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ABSTRACT

We used microarrays and a previously established linkage map to localize the genetic determinants of brain
gene expression for a backcross family of lake whitefish species pairs (Coregonus sp.). Our goals were to
elucidate the genomic distribution and sex specificity of brain expression QTL (eQTL) and to determine the
extent to which genes controlling transcriptional variation may underlie adaptive divergence in the recently
evolved dwarf (limnetic) and normal (benthic) whitefish. We observed a sex bias in transcriptional genetic
architecture, with more eQTL observed in males, as well as divergence in genome location of eQTL between
the sexes. Hotspots of nonrandom aggregations of up to 32 eQTL in one location were observed. We
identified candidate genes for species pair divergence involved with energetic metabolism, protein synthesis,
and neural development on the basis of colocalization of eQTL for these genes with eight previously
identified adaptive phenotypic QTL and four previously identified outlier loci from a genome scan in natural
populations. Eighty-eight percent of eQTL-phenotypic QTL colocalization involved growth rate and
condition factor QTL, two traits central to adaptive divergence between whitefish species pairs. Hotspots
colocalized with phenotypic QTL in several cases, revealing possible locations where master regulatory
genes, such as a zinc-finger protein in one case, control gene expression directly related to adaptive
phenotypic divergence. We observed little evidence of colocalization of brain eQTL with behavioral QTL,
which provides insight into the genes identified by behavioral QTL studies. These results extend to the
transcriptome level previous work illustrating that selection has shaped recent parallel divergence between
dwarf and normal lake whitefish species pairs and that metabolic, more than morphological, differences
appear to play a key role in this divergence.

UNDERSTANDING the genetic basis of adaptation is
a central goal of evolutionary biology (Orr and

Smith 1998; Orr 2005a). Populations that diverge to
exploit alternative ecological resources are well suited
for examining the genetic basis of adaptive evolutionary
change (Skúlason and Smith 1995; Ayala and Fitch

1997; Howard 1998). Reduced competition and distinct
niches have created conditions where directional
selection has led to speciation, particularly in temperate
northern lakes (Robinson and Schluter 2000; Landry

et al. 2007). A forward genetic approach (from pheno-
type to genotype) has been used in these systems to
elucidate the genetic basis of adaptive phenotypes (e.g.,
Foster and Baker 2004). Under this approach, QTL
studies have been used to understand the genetic
architecture of adaptive traits by examining the number,
magnitude, and direction of underlying loci (Peichel

et al. 2001; Rogers and Bernatchez 2007). Genome
scans involving loci associated with QTL and a large
number of loci randomly distributed throughout the
genome have then been used to test adaptive hypotheses
regarding QTL in the divergent populations (Rogers

and Bernatchez 2007).
The genetics of global gene expression, and particu-

larly the analysis of the genetic architecture of transcri-
ptome variation, offers to further our understanding of
the mechanistic basis of adaptive divergence (Rockman

and Kruglyak 2006; Roff 2007). Expression QTL
(eQTL) studies treat transcript abundance as a quanti-
tative trait and apply traditional QTL mapping techni-
ques to localize genetic determinants of gene
expression. To date, eQTL studies have focused on
model organisms (Brem et al. 2002; Schadt et al. 2003;
Morley et al. 2004; Bystrykh et al. 2005; Chesler et al.
2005; Hubner et al. 2005; Li et al. 2006; Shi et al. 2007;
West et al. 2007), with few applications to non-model
organisms (but see Kirst et al. 2005). In addition to
insights gained on the number, magnitude, direction,
and genome distribution of loci underlying transcrip-
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tion, several studies have compared genomic eQTL
locations with traditional organismal-level phenotypic
QTL (hereafter phenotypic QTL) to locate candidate
genes underlying these traits (Schadt et al. 2003;
Bystrykh et al. 2005; Chesler et al. 2005; Hubner

et al. 2005; Wentzell et al. 2007). This approach falls
within the emerging field of phenomics, defined as the
study of the nature of phenotypes and how they are
determined, particularly when studied in relation to the
set of all genes (genomics) or all proteins (proteomics).
In an evolutionary context, this approach provides a
powerful, yet untested, framework for examining tran-
scriptional underpinnings of population divergence
and how selection shapes the phenome (the complete
phenotypic representation of a species; Freimer and
Sabatti 2003).

Analysis of the genetic architecture of the brain
transcriptome in systems undergoing adaptive diver-
gence not only can identify genes involved in adaptive
evolution but also can help to elucidate the role of
behavior in adaptive radiation. A mechanistic link
between gene expression in the brain and behavior is
well supported (Bucan and Abel 2002; Rankin et al.
2002; Robinson et al. 2005; Toth and Robinson 2007).
While transcript abundance is not always predictive of
protein abundance and some differences in gene ex-
pression are a consequence, not a cause, of a behavioral
change, as a first approximation, it is reasonable to
assume that neural transcriptome variation is directly or
indirectly associated with behavioral differences (Aubin-
Horth et al. 2005a, 2007; Robinson et al. 2005). Thus,
studies of genetic architecture of the brain transcrip-
tome in systems where populations are adaptively di-
verging can be used not only to test hypotheses related
to the effects of selection on the transcriptome but also
to reveal candidate genes and the genetic basis of
behaviors important for adaptive radiation.

eQTL analyses can also be used to understand differ-
ences between sexes in the genetic architecture of
transcription regulation, an aspect of adaptive popula-
tion divergence that has rarely been addressed. Changes
in sex-biased gene expression are likely to be a major
contributor to adaptive phenotypic divergence between
species (Ellegren and Parsch 2007). Sex-biased gene
expression is widespread (Ellegren and Parsch 2007)
and there is growing evidence for adaptive evolution of
sex-biased genes not only at the level of coding sequence,
but also at the level of gene expression (Meiklejohn

et al. 2003; Khaitovich et al. 2005). eQTL analyses
provide an opportunity to compare the genome distri-
bution of the genetic determinants of gene expression
between sexes in particular tissues, thus adding to our
understanding of the genetic underpinnings of adap-
tive evolutionary change.

