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Abstract
We examined effects of manganese on the nervous system and innervation of lateral cilia of
Crassostrea virginica. While essential in trace amounts, tissue manganese accumulation is
neurotoxic, inducing Manganism, a Parkinson’s-like disease in humans. Lateral cilia of the gill of
C. virginica are controlled by a reciprocal serotonergic-dopaminergic innervation from their ganglia.
Oysters were incubated 3 days in the presence of up to 1 mM manganese, followed by superfusion
of the cerebral ganglia, visceral ganglia or gill with dopamine or serotonin. Beating rates of cilia
were measured by stroboscopic microscopy of isolated gill preparations or gill preparations with the
ipsilateral cerebral and/or visceral ganglia attached. Acute manganese treatments impaired the
dopaminergic, cilio-inhibitory system, while having no effect on the serotonergic, cilio-excitatory
system, which is in agreement with the proposed mechanism of manganese toxicity in humans.
Manganese treatments also decreased endogenous dopamine levels in the cerebral and visceral
ganglia, and gills, but not serotonin levels. We demonstrated that manganese disrupts the animal’s
dopaminergic system, and also that this preparation can be used to investigate mechanisms that
underlie manganese neurotoxcity. It also may serve as a model in pharmacological studies of drugs
to treat or prevent Manganism and other dopaminergic cell disorders.
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Introduction
Manganese is an element present in all animal tissues and required as an enzyme cofactor or
activator for numerous reactions of metabolism (Cotzias, 1958). While essential in trace
amounts, excessive manganese exposure can result in toxic accumulations in human brain
tissue and resulting extrapyramidal symptoms similar to those seen in patients with Idiopathic
Parkinson’s disease (Calne, et al., 1994; Aschner, 2000; Levy and Nassetta, 2003; Dobson, et
al., 2004). This Parkinson-like neurological condition first described in 1837 in two manganese
ore-crushing mill workers (Couper, 1837) has been referred to as Manganism (Mena, et al.,
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1967; Barbeau, 1984; Donaldson, 1987; Gorell, et al., 1999). Inhalation of manganese from
the atmosphere is believed to be the primary cause of manganese toxicity (Andersen, et al.,
1999). In addition to mining and manganese ore processing, high levels of airborne manganese
are possible in a number of other occupational settings, including welding, dry battery
manufacture, and use of certain organochemical fungicides like Maneb. (NAS, 1973; Meco,
et al., 1994; Reidy, et al., 1992; Iregren, 1999; Olanow, 2004). Most recently, questions are
being asked about the safety of ambient manganese in the general population and there is a
growing concern that chronic, low-level occupational or increased environmental exposure to
manganese may be a contributing factor in a variety of neurological conditions including the
high numbers of people diagnosed with Parkinson’s disease in the United States and elsewhere
(Mergler, 1999; Lucchini, et al., 1999; Davis, 1999; Kaiser, 2003; Levy and Nassetta, 2003;
Jankovic, 2005; Ostiguy, et al., 2006; Dorman, et al., 2006).

