed been noted; heterozygous null mice demonstrated an impaired response to chronic
hypoxia 36. Therefore, the increase in recombination efficiency of the villin-cre promoter may
have uncovered the hyper-inflammatory response that was not seen utilizing the FABP
promoter-driven Cre recombinase that yields incomplete gene disruption in the gut.

Interestingly, loss of VHL in myeloid cells and overexpression of a degradation resistant
HIF-1α in the skin epithelium results in a hyper-inflammatory response in 12-O-tetradecanoyl-
phorbol-13-acetate (TPA)-induced acute skin inflammation model 37 38. The results of these
studies are consistent with the present work and may suggest that the intrinsic differences
between the inflammatory models may account for some of the differences in phenotype
following initiation of colitis. In the TNBS-induced colitis model, disruption of Vhl was shown
to be protective via HIF-1α-mediated induction of mucosal barrier genes. However, in the DSS
model, the primary insult overrides the role of barrier protection, and thereby revealing the
pro-inflammatory role of HIF signaling in colon epithelia.

Lastly, the VhlΔIE mouse model used in the present study was HIF-2α mediated; no protein
expression of HIF-1α was detected in the colon epithelium. Therefore, the pro-inflammatory
phenotype observed was mainly due to HIF-2α signaling, whereas Karhausen et al.18
demonstrated that the protective role of HIF signaling, was due to HIF-1α expression in the
colon. Recently, two reports demonstrate a protective function in mouse colitis models using
pharmacological inhibitors of prolyl hydroxylases, which activate HIF signaling by inhibiting
its degradation 39, 40. The HIF prolyl hydroxylase inhibitor FG-4497 was shown to decrease
intestinal permeability thereby protecting the intestine. Interestingly, the pharmacological
inhibitor displayed no effects on barrier function in the intestine specific Hif-1α-null mice,
confirming that the protective role HIF signaling in colon homeostasis is primarily dependent
on HIF-1α 39. In addition, HIF-1α was shown to directly regulate several barrier protective
genes, such as intestinal trefoil factor, CD73 and multidrug resistance gene 1 41–43, however
in present study, HIF-2α does not increase their expression in the colon epithelium (data not
shown). Due to high sequence similarity between HIF-1α and HIF-2α, these transcription
factors share many similar functions, however it is becoming apparent that HIF-1α and
HIF-2α can regulate unique sets of target genes with distinct functions. The roles of HIF-1α
and HIF-2α have diverged in respect to cellular growth. In cell lines, HIF-2α can promote cycle
progression, whereas HIF-1α inhibits cell proliferation 44. Therefore the differences observed
in present study and in Karhausen et al.18 may reflect the divergent roles of HIF-1α and
HIF-2α in colon homeostasis.

Currently, the mechanism by which Hif-1α is downregulated is unclear. The present study
suggests that Hif-1α gene expression is under a negative feedback regulation following
prolonged HIF signaling mediated by HIF-2α or its respective target genes. Several in vitro
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studies have described this phenomenon 45–47. In lung epithelial-derived cell lines, prolonged
hypoxia decreased HIF-1α protein expression via a decrease in the Hif-1α mRNA, whereas no
change in Hif-2α expression was observed 46. Inhibiting HIF signaling using a dominant
negative HIF-2α, prevented the down regulation of Hif-1α expression following a prolonged
hypoxia treatment 46. Currently this is major focus and the molecular mechanism will be
assessed in future studies.

MIF was identified as a primary mediator downstream of HIF-signaling responsible for the
increase in pro-inflammatory gene expression following induction of HIF-2α. MIF is a well-
characterized pro-inflammatory mediator secreted by several different cell types including
colon epithelium and has been demonstrated to be critical in the pathogenesis of colitis. MIF
serum concentrations were shown to be elevated in Crohn's patients 48, and a decrease in MIF
activity by anti-MIF antibody administration or MIF-null mice were highly protective in DSS
and TNBS-induced colitis models 48, 49 50. Furthermore, mice transgenically overexpressing
MIF demonstrated an increase in susceptibility to DSS-induced colitis 51. Consistent with the
above reports inhibiting MIF activity decreased pro-inflammatory cytokines and protected
VhlF/F and VhlΔIE mice in DSS-induced colitis model. The importance of the catalytic domain
in modulating MIF activity is well documented 52; the present study provides further evidence
demonstrating the utility in small-molecule inhibitors of MIF as a therapeutic modality and
clearly demonstrates that the increase in MIF expression and activity are critical in the HIF-
induced pro-inflammatory cascade in the colon.