Sympatric dwarf (limnetic) and normal (benthic)
species pairs of the lake whitefish (Coregonus sp.)
provide a case of recent adaptive radiation that is well

suited for investigating the genetic architecture of gene
transcription. Geographic isolation during the Pleisto-
cene led to genetic divergence between whitefish
populations inhabiting distinct glacial refugia (Ber-

natchez and Dodson 1990; Pigeon et al. 1997; Lu et al.
2001). Secondary contact of these evolutionary lineages
subsequently occurred �12,000 YBP (years before pre-
sent) within at least six lakes in northeastern North
America. Both ecological opportunity and character
displacement have contributed to the evolution of a
limnetic dwarf species, which has diverged in sympatry
from the ancestral benthic normal species (Ber-

natchez 2004; Landry et al. 2007). Adaptive trait
differences between dwarf and normal whitefish are sup-
ported by genetically based phenotype–environment
associations for behavior (Rogers et al. 2002), growth
(Trudel et al. 2001; Rogers and Bernatchez 2005),
morphology (Lu and Bernatchez 1999; Bernatchez

2004), and gene expression (Derome et al. 2006; St-Cyr

et al. 2008). The dwarf whitefish has a higher metabolic
rate, partly associated with the cost of more active swim-
ming behavior (higher position in water column,
direction changes, burst swimming), and a lower bio-
energetic conversion efficiency (growth rate/consump-
tion rate ratio), associated with slower growth and
younger age at sexual maturity (Trudel et al. 2001)
when compared to normal whitefish (Rogers et al. 2002;
Rogers and Bernatchez 2007). Rogers et al. (2007)
and Rogers and Bernatchez (2007) used linkage
mapping to document the number and effects of QTL
involved in controlling these adaptive traits. In addition,
genome scans performed in natural populations pro-
vided evidence that directional selection is maintaining
genetic divergence between sympatric dwarf and normal
whitefish by restricting gene flow at more than half of
these adaptive QTL (Rogers and Bernatchez 2005,
2007). Finally, functional genomic studies performed in
these same natural populations on white muscle and
liver tissue provided strong indirect evidence for the
role of selection in the evolution of differential regula-
tion of genes involving a vast array of potentially adap-
tive physiological processes between dwarf and normal
whitefish (Derome and Bernatchez 2006; St-Cyr et al.
2008). These studies also provided a first mechanistic,
genomic basis for the observed trade-off in life-history
traits distinguishing dwarf and normal whitefish species
pairs, wherein enhanced survival via more active swim-
ming, necessary for increased foraging and predator
avoidance, incurs energetic costs that translate into
slower growth rate and reduced fecundity in dwarf
relative to normal whitefish. The weight of current
evidence indicates that accumulation of genetic differ-
ences during the allopatric phase of geographic iso-
lation as well as ecological divergence that subsequently
occurred in sympatry have led to reproductive isolation
between dwarf and normal whitefish species pairs (Lu

and Bernatchez 1998; Rogers and Bernatchez 2006).
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The objective of this study was to elucidate the
genomic distribution and sex specificity of brain eQTL
in dwarf and normal whitefish to test if neural eQTL
associate with adaptive phenotypic QTL and regions of
the genome under selection. We used individuals from
the same F1 hybrid 3 dwarf backcross (BC) used in
Rogers et al. (2007) to perform a eQTL analysis of brain
transcription. We tested (i) for an association between
previously identified phenotypic QTL (Rogers and
Bernatchez 2007) and neural eQTL to determine if
brain transcription underlies previously identified adap-
tive traits, (ii) for an association between outlier loci
from a genome scan and neural eQTL as a test for the
influence of selection on the neural transcriptome, and
(iii) for eQTL of transcripts that are also differentially
expressed between parental dwarf and normal progeny
(issued from grandparents of the backcross family and
raised under controlled conditions) to provide further
evidence that eQTL are associated with gene expression
divergence due to directional selection in whitefish.

MATERIALS AND METHODS

Experimental crosses: In 1996, dwarf whitefish from Témis-
couata Lake, Québec (Acadian glacial lineage), and normal
whitefish from Aylmer Lake, Québec (Atlantic glacial lineage),
were used to create pure (nonhybrid) dwarf, pure normal, and
F1 hybrid crosses (for details see Lu and Bernatchez 1998). In
1999, F2 pure individuals from each parental line were created
along with a backcross line generated by crossing an F1 hybrid
female with an F1 dwarf male (hybrid$ 3 dwarf#). We used these
BC progeny for eQTL analyses. BC individuals were euthanized
in January 2003 and stored at �80�. For the comparison of
gene expression in pure dwarf and normal whitefish, we sam-
pled 16 randomly selected same-aged F2 individuals of each
pure line [dwarf mean length (6SD)¼ 23.1 6 2.1 cm; normal
mean length (6SD) ¼ 28.2 6 2.4 cm] in September 2004. All
lines were maintained under the same environmental con-
ditions in the Laboratoire Régional des Sciences Aquatiques
animal facility at Université Laval.