Although manganese toxicity has been recognized for some time, the primary mechanism
underlying its neurotoxic effects remains elusive. Clinically, Manganism resembles Idiopathic
Parkinson’s disease, a dopaminergic cell disorder. Symptoms common to both disorders
include gait imbalance, rigidity, tremors and bradykinesia (Mena, et al., 1967, 1970;
Rosenstock, et al., 1971; Huang, et al., 1989), suggesting a similar etiology of neuronal damage
in the substantia nigra with a resulting deficiency of the neurotransmitter dopamine for the
striatum. However, compared to Parkinson’s, there are some differentiating features seen with
Manganism including symmetry of effects, more prominent dystonia, a characteristic “cock
walk,” an intention rather than resting tremor, earlier behavioral and cognitive dysfunction,
difficulty turning, and a poor response to Levodopa (Barbeau, et al., 1976; Huang, et al,
1993, 1998; Calne, et al., 1994; Lu, et al., 1994; Koller, et al., 2004; Olanow, 2004; Jankovic,
2005; Cersosimo and Koller, 2006) suggesting different or more extensive damage in the basal
ganglia or to the dopaminergic system. Human and animal studies have shown that toxic
exposure to manganese results in metal accumulations in various areas of the basal ganglia and
dysfunction of cells of both the striatum and the globus pallidus (Eriksson, et al., 1992; Calne,
et al., 1994; Brenneman, et al., 1999; Nagatomo, et al., 1999; Newland, 1999; Pal, et al.,
1999; Baek, et al., 2003). Other studies have shown that manganese selectively targets
dopaminergic neurons in the human basal ganglia (Pal, et al., 1999; Olanow, 2004) and
decreases dopamine levels in the striatum (Mena, et al., 1970; Parenti, et al., 1986; Eriksson,
et al., 1987; Vescovi, et al., 1991; Sistrunk, et al., 2007). Considering the clinical similarities
between Manganism and Parkinson’s Disease, and the fact that manganese accumulates in
brain regions rich in dopaminergic neurons, it has long been suggested that manganese
neurotoxicity involves a disruption in dopaminergic neurotransmission (Neff, et al., 1969;
Hornykiewicz, 1972; Graham, 1984).

Bivalves and other marine invertebrates are often used in metal environmental toxicology
studies because their tissues readily accumulate trace metals to concentrations that are usually
much higher on a wet weight basis than what is present in the surrounding seawater (Rainbow,
1993; Phillips and Rainbow, 1993; Boening, 1999). Numerous reports have been made on the
bioaccumulation of various heavy metals in the eastern oyster, Crassostrea virginica, and other
oyster species (Capar and Yess, 1996; Bu-Olayan and Subrahmanyam, 1997; Scanes and
Roach, 1999; Abbe et al., 2000; Fang et al., 2001; Spooner et al., 2003; Rodney et al., 2006).
While concentrations of dissolved manganese in freshwaters, even that which is free of
anthropogenic sources, can range from 10 to >10 000 µg/L (Reimer, 1999), manganese
concentrations in open seawater tend to range from 0.4 to 10 µg/L (US EPA, 1984; Zeri et al.,
2000) and rarely rise to over 200 µg/L except in areas of severe hypoxia or coastal regions with
high river flows (Eaton, 1979). As an essential nutrient, manganese is actively assimilated and
utilized by both plants and animals and studies show significant bioaccumulation of manganese
by aquatic biota at lower trophic levels. (Folsom et al., 1963; Thompson et al., 1972; Bryan
and Hummerstone, 1973; Pentreath, 1973; Rai and Chandra, 1992). Our lab reported that C.
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virginica, incubated in the presence of MnCl2, readily accumulated manganese into its tissues
(Murray, et al., 2007). Despite its potential for bioaccumulation compared to other aquatic
metals, manganese is believed to be one of the least toxic and only a few published reports
exist on manganese toxicity in marine organisms. A 2004 IPCA report based upon available
toxicity data, suggest that effects of total manganese on marine species of phytoplankton,
invertebrates and fish have been observed in laboratory tests that range from a low of 1.5 mg/
L based upon a 5-d EC 50 for the marine diatom Ditylum brightwellii (Canterford and
Canterford, 1980) to a high of 300 mg/L based up a 7-d LC 50 for the adult clam, Mya
arenaria (Eisler, 1977). The only published study involving C. virginica reported manganese
toxicity at 16 mg/L based upon a 48 hr LC 50 for oyster embryos (Calabrese et al., 1973).
Although there is no current marine quality guideline for manganese, the IPCS (2004)
suggested a guidance value of 0.3 mg/L for the protection of 95% marine species with 50%
confidence.