In conclusion, the present study demonstrates an increase in colonic inflammation in murine
models with constitutive epithelial HIF signaling, which is mediated by HIF-2α activation of
the pro-inflammatory gene MIF. Taken together with the previous study 18, the present
working model suggests that an increase in HIF signaling may be protective early in the
pathogenesis of IBD via HIF-1α-mediated maintenance of the epithelial barrier. However, as
the epithelial barrier breaks down, HIF-2α may potentiate the chronic inflammatory reactions,
worsening disease progression. Currently several HIF modulators are either in pre-clinical or
clinical trials for a variety ischemic diseases and cancers 53. Therefore the present study
provides important implications for using HIF modulators as therapeutic modalities and
suggests that caution should be exercised in the long-term use of these compounds in patients.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Vhl, von Hippel-Lindau tumor suppressor protein
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Figure 1. Colon Specific disruption of Vhl
(A) PCR diagnostic for Cre-mediated recombination of the Vhl allele in genomic DNA isolated
from VhlΔIE or VhlF/F mice. (B) qPCR analysis measuring Vhl mRNA expression in intestinal
epithelium from VhlΔIE or VhlF/F mice. (C) Western blot analysis measuring Hif-1α or
Hif-2α expression in colon epithelial cells isolated from VhlΔIE or VhlF/F mice. Expression was
normalized to HNF4α protein expression, and HCT116 cells treated with 1% O2 for 24 hours
served as positive control. (D) qPCR analysis of HIF target genes. (E) qPCR analysis measuring
Hif-1α mRNA expression in total RNA from colon epithelium from Hif1αΔIE or Hif1αF/F mice.
(F) qPCR analysis measuring Arnt expression in total RNA from colon epithelium from
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ArntΔIE or ArntF/F mice. For qPCR analysis the expression was normalized to β-actin and each
bar represents the mean value ± S.D. (†)= P<.01 compared to wild-type littermates.
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Figure 2. Pro-inflammatory gene expression in the Hif1α, Arnt or Vhl disrupted colon epithelium
(A) Representative H & E stained colon sections from wild-type littermates and Hif1αΔIE,
ArntΔIE, and VhlΔIE mice. (B) Representative H & E stained pro-inflammatory polyp from two
individual VhlΔIE mice (inset indicates higher magnification). (C) qPCR analysis of pro-
inflammatory mediators in the colon epithelium from wild type littermates and Hif1αΔIE,
ArntΔIE, and VhlΔIE mice.± S.D. (†)= P<.01 compared to vehicle treated wild-type mice.
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Figure 3. Clinical assessment of DSS-induced colitis in Hif1αΔIE, ArntΔIE, and VhlΔIE mice
(A) Rectal bleeding, diarrhea, and body weight changes following DSS-induction of colitis,
(B) colon length, (C) representative H & E stained colon sections and histology score. (D)
qPCR analysis of pro-inflammatory mediators in the colon epithelium from VhlF/F and
VhlΔIE mice treated with control H2O or 2.5% DSS H2O. Data represent the mean value ± S.D,
(†)= p < 0.01 compared to VhlF/F DSS treated mice.
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Figure 4. Colon-specific double-disruption of Vhl and Arnt
(A) qPCR analysis measuring Arnt and Vhl expression in total RNA from colon epithelium.
(B) Western blot analysis measuring Hif-1α, Hif-2α and Arnt expression in colon epithelial
cells. Expression was normalized to HNF4α protein expression. (C) qPCR analysis of
Hif-1α and Hif-2α in colon epithelium. (D) qPCR analysis of HIF target genes in colon
epithelium. For qPCR analysis the expression was normalized to β-actin and each bar represents
the mean value ± S.D.(†)= P<.01 compared to wild-type littermates.
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Figure 5. Pro-inflammatory gene expression in the double Vhl and Arnt disrupted colon epithelium
(A) Representative H & E stained colon sections. (B) qPCR analysis of pro-inflammatory
mediators in the colon epithelium. Expression was normalized to β-actin and each bar
represents the mean value ± S.D. (†)= P<.01 compared to wild-type littermates.
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Figure 6. Clinical assessment of DSS-induced colitis in the double Vhl and Arnt disrupted colon
epithelium
(A) Rectal bleeding, diarrhea, and body weight changes following DSS-induction of colitis,
(B) colon length, (C) representative H & E stained colon sections and histology score. (D)
Survival of VhlF/FArnt+/+, VhlΔIEArnt+/+, VhlF/FArntF/F, and VhlΔIEArntΔIE mice. Data
represent the mean value ± S.D, (†)= p < 0.01 compared to VhlF/F DSS treated mice.
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Figure 7. Pro-inflammatory gene expression in VhlF/F and VhlΔIE mice following nimesulide or
ISO-1 administration
(A) Western blot analysis for MIF expression in colon extracts. (B) MIF tautomerase activity
measured in colon extracts of VhlF/F and VhlΔIE mice treated with vehicle or 20mg/kg of ISO-1.
Data represent the mean value ± S.D, (†)= p < 0.01 compared to wild-type littermates. (C)
qPCR analysis of pro-inflammatory mediators in the colon epithelium from VhlF/F and
VhlΔIE mice treated with vehicle or 20mg/kg of ISO-1. Expression was normalized to β-actin
and each bar represents the mean value ± S.D. (†)= P<.01 compared to vehicle treated
VhlΔIE mice. (D) Rectal bleeding, diarrhea, body weight changes, and (E) colon length
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following DSS-induction of colitis. Data represent the mean value ± S.D, (*)= p < 0.01
compared to VhlF/F MIF treated mice and (†)= p < 0.01 compared to VhlΔIE MIF treated mice
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