Whitefish linkage map and phenotypic QTL analysis: The
detailed results pertaining to both the whitefish linkage map
and phenotypic QTL analyses are presented in Rogers et al.
(2007) and Rogers and Bernatchez (2007), respectively. In
brief, a total of 198 backcross progeny were genotyped at 389
AFLP and 23 microsatellite loci. Linkage groups and marker
orders were first determined in MAPMAKER/EXP (Lander

et al. 1987). The map consisted of a total of 37 sex-specific
linkage groups (LG)—of the 40 that exist in lake whitefish—
with a mean distance between markers of 17.5 cM (Rogers

et al. 2007). These linkage groups and marker orders showed a
high degree of colinearity, with .83% of the loci mapping to
the same location and linkage groups in a second, indepen-
dent hybrid backcross family (Rogers et al. 2007).

Nine phenotypes, including traits for swimming behavior
(directional changes, activity level, burst swimming, and depth
preference), growth, condition factor (a ratio of length to weight
in fish), the number of gill rakers (cartilaginous feeding sieves),
and two aspects of life history were analyzed for QTL. Between 1
and 7 significant QTL were detected for each of the nine traits for
a total of 24 QTL over all traits (Rogers and Bernatchez 2007).
Genetic differentiation of loci associated with these QTL has
been examined in four replicate natural species pairs to test for

effects of natural selection on loci closely associated with adaptive
phenotypic QTL (Rogers and Bernatchez 2007). A total of
440 polymorphic loci were examined in four population pairs
(Campbell and Bernatchez 2004). Of these 440 loci, 180
were homologous with our genetic map. These 180 loci were
distributed over 92% (34 of 37) of the linkage groups. Overall,
a total of 33 of these loci were associated with phenotypic QTL
and 19 loci exhibited significant evidence of reduced gene flow
(i.e., signatures of selection) between natural dwarf and normal
populations (Rogers and Bernatchez 2007). These results
provide a unique template to further test for eQTL segregating
within the same genetic map and to test for associations with
signatures of selection in nature.

RNA isolation, labeling, and hybridization: Individuals were
stored at �80� until RNA was extracted. Whole brains were
dissected and RNA was extracted following the Trizol reagent
protocol (Gibco BRL). RNA was quantified with a GeneQuant
spectrophotometer (Pharmacia). RNA quality and quantity
were also determined with a 2100 Bioanalyzer (Agilent).

We performed reverse transcriptase PCR with 15 mg of total
RNA per sample following the SuperScript II reverse tran-
scriptase protocol (Invitrogen Life Technologies). cDNA
fragments generated by this protocol were indirectly labeled
by first annealing dye-specific dendromers to the cDNA from
each individual. cDNA was pooled prior to the first hybridiza-
tion to a microarray chip. Cy3 and Alexa 647 dyes were then
hybridized to the dendromers in a second hybridization to the
microarray following the Array 50 kit protocol (Genisphere).

Transcriptome profiles were obtained with a 16,006 cDNA
microarray (version 2.0) developed for the Atlantic salmon
(Salmo salar) by the consortium for Genomic Research on
All Salmonids Project (cGRASP; Rise et al. 2004) and suc-
cessfully tested and applied to other salmonid species, in-
cluding Coregonus clupeaformis (Derome and Bernatchez

2006; Derome et al. 2006; Rise et al. 2007; St-Cyr et al. 2008).
Gene identification with the corresponding ESTsequence can
be found at http://web.uvic.ca/cbr/grasp/.

We inferred transcript levels by quantifying fluorescence
levels with a ScanArray Express scanner (Packard Bioscience).
Spot location and quantification were performed with the
QuantArray (Perkin Elmer) software. We used the adaptive
circle spot quantification method, which calculates the mean
intensity value for each spot. Aberrant spot signals were
removed before analysis. We estimated values of removed
spots with the ‘‘row average imputer’’ function implemented
in SAM software (Tusher et al. 2001). Genes considered
significantly expressed had mean intensity for both dyes
greater than the mean intensities of the empty spot controls
plus 2.5 3 SD (Williams et al. 2006). Genes below this
threshold were removed from further analysis. The raw data
set is available on the Gene Expression Omnibus website
(http://www.ncbi.nlm.nih.gov/geo/) (accession GSE12068).

Experimental design and statistical analyses: For the
comparison of gene expression between parental lines, we
used a paired design (Churchill 2002) to hybridize reverse-
transcribed RNA from a randomly chosen group of eight fish
of each dwarf and normal line. Potential bias associated with
variation in fluorophore intensity was minimized by swapping
the Cy3 and Alexa 647 dyes (Churchill 2002). Raw values of
all ‘‘expressed’’ transcripts were first log2 transformed, nor-
malized with the rlowess regional correction, and subse-
quently analyzed with a mixed analysis of variance (ANOVA)
model in R/MAANOVA (Wu et al. 2003). In this model, sample
and dye were fixed effects and array was a random effect. We
used the variety-by-gene term (VG) in the model of Cui and
Churchill (2003) to capture variation in expression level of
each gene across individuals and to obtain mean estimates of
expression levels for each parental line. A permutation-based
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F-test (F3) was performed with 1000 permutations to test for
species pair-specific differences in gene expression.

For backcross progeny used in eQTL mapping, we used a
loop design (Churchill 2002) to maximize the number of
sampled meioses while technically replicating each sample
with each of the two dyes (Cy3 and Alexa 647). The loop design
allows for an efficient balance between analyzing a large
number of individuals while still allowing technical replication
(Kirst et al. 2005). Again, raw values of all expressed tran-
scripts were log2 transformed, normalized with the rlowess
regional correction, and analyzed with a mixed ANOVA model
in R/MAANOVA (Wu et al. 2003). Sample and dye were again
fixed effects and array was a random effect. The variety-by-gene
term (VG) in the model of Cui and Churchill (2003) was
used to capture variation in expression level of each gene
across individuals for subsequent QTL analyses. After re-
moving negative controls and, due to technical inconsisten-
cies, data from the last subarray (1444 transcripts from the
12th meta-row on each microarray), we examined gene
expression among BC progeny for a total of 14,968 transcripts.