In this study we sought to use C. virginica as a model to study the physiological effects of
manganese on a known dopaminergically innervated system. Dopamine, serotonin and other
biogenic amines are present in the nervous tissue and gill of C. virginica (Downer, et al,
2006). The innervation of the lateral ciliated cells in the gill by the nervous system of C.
virginica is by a cilio-excitatory serotonergic system and a cilio-inhibitory dopaminergic
system, schematically shown in Figure 1 (Carroll and Catapane, 2007). The anatomy of the
oyster showing the gill, cerebral ganglia and visceral ganglia is shown in Figure 2. Application
of serotonin to the cerebral ganglia, visceral ganglia or gill activates quiescent cilia and
increases their beating rates. Similar treatments with dopamine decrease the beating rates of
the cilia of the lateral cells of the gill and causes cilio-stasis. It is postulated that the animal’s
cerebral ganglia contain dopaminergic and serotonergic neurons, which synapse in the visceral
ganglia with a second set of dopaminergic and serotonergic neurons, which peripherally
innervate the gill via the branchial nerve. At each ganglion serotonin acts as an exciter of cilio-
excitatory circuits while dopamine acts as an exciter of cilio-inhibitory circuits. Within the gill,
the epithelial cells containing the lateral cilia have serotonin and dopamine receptors that when
activated increase or decrease the beating rates of the cilia, respectively.

The oyster, C. virginica provides a relatively simple nervous system with a serotonergic-
dopaminergic innervation component that directs an observable and measurable physiological
response, and may be useful in investigating the mechanisms that underlie both manganese
neurotoxicity and other dopaminergic cell disorders.

Materials and Methods
Oysters (Crassostrea virginica) were incubated in Instant Ocean® artificial seawater (ASW)
obtained from Aquarium Systems Inc. (Mentor, OH, USA). Dopamine, serotonin, 1-
octanesulfonic acid (sodium salt, SigmaUltra) and HPLC standards were obtained from Sigma-
Aldrich (St. Louis, MO, USA). All other reagents including manganese chloride (MnCl2 • 4
H2O, ASC grade) were obtained from Fisher Scientific (Pittsburgh, PA, USA).

Adult C. virginica of approximately 80 mm shell length were obtained from Frank M. Flower
and Sons Oyster Farm in Oyster Bay, NY, USA. They were maintained in the lab for up to two
weeks in temperature-regulated aquaria in ASW at 16 – 18°C, specific gravity of 1.024 ± 0.001,
salinity of 31.9 ppt, and pH of 7.2 ± 0.2. Each animal was tested for health prior to
experimentation by the resistance it offered to being opened. Animals that fully closed in
response to tactile stimulation and required at least moderate hand pressure to being opened
were used for the experiments. In order to ensure that each oyster would receive equal
manganese exposure during the experiment and not just close up, healthy specimens were
shucked by removing their right shell before being placed in individual temperature-controlled
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aerated containers of ASW for 3 days in the presence of up to 1.0 mM manganese. Control
animals were similarly prepared without exposure to added manganese. Both control and
experimentally treated animals tolerated the 3-day treatment well. Survival was excellent and
only animals with visible signs of heart pumping were used in subsequent experiments.

After 3 days, control and manganese-treated specimens were dissected and prepared for
microscopic observation of the beating of the cilia of the lateral ciliated cells of the gill
epithelium by removing the mantle and most of the internal organs from the gills and ganglia.
Cerebral ganglion preparations (CG preparations) were prepared by dissecting the animals so
that the gill with the ipsilateral branchial nerve, visceral ganglion, cerebrovisceral connective
and cerebral ganglion attached was positioned in an observation chamber containing ASW.
Visceral ganglion preparations (VG preparations) were prepared similarly except that the
ipsilateral cerebral ganglion was excised. The observation chambers had a plexiglass barrier
separating the cerebral ganglion (CG preparations) or visceral ganglion (VG preparations) from
the gill so that serotonin or dopamine could be specifically applied to either ganglion or gill
without leakage of the chemical to the other chambers (Catapane, et al., 1978). Isolated gill
preparations, devoid of any ganglia, were also prepared from control and manganese-treated
animals. Just prior to use serotonin was freshly dissolved in ASW, and dopamine was dissolved
in ASW containing 10 mg% ascorbic acid buffered with sodium bicarbonate, pH 7.2, to retard
dopamine oxidation as described by Malanga (1975). In order to observe lateral cilia beating,
gills were positioned so that the cilia of the medial gill lamina were viewed at 100-200X
magnification with an Olympus CK inverted microscope with transmitted stroboscopic light
from a Grass Instruments PS 22 Photo Stimulator. The activity of the lateral cilia was measured
by the method of Catapane, et al., (1978) by synchronizing the flashing rate of the stroboscope
with the beating rate of the cilia. Because the lateral cilia beat in a metachronal wave pattern
(Aiello and Sleigh, 1972) when synchronization is achieved the lateral cilial waves appear
motionless in a characteristic horse-shoe like configuration. At all multiple synchronizing rates
above the one corresponding to the true beating frequency, the wavelength of the beating cilia
will appear to be a fraction of the true wavelength. The beating rates of the lateral cilia are
expressed as beats/s ± sem. Statistical analysis comparing beating of lateral cilia of manganese
treated animals to the controls was determined by a two-way ANOVA.

Endogenous serotonin and dopamine levels were measured using High Performance Liquid
Chromatography with fluorescence detection based on the method of Fotopoulou and Ioannou
(2002). Animals were treated for three days with or without manganese in the same manner as
for the portion of the study on beating rates of the lateral cilia, after which time each animal’s
cerebral ganglia, visceral ganglia and gill tissue were excised and prepared for HPLC
measurements of amine levels. The tissues were homogenized with a Brinkman Polytron
homogenizer with Omni International disposable probe tips in 0.4 M HCl. They were
centrifuged at 12,000 g for 20 min, and then vacuum filtered through a 0.24 micron filter.
Sample (20 µL) was injected into a Beckman System Gold 126/168 HPLC system fitted with
a Phenomenex-Gemini (Torrance, CA, USA) 5µ C18 reverse phase, ion pairing column with
a guard column. The mobile phase was 50 mM acetate buffer (pH 4.7) containing 1-
octanesulfonic acid (1.1 mM) and EDTA (0.11 mM), mixed with methanol (85:15 v/v). All
reagents were HPLC grade. The flow rate was 2 mL/min in isocratic mode. A Jasco FP 2020
Plus Spectrofluorometer was used for detection of native fluorescence (280 nm excitation, 320
nm emission) and was fitted with a 16 µL flow cell. HPLC results are reported as ng/g wet
mass for gill and ng/ganglion for the ganglia. Statistical analysis comparing dopamine and
serotonin levels in gill and ganglia of manganese treated animals to the controls was determined
by a two-way ANOVA.
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Results
Manganese treatments (up to 1mM) had no effects on the actions of serotonin applications to
either the cerebral ganglia, visceral ganglia or isolated gill preps. In both control and
manganese-treated animals, serotonin additions (10−7 to 10−4 M) to isolated gill filaments
activated the lateral cilia and produced a dose dependent increase in the beating rates of the
cilia (Figure 3). Similar results were observed in both control and manganese-treated animals
when serotonin was applied to the ganglia of either CG preparations (Figure 4) or VG
preparation (Figure 5). In all cases, the dose dependent increases in the beating rates of the
cilia that occurred upon serotonin additions were not statistically different for the manganese-
treated animals as compared to controls.