As part of our first objective, we created sex-specific subsets
of the BC expression data to test for differences in eQTL
effects between males and females. BC fish were sexually
mature when sampled, and consequently expression differ-
ences and resulting eQTL observed in the combined BC data
set could have been influenced by sex. We created female-only
(N¼ 32) and male-only (N¼ 25) subsets of the expression data
to test for a sex bias of eQTL. With the same mixed ANOVA
model in R/MAANOVA (Wu et al. 2003) as described above,
we performed a permutation-based F-test (F3) with 1000
permutations to test for sex-specific differences in gene
expression. We extracted mean variety-by-gene terms (VGs)
for each sex for subsequent eQTL analyses (female-only and
male-only data sets).

eQTL detection: Gene expression values were used as the
phenotypes along with the linkage map to perform a genome-
wide QTL detection scan for each transcript with the UNIX
version of QTL Cartographer (Basten et al. 2002). This
analysis was performed separately on the combined, female-
only, and male-only data sets. We used the Kosambi map
function because of the effects of crossover interference that
occurs in salmonids (Rogers and Bernatchez 2007). We
used interval mapping (IM; model 3 of the Zmapqtl module)
for QTL detection. Likelihood-ratio (LR) profiles [�2ln(L0/
L1)] were generated for each transcript at every 2-cM interval
of the hybrid$ 3 dwarf# map with a window size of 10 cM.
Three empirical thresholds for genomewide type I error rates
(0.1, 0.05, and 0.01) were determined for all eQTL that we
significantly expressed by recording the 10th, 50th, and 100th
ranked LR of 1000 random permutations. We developed a
PYTHON script for the UNIX version of QTL cartographer to
automatically run iterations among traits. This script requires
a user-defined parameter file containing the list of traits to be
analyzed, the number of iterations, the number of iterations
for each trait (here 1000), and the percentile values to be
sampled (here 90th, 95th, and 99th). The PYTHON script
records the parameter values and calls the different QTL
cartographer programs, including Rmap (reads the map),
Rcross (reads the cross), and Zmapqtl (runs an association
analysis between traits and markers). For each trait (tran-
script), both during and following each iteration, a function
reads the output from Zmapqtl and records the GlobalMax
values at each desired fixed percentile. The script is available
from the authors upon request.

To visualize the genomic distribution of eQTL associations,
we divided the genome into 17.6-cM bins, corresponding to
the average distance between markers for male and female
maps (Rogers et al. 2007), resulting in a total of 366 bins. We

assumed a Poisson distribution to calculate the probability of
observing a given number of significant eQTL within a bin,
following Brem et al. (2002). The mean of the Poisson
distribution for each data set was estimated as 366 bins/
number of eQTL linkages at a genomewide a ¼ 0.05.

Transcript annotations correspond to EST library annota-
tions of Rise et al. (2004), with updates available on the
cGRASP web page: http://web.uvic.ca/cbr/grasp/. Significant
eQTL were assigned to biological process categories with the
AMIGO browser of Geneontology (http://www.geneontology.
org), the KEGG PATHWAY database (http://www.genome.
jp/kegg/pathway.html), and the UniProt database (http://
www.expasy.uniprot.org/), along with additional literature
searches. For the same subset of transcripts showing signifi-
cant linkages, transcripts classified by Rise et al. (2004) as
unknown were submitted to BLAST nucleotide and translated
protein searches to determine if new gene identifications were
possible. Some annotations by Rise et al. (2004) appeared to be
in error due to repetitive regions within clones. These tran-
scripts were reclassified as unknown.

Effects of sequence variation on microarray hybridization
dynamics: Cross-hybridization is known to potentially cause
problems for spotted cDNA microarrays because sequence
polymorphisms between strains or paralogous genes may
affect the signal for certain transcripts (Hubner et al. 2005).
In this study, we used a predominantly Salmo-based microarray
to assay gene expression for a member of Coregonus, because
the genera Salmo and Coregonus belong to the family
Salmonidae. However, we did not compare Salmo to Coregonus
transcripts; rather, we compared expression levels among
individuals from a backcross family of whitefish species pairs
that diverged ,12,000 YBP (Bernatchez and Dodson 1990).
Overall genetic differentiation between dwarf and normal
populations may be very low and driven only by ecological
selection pressures (Lu and Bernatchez 1999), and these
young species still exchange genes where they occur in sympatry
(Campbell and Bernatchez 2004). Even though they are
considered incipient species, differences in hybridization
dynamics due to sequence variation between dwarf and normal
whitefish transcripts might be on the order of magnitude of
what would be expected for closely related populations. Hence,
sequence divergence between different alleles is expected to be
small with respect to this study. Nevertheless, we used two
approaches to evaluate possible effects of sequence variation on
our microarray expression data.

First, we used quantitative real-time PCR to confirm micro-
array results for two brain transcripts (b-globin and a G-protein)
that were significantly differentially expressed between the pure
dwarf and normal parental lines ( J. St-Cyr, unpublished data).
cDNA from eight lake whitefish (four normal, four dwarfs) was
amplified using primers designed from transcripts on the
microarray. These whitefish sequences were used to design
TaqMan probes with Primer Express 2.0 (Applied Biosystems).
Target cDNAs were amplified in triplicate by real-time PCR with
an Applied Biosystems PRISM 7000 thermocycler (Perkin
Elmer). We normalized expression levels to 18S rRNA expres-
sion with the comparative CT method.