While acute treatments with manganese had no effect on the oyster’s serotonergic, cilio-
excitatory system, there was noted impairment of the animal’s dopaminergic, cilio-inhibitory
system. Since the basal beating rate of the lateral cilia tended to be quiescent at the start of the
experiments, before testing for the cilio-inhibitory effects of applied dopamine to the cerebral
ganglia, visceral ganglia or gill preparations, gill tissue was bathed in 10−5 M serotonin to
activate the lateral cilia and allow it to achieve a steady beating rate of at least 15 beats/s. The
serotonin remained in the bath for the duration of the experiments. In control animals,
subsequent application of dopamine to isolated gill preparations (Figure 6) produced an
expected dose dependant decrease in the beating rates of the lateral cilia, with 10−4 M dopamine
causing almost complete cessation of beating. In contrast, gill preparations of manganese-
treated animals showed a statistically significant reduction in the inhibition of beating rates of
the lateral cilia in response to dopamine, with 0.5 mM manganese treatments producing the
most reduction of effect. Similar differences in the response of control and manganese-treated
animals to dopamine were obtained in experiments involving CG preparations (Figure 7) and
VG preparations (Figure 8). In control animals, application of dopamine to either the cerebral
or visceral ganglia caused the expected dose dependent reduction of lateral cilia beating rates,
while in manganese-treated animals, dopamine application to either the cerebral or visceral
ganglia was statistically less effective in reducing the beating rates of the cilia.

In other experiments, treating oysters for three days with 0.5 mM manganese resulted in
statistically significant decreases of dopamine levels in the cerebral ganglia, visceral ganglia
and gill of the animals (Figure 9, Figure 10) while not causing any significant change in
serotonin levels (Figure 11, Figure 12).

Discussion
The study shows that a 3-day treatment of C. virginica with manganese disrupted the oyster’s
dopaminergic, cilio-inhibitory mechanism, while not impairing the serotonergic cilio-
excitatory mechanism. The actions of exogenous dopamine on the activity of the lateral cilia
when applied to the cerebral ganglia, visceral ganglia or isolated gill were all reduced, and in
all cases higher dose manganese treatments (0.5 mM) produced greater disruption of the cilio-
inhibitory mechanism than lower dose treatments (0.05 mM.). In contrast, there was no
significant difference in the response of the cilia in manganese-treated animals, compared to
controls, when exogenous serotonin was applied to the cerebral ganglia, visceral ganglia or
gill. The study also shows that similar treatments results in lower endogenous dopamine, but
not serotonin levels, in the gill tissue, cerebral ganglia and visceral ganglia of manganese-
exposed animals compared to controls. Taken together, the results indicate the specificity of
manganese toxicity on the animal’s dopaminergic system.

The results indicate that the mechanism of action underlying manganese disruption of the cilio-
inhibitory response to dopamine is likely to be primarily post-synaptic, at least at the level of
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the gill, because direct application of dopamine to isolated gill preparations did not reduce the
beating rates of the cilia in manganese-treated animals as in did in untreated animals. While
manganese treatments did reduce endogenous dopamine levels at the gill, the fact that
subsequent applications of exogenous dopamine to gill preparations did not elicit a significant
decrease in the beating rates of the lateral cilia indicates that a reduction in terminal dopamine
release does not fully explain the lack of response of the lateral ciliated cells to dopamine in
manganese-treated oysters. It is possible that manganese treatments damaged dopamine
receptors on gill epithelium or disrupted the post-receptor signal transduction mechanism that
slows the beating of the lateral cilia. Similar post-synaptic dopaminergic impairment also may
be occurring at the cerebral and visceral ganglia. Besides the reduction in dopamine levels,
manganese treatments may have had other or additional effects on dopaminergic neurons in
the ganglia, including neuronal loss, decrease terminal release of dopamine or defective
dopamine reuptake. While the actions of exogenous dopamine application to the cerebral or
visceral ganglia of manganese treated animals were impaired, bath applications of drugs to the
ganglia, which most likely contain heterogenous polysynaptic pathways, cannot finely discern
these mechanisms and the toxic actions of manganese within the ganglia are likely to be more
complex and involve multiple sites of action. While manganese treatments did reduce
endogenous dopamine levels in both ganglia, compared to controls, the HPLC results do not
allow us to determine whether this reduction was due to an actual loss of dopaminergic neurons
or simply neuronal dysfunction at the pre or post-synaptic level. The mechanism by which
manganese produces dopaminergic dysfunction in humans also is not fully resolved, but it is
postulated that it may be more related to downstream neuronal pathways than to deficits in
nigrostriatal functions (Calne, et al., 1994; Huang, et al.; 1998, Olanow, 2004). Still,
Manganism is associated with reductions in nigrostriatal dopamine levels, and in a recent study,
a progressive in vivo decrease in nigrostriatal dopamine release was correlated with subtle
motor deficits in manganese exposed non-human primates (Guilarte, et al., 2006).