Second, we analyzed sequence polymorphism in dwarf and
normal whitefish for 68 transcripts for which we detected gene
expression with the salmon microarray. Thirty-six of these
transcripts had significant eQTL either in this study or in a
companion study of muscle eQTL in the same backcross family
(Derome et al. 2008). Sequence data were generated from
primers based on transcript sequences on the microarray and
these primers were used to amplify the corresponding genes
from genomic DNA. Initially, we verified for a subset of 10
genes that PCR amplification was possible from individual
samples of both dwarf and normal whitefish. Additional genes
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were amplified and sequenced from pooled genomic DNA
originating from multiple dwarf and normal populations of
whitefish with the goal of including as much sequence
variance as possible. Rare alleles may escape visual inspection
of the electropherograms of sequences from pooled ampli-
cons; however, high-frequency single nucleotide polymor-
phisms (SNPs) or other polymorphisms, which are of
interest with respect to this study, can be detected reliably.
We quantified the number of SNPs present in genomic DNA
among dwarf and normal whitefish for each of the 68 tran-
scripts. We also compared the distribution of SNPs for
transcripts with and without significant eQTL to test the
hypothesis that levels of polymorphism may differ between
both groups of transcripts. If sequence variation between dwarf
and normal whitefish were extensive, differential hybridiza-
tion dynamics could bias expression data and lead to false-
positive eQTL. More SNPs in transcripts with significant eQTL
would suggest that our eQTL methodology was sensitive to
expression artifacts caused by these SNPs. Alternatively, an
observation of few SNPs, particularly in the transcripts for
which we detected significant eQTL, would suggest a small
likelihood of biased expression data resulting from differen-
tial hybridization dynamics.

Our use of heterospecific microarrays could also lead to a
general downward bias in the total number of eQTL detected
in our analysis, because of a reduced efficiency of cross-
hybridization due to sequence divergence between whitefish
and salmon. Mean sequence divergence between C. clupeafor-
mis and S. salar is �13% on the basis of 16 mitochondrial and
nine nuclear genes (Crespi and Fulton 2004). However,
sequence divergence might be lower for transcripts on the
microarray than the genes used for phylogenetic inference. To
evaluate the potential effects of sequence divergence between
Coregonus and Salmo on hybridization dynamics, we com-
pared sequence divergence for 36 transcripts with significant
eQTL with S. salar sequences from the microarray.

Comparison of eQTL to phenotypic QTL: We used the
phenotypic data from Rogers and Bernatchez (2007) to
compare genomic locations of adaptive phenotypic QTL to
brain eQTL. To ensure concordance of map distances between
data sets, we used the same UNIX platform to reanalyze the
phenotypic data. We used the same IM mapping procedure as
for eQTL (Zmapqtl Module 3) to examine phenotypic QTL for
N ¼ 198 individuals. This analysis identified the same QTL as
Rogers and Bernatchez (2007) albeit with slightly different
map positions. Support units (2.0-LOD) based on most likely
positions of QTL (Broman 2001) were calculated for compar-
ison of overlap between phenotypic QTL and eQTL. We used
point estimates for the locations of eQTL.

We also divided the data from Rogers and Bernatchez

(2007) into female-only (N ¼ 68) and male-only (N ¼ 72)
groups to examine sex-specific phenotypic QTL for comparison
to sex-specific eQTL (combined N , 198 because sex was not
determined for all individuals). All observed phenotypic QTL
in the combined data set were present in each of the sex-specific
data sets and had similar LR profiles but often had lower LR
values, likely caused by smaller sample size or by sex-specific
expression affecting the heritability of the traits. As the
locations were the same, all QTL from the larger combined
phenotypic data set were used to compare with the distribution
of sex-specific eQTL.

Comparison of eQTL to outlier loci from genome scan:
Genome scans involve the analysis of many loci across the
genome to infer the role of selection on outlier loci exhibiting
extreme allele frequency divergence and have been important
for identifying regions of the genome involved in adaptive
evolutionary change (Luikart et al. 2003). We compared the
genomic location of brain eQTL to loci determined to be

outliers in a genome scan of natural lakes that contain
sympatric species pairs of lake whitefish (Campbell and
Bernatchez 2004). We used genetic map locations of the 19
outlier loci detected by Rogers and Bernatchez (2007).
Differentiation between dwarf and normal whitefish at these
loci significantly exceeded 95% confidence limits of simulated
FST values under a model of neutral evolution (Rogers and
Bernatchez 2007), suggesting that divergent natural selec-
tion is responsible for the extreme values. This selection
hypothesis was further supported by parallel patterns of
increased differentiation in more than one species pair for 3
of the outlier loci. These outliers were distributed throughout
the genome and since the same experimental individuals were
used to identify these outlier loci and in the present eQTL
analysis, colocalization between these loci and eQTL could be
determined with certainty. eQTL mapping to within 20 cM of
outlier AFLP loci were considered colocalized; this corre-
sponded to eQTL colocalizing with the same or immediately
adjacent marker on a given linkage group.

RESULTS

eQTL detection: For the comparison involving eight
individuals from each parental line, 1808 genes (12%)
were significantly expressed. Of these 1808 transcripts,
201 (11.1%) were significantly differentially expressed
(P , 0.05) between dwarf and normal lines raised in a
common environment. In the 57 BC progeny examined,
3563 transcripts (24%) were significantly expressed.
When BC individuals were segregated according to
sex, 306 of these 3563 transcripts (9%) were significantly
differentially expressed between males and females (P ,

0.05).
We tested for eQTL for all 3563 expressed transcripts,

as suggested by Brem et al. (2002) and Shadt et al.
(2003). With a permutation-based genomewide signifi-
cance of a¼ 0.05, eQTL were identified for 2, 2, and 3%
of the 3563 expressed genes in the combined, female-
only, and male-only data sets, respectively (Table 1). For
the subset of transcripts with significant eQTL, the
percentage of transcripts with one eQTL was 100% (72/
72), 91% (72/79), and 95% (93/98) for the combined,
female-only, and male-only data sets, respectively (sup-
plemental Table S1). For the female-only data set, six
transcripts had two eQTL and one transcript had five

TABLE 1

Significant eQTL detected for the combined, female-only,
and male-only analyses

Group N a , 0.10a a , 0.05 a , 0.01

Combined 57 100 72 31
Female only 32 102 79 24
Male only 25 164 98 32

a Empirical threshold for experiment-wide type I error rates
of 0.10, 0.05, and 0.01 were determined for each transcript by
recording the 10th-, 50th-, and 100th-ranked LR of 1000 ran-
dom permutations.
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eQTL, whereas for the male-only data set, five tran-
scripts had two eQTL. Median LR of significant eQTL
was 21.0 (range 19.0–119.8), 21.4 (range 19.1–39.8),
and 22.5 (range 19.0–51.2) for the combined, female-
only, and male-only data sets, respectively. Median
percentage of variation explained (PVE) was 48.1%
(range 28.8–92.8%), 64.7% (range 44.9–80.8%), and
70.2% (range 54.1–87.1%) for the combined, female-
only, and male-only data sets, respectively. Inflated PVE
values may be due to the Beavis effect, where small
sample size contributes to overestimates of QTL effect
sizes (Xu 2003).

The effect on transcript abundance associated with
the substitution of a normal whitefish allele (1, toward
the hybrid genotype) into a dwarf whitefish genetic
background (�, toward the paternal genotype) is
reflected by the direction of eQTL additive effects.
Additive effect values can therefore be interpreted as
the mean effect on transcription of the substitution of a
normal whitefish allele into a dwarf whitefish genetic
background. eQTL effects ranged from �1.3 to 1.6 in
the combined data set, from �1.3 to 1.9 in the female-
only data set, and from�0.9 to 1.5 in the male-only data
set (supplemental Table S1). Thus, allelic substitution
had up to an approximately twofold effect on transcript
abundance within our cross.

A sex bias in brain transcriptional genetic architec-
ture was also observed. More significant eQTL were
detected in the male-only (98) data set than in either the
combined (72) or female-only (79) data sets (x2 ¼ 4.36,
P ¼ 0.04; Table 1; supplemental Table S1). In addition,
there were few significant eQTL in common among the
three analyses (15, 2, and 1% between the combined
and female-only, combined and male-only, and female
and male-only, respectively), suggesting that each anal-
ysis detected different subsets of transcripts and that
pooling male and female data for the combined analysis
obscured sex-specific transcription signal.

Effects of sequence divergence on hybridization
dynamics: Results for the b-globin transcript were highly
concordant between the microarray and RT–PCR data for
differential expression between the parental strains (fold
changes of 1.67 and 1.56 for microarrays and RT–PCR,
respectively; supplemental Table S2). For the G-protein,

the observed fold changes were positive for both micro-
arrays and RT–PCR (fold changes of 1.96 and 1.01 for
microarrays and RT–PCR, respectively), but the difference
was not significant for RT–PCR (supplemental Table S2).

Sequence results for 68 transcripts on the microarray
provided evidence that the likelihood of biased expres-
sion data resulting from differential hybridization
dynamics between dwarf and normal transcripts should
be rare in our analysis. We observed minimal sequence
divergence between dwarf and normal transcripts. For
the 68 transcripts for which sequence was examined, a
total of 84 SNPs were observed for an average of 1.4
SNP/kb. The distribution of SNPs per transcript was
highly skewed, where the majority of transcripts (40/68;
59%) had zero SNPs and 90% (61/68) had three or
fewer. The mean number of SNPs per transcript was 1.2
(SD 2.4; range 0–13).

We also did not observe a tendency for transcripts for
which we detected significant eQTL to have greater
sequence variation than transcripts without eQTL, as
was the prediction under the hypothesis that sequence
variation could cause differential hybridization dynam-
ics that could then cause false-positive eQTL. The mean
number of SNPs for transcripts with significant eQTL
(N ¼ 36, mean 0.89, SD 1.5, range 0–6) did not sig-
nificantly differ from transcripts without eQTL (N¼ 32,
mean 1.6, SD 3.1, range 0–13; t43 ¼ 1.2, P ¼ 0.23). In
addition, we could not reject the null hypothesis that
the distributions of SNPs for transcripts with or without
eQTL were the same (Kolmogorov–Smirnov two-sample
test; P . 0.05). Results were the same if we standardized
the number of SNPs per transcript by the number of
base pairs sequenced (data not shown).

The average sequence divergence between the 36
transcripts with significant eQTL and the Salmo se-
quence on the microarray was 5.1%, which was much
lower than has been observed for genes used to recon-
struct phylogenetic relationships (�13% divergence)
possibly due to higher constraints on coding regions.
Therefore, the greater sequence similarity for tran-
scripts on the microarray should lessen any downward
bias on eQTL detection.

Genome distribution of eQTL: eQTL occurred
throughout the whitefish genome, but were not evenly

<
Figure 1.—Genome locations of significant eQTL (a ¼ 0.05), phenotypic QTL, and outlier AFLP loci from a genome scan.