While the cellular and molecular mechanism of manganese toxicity remains unclear, several
lines of evidence suggest that exposure to manganese or manganese-containing compounds
induces oxidative stress-mediated dopaminergic cell death (Anantharam, et al., 2002;
Stredrick, et al., 2004; Latchoumycandane, et al., 2005) which is in agreement with current
theories on oxidative stress as a mediator of neuronal death in Parkinson’s disease and other
neurodegenerative diseases (Fahn and Cohen, 1992; Albers and Beal, 2000; Schulz, et al,
2000; Dawson and Dawson, 2003; Emerit, et al., 2004). Oxidative stress is also suspected of
being a factor in 1-methyl-4-phenyl-1,2,3,6-tetrahyrdopyridine (MPTP)-induced Parkinson’s
disease because transgenic mice who overexpressed copper/zinc superoxide dismutase were
protected from the dopaminergic neuronal degeneration caused by MPTP exposure
(Przedborski, et al., 1992).

Dopaminergic neurons and dopamine-rich areas of the brain are particularly vulnerable to
oxidative stress, because the enzymatic and non-enzymatic metabolism of dopamine can
generate reactive oxygen species and various neurotoxic catecholamine metabolites such as 6-
hydroxydopamine (Halliwell, 1992; Lotharius and Brundin, 2002; Cantuti-Castelvetri, et al.,
2003; Dauer and Przedborski, 2003; Dawson and Dawson, 2003.) Even in bivalves, a previous
study on Mytilus edulis, showed that treatments with 6-hydroxydopamine caused a reduction
in the animal’s ganglionic levels of dopamine (Stefano, et al., 1976.) A recent study using
transgenic mice provided in vivo evidence that chronic exposure to unregulated cytosolic
dopamine alone was sufficient to cause neurodegeneration in striatal neurons and resulting
motor dysfunction (Chen, et al., 2008).

Manganese is a trace element in animal systems required for normal carbohydrate, lipid, amino
acid and protein metabolism, as well as a required cofactor for various antioxidant enzymes
such as mitochondrial superoxide dismutase (Cotzias, 1958; Takeda, 2003). However when in
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excess, manganese is cytotoxic and has been shown to raise levels of reactive oxygen species
(Ali, et al., 1995; Milatovic, et al., 2007), deplete glutathione (Shi and Dalal, 1990), impair
energy metabolism (Brouillet, et al., 1993), and cause oxidation of catecholamine and other
biological chemicals (Archibald and Tyree, 1987). The prooxidant character of excess
manganese and the fact that metal accumulates in dopamine-rich areas of the brain strongly
suggests that manganese toxicity is causing further oxidative stress on an already stressed
dopaminergic system (Galvani, et al., 1995; Sloot, et al., 1996; Aschner, 1997; Takeda,
2003; HaMai and Bondy, 2004).

The present study demonstrates that the gill/ganglia preparations of C. virginica can be used
to investigate the mechanism that underlies manganese neurotoxcity, and may also serve as a
model in the pharmacological study of drugs to treat or prevent Manganism and perhaps other
dopaminergic cell disorders.
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Figure 1. Schematic of Lateral Ciliary Innervation
Schematic representation of the innervation of the lateral ciliated cells of the gill of Crassostrea
virginica. Serotonin (HT), Dopamine (DA), E = excitatory neurotransmitter, I = inhibitory
neurotransmitter.
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Figure 2.
A - Photograph of a shucked oyster showing the gill, posterior adductor muscle, visceral ganglia
(VG) and the location of the cerebral ganglia (CG) under the palps. B - Closeup of the VG, C
- Closeup of the CG after reflecting the palps.
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Figure 3. Serotonin on Gill Preparations
The changes in beating rates (mean beats/s ± sem) of lateral gill cilia in response to serotonin
applied directly to excised gill of controls and animals treated with 0.5 and 1 mM Mn. Statistical
analysis was determined by a two-way ANOVA and showed no significant differences among
the treatments.
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Figure 4. Serotonin on CG Preparations
The changes in beating rates (mean beats/s) of lateral gill cilia in response to superfusion of
serotonin to the cerebral ganglia of CG Preparations of controls and animals treated with 0.5
and 1 mM Mn. Statistical analysis was determined by a two-way ANOVA and showed no
significant differences among the treatments. bn = branchial nerve, vg = visceral ganglion, cvc
= cerebrovisceral connective, cv = cerebral ganglion.
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Figure 5. Serotonin on VG Preaprations
The changes in beating rates (mean beats/s) of lateral gill cilia in response to superfusion of
serotonin to the visceral ganglia of VG Preparations of controls and animals treated with 0.5
and 1 mM Mn. Statistical analysis was determined by a two-way ANOVA and showed no
significant differences among the treatments.
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Figure 6. Dopamine on Gill Preperations
The changes in beating rates (mean beats/s ± sem) of lateral gill cilia in response to dopamine
applied directly to excised gill of controls and animals treated with 0.05 and 0.5 mM Mn. The
gill was first activated with 10−5 M serotonin before dopamine applications. Statistical analysis
was determined by a two-way ANOVA.
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Figure 7. Dopamine on CG Preparations
The changes in beating rates (mean beats/s ± sem) of lateral gill cilia in response to superfusion
of dopamine to the cerebral ganglia of CG Preparations of controls and animals treated with
0.05, and 0.5 mM Mn. The gill was first activated with 10−5 M serotonin before dopamine
applications. Statistical analysis was determined by a two-way ANOVA.
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Figure 8. Dopamine on VG Preperations
The changes in beating rates (mean beats/s ± sem) of lateral gill cilia in response to superfusion
of dopamine to the visceral ganglia of VG Preparations of controls and animals treated with
0.05, and 0.5 mM Mn. The gill was first activated with 10−5 M serotonin before dopamine
applications. Statistical analysis was determined by a two-way ANOVA.
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Figure 9. Ganglion Dopamine Levels
Endogenous dopamine levels (mean ± sem) in the cerebral ganglia (CG) and visceral ganglia
(VG) of animals treated for 3 days with 0.5 mM manganese. Statistical analysis was determined
by a two-way ANOVA.
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Figure 10. Gill Dopamine Levels
Endogenous dopamine levels (mean ± sem) in the gill of animals treated for 3 days with 0.5
mM manganese. Statistical analysis was determined by a two-way ANOVA.
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Figure 11. Ganglion Serotonin Levels
Endogenous serotonin levels (mean ± sem) in the cerebral ganglia (CG) and visceral ganglia
(VG) of animals treated for 3 days with 0.5 mM manganese. Statistical analysis was determined
by a two-way ANOVA and showed no significant differences between the treated and untreated
animals.
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Figure 12. Gill Serotonin Levels
Endogenous serotonin levels (mean ± sem) in the gill of animals treated for 3 days with 0.5
mM manganese. Statistical analysis was determined by a two-way ANOVA and showed no
significant differences between the treated and untreated animals.
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