Shown separately are (a) combined, (b) female-only, and (c) male-only data sets. Linkage group numbers are shown and succes-
sive linkage groups are separated by a vertical line. Numbers on the x-axis correspond to successively numbered genetic markers
on each linkage group and each interval on the x-axis corresponds to a 17.6-cM bin. Phenotypic QTL correspond to Rogers and
Bernatchez (2007) and are shown with 2.0-LOD intervals, represented by boxes. Phenotypic QTL are abbreviated as follows: A,
activity; B, burst swim; C, condition factor; De, depth preference; Di, directional swimming change; G, growth rate; Gr, gill raker
number; L, life history (age at maturity). Locations of outlier AFLP loci from a previous genome scan (Rogers and Bernatchez

2007) are shown with arrows. Shading of histograms, boxes, and arrows reflects colocalization with eQTL: histogram bars that
colocalize with either phenotypic QTL or outlier loci are solid; otherwise, they are shaded. Arrows (representing outlier loci)
that colocalize with eQTL are solid; otherwise, they are shaded. Similarly, phenotypic QTL and their 2.0-LOD interval boxes that
overlap with eQTL are solid and otherwise are shaded. The number of species pairs for which AFLP loci were outliers is not shown
(see Table 4 for those that colocalize with eQTL). Hotspots are defined as bins containing five or more eQTL and are shown
numbered successively within each of the analyses according to Table 2.
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distributed, as we observed concentrations of eQTL
clusters in specific regions (Figure 1). Assuming a Pois-
son distribution, the probability of observing five eQTL
in a given bin was ,0.0001 for each of the data sets.
Thus, we conservatively considered bins with five or
more eQTL as regulation hotspots. Hotspots were
assigned numbers for each of the data sets (Table 2;
Figure 1). We observed the greatest number of hotspots
in the female-only analysis (five). Concordance in
hotspot genomic location across data sets occurred
twice, once on LG 36f for the combined and female-
only analyses and again on LG 24f for the combined and
male-only analyses (Figure 1). For the female-only and
male-only data sets, hotspots occurred on the same
linkage group twice (Figure 1), but locations were not
concordant (Table 1; supplemental Table S3).

The additive effects of all or most of the eQTL in a
given hotspot tended to be in the same direction (Table
2). The mean value of additive effects of a hotspot was
indicative of the direction of absolute phenotypic effect
for the eQTL within a given hotspot (Table 2). The null
hypothesis of a 1:1 proportion of eQTL with positive and
negative additive effects could be rejected in all but one
case (female-only hotspot 4, LG 26m). For 8 of 12 (67%)
of the detected hotspots, the additive effects of all of the
eQTL were in the same direction (Table 2).

Comparison to phenotypic QTL: We compared
genome locations of previously identified phenotypic
QTL and eQTL to test if regulators of neural transcrip-
tion co-occur with loci underlying previously identified
adaptive traits. Of the nine instances of overlap, eight
(89%) involved QTL for growth rate and condition
factor (Table 3; Figure 1). For the combined data set,
there were three instances of colocalization between
previously identified QTL and neural eQTL, including
colocalization of a condition factor QTL and an eQTL
for the 60S ribosomal protein L35 on LG 6m and a
condition factor QTL and an eQTL for the histone H1x
transcript (putative biological process ¼ transcription
regulation) on LG 32m (Table 3). For the female-only
data set, there were three cases of colocalization bet-
ween phenotypic QTL and eQTL (Table 3; Figure 1).
Overlap occurred on LG 1m between QTL for both
condition factor and growth rate and eQTL of the 60S
ribosomal protein L10a and 40S ribosomal protein SA
transcripts. On LG 24f, a depth preference behavioral
QTL colocalized with female-only hotspot 3, where five
of seven (71%) of the eQTL were for transcripts
involved in protein synthesis (Table 3). Also occurring
in this location were eQTL for the SPARC precursor
(secreted protein acidic and rich in cysteine; putative
biological process¼ neural development) and troponin

TABLE 2

Characteristics of brain eQTL hotspots

Hotspota

No. of
transcriptsb

Mean additive
effectc

Mean
LRd

Mean
PVE (%)e

Proportion
same directionf

Linkage
groupg

Location
(cM)g

Combined data set
C1 5 �0.72 25.40 56.8 1 1m 316.8
C2 19 �0.49 21.73 42.3 0.95** 10f 18.5
C3 17 �0.77 25.08 71.7 0.94** 36f 106.1

Female data set
F1 5 0.74 20.38 70.1 1 10m 35.3
F2 6 1.00 25.58 62.5 1 12f 90.9
F3 8 0.54 22.71 63.9 1 24f 6.9
F4 6 0.03 21.75 67.0 0.67 26m 19.7
F5 14 �0.66 22.15 75.9 0.86* 36f 107.6

Male data set
M1 6 �0.75 21.96 64.7 1 2m 8.3
M2 8 �0.55 22.16 72.8 1 12m 180.8
M3 6 0.60 23.10 73.1 1 12f 58.0
M4 32 0.70 24.81 72.1 1 24f 125.6

a Hotspot identification code.
b Number of transcripts within a hotspot.
c Direction of mean effects indicates the overall direction of transcripts within a hotspot and is the direction

referred to in the ‘‘Proportion same direction’’ column.
d Mean likelihood ratio of transcripts within a hotspot.
e Mean and direction of additive effects of transcripts within a hotspot.
f A value of ‘‘1’’ indicates that the additive effects of all eQTL of a hotspot were in the same direction. A x2 test

was used to test for significant deviations from a 1:1 proportion of positive and negative effects within hotspots.
When the proportion in same direction is 1, the result is highly significant. *P , 0.01; **P , 0.001.

g Linkage groups and chromosomal locations are numbered following Rogers and Bernatchez (2007) and
Rogers et al. (2007).

154 A. R. Whiteley et al.



TABLE 3

Colocalization between brain eQTL and traditional phenotypic QTL

Trait with phenotypic
QTL/transcript with eQTLa

Biological
processb LGc

Location
(cM)d

2.0-LOD
unit of support

(cM)e LRf

Additive
effectg PVE (%)h

Combined
Condition factor 6m 117.6 82.8–139.6 14.9 (�) 7.9
CK991325 [GO] [O55142]

60S ribosomal protein L35a
Protein synthesis 6m 84.1 20.9 �0.50 32.2

CK990835 unknown Unknown 6m 92.1 20.0 �0.71 42.6
Growth rate 24f 98.8 57.5–136.0 12.6 (�) 6.7
CK990765 unknown Unknown 24f 122.0 20.9 �0.51 32.8
Condition factor 32m 67.5 0–121.8 12.4 (�) 7.7
CB492165 histone H1x Transcription regulation 32m 84.3 21.0 �0.36 36.6

Female only
Condition factor 1m 159.6 130.3–195.7 5.4 (�) 6.2
Growth rate 1m 159.6 132.3–185.9 11.1 (�) 10.3
CB491051 60S ribosomal

protein L10a
Protein synthesis 1m 185.9 22.9 0.43 74.4

CK990697 40S ribosomal protein SA Protein synthesis 1m 183.9 20.8 0.47 58.8
Depth 24f 16.0 4.0–37.2 15.9 (�) 19.5
Female-only hotspot 3 (N eQTL ¼ 8)
CA047024 [GO] [P62843] 40S

ribosomal protein S15
Protein synthesis 24f 6.0 24.2 0.59 65.9

CA061476 [GO] [P62830] 60S
ribosomal protein L23

Protein synthesis 24f 6.0 26.5 0.62 71.7

CA062534 predicted: Danio rerio
hypothetical LOC556254

Unknown 24f 10.0 21.4 0.37 64.1

CA043808 [GO] [Q9W0Y1] troponin
C-akin-1 protein

Neural development 24f 12.0 24.2 0.86 71.5

CB491051 [GO] [P53026] 60S
ribosomal protein L10a

Protein synthesis 24f 14.0 22.8 0.41 70.4

CA052515 [GO] [Q9CXW4] 60S
ribosomal protein L11

Protein synthesis 24f 21.2 19.4 0.69 61.2

CA058685 [GO] [O55142] 60S
ribosomal protein L35a

Protein synthesis 24f 21.2 19.3 0.66 9.7

CB498012 [GO] [P07214] SPARC
precursor

Neural development/
synaptic function
modulation

24f 25.2 19.4 0.57 68.9

Male only
Growth rate 8m 14.0 0.0–25.5 20.7 (1) 16.3
CA054575 unknown Unknown 8m 0.0 21.4 0.31 58.2
Growth rate 11f 70.4 53.6–88.4 13.9 (�) 7.4
CK990568 [GO] [P56565] protein

S100-A1
Neural plasticity 11f 70.4 22.3 �0.51 59.5

CB504209 [GO] [P56565] protein
S100-A1

Neural plasticity 11f 78.4 19.0 �0.39 73.5

Growth rate 24f 98.8 57.5–136.0 12.6 (�) 6.7
Male-only eQTL hotspot 4 (N

eQTL ¼ 32)
CB515219 [GO] [P41233]
ATP-binding cassette, subfamily A

Transport pump 24f 126.0 19.7 0.58 65.9

CA049433 [NT] [AF338763]
ferritin-H subunit

Iron metabolism 24f 126.0 20.1 0.77 67.1

CA064135 [GO] [Q8VDJ3] vigilin Unknown 24f 122.0 19.8 0.45 58.5
CA052164 [NT] [AJ716203]

Cyp19b-I gene for P450aromB-I
Neuroprotection 24f 126.0 27.6 0.66 75.8

CA044693 [NR] [AAH56725]
glutathione S-transferase, u-1

Neuroprotection 24f 126.0 25.1 0.47 72.9

CK990995 S. salar TNF-a-2 gene Immune system 24f 126.0 27.7 0.78 75.8

(continued )
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(putative biological process ¼ neural development;
Table 3; Figure 1). For the male-only data set, there
were three cases of overlap between phenotypic QTL
and eQTL, including colocalization of a growth rate
QTL and an eQTL for two transcripts that both code for
protein SP100-A1 (putative biological process ¼ neural
plasticity) on LG 11f and a growth rate QTL with male-
only hotspot 4 on LG 24f (Table 3; Figure 1). This
hotspot contained eQTL with putative biological pro-
cesses related to energetic metabolism, metal ion
sequestration, neural growth, and transcription regula-
tion, among others (Table 3).

Comparison to outlier loci from genome scan:
Colocalization of eQTL with previously identified out-
lier loci from a genome scan was used to test for the
influence of selection on the neural transcriptome.
Four of 19 outlier AFLP loci previously identified
colocalized with neural eQTL, 2 for the combined data
set and 1 for each of the female-only and male-only data
sets (Table 4; Figure 1). This colocalization involved
eQTL of seven different transcripts (Table 4). For the
combined data set, CATA073.7 colocalized with an
eQTL for the cytocrome c oxidase polypeptide 5A
transcript (putative biological process ¼ metabolism
and energy production) and eQTL for two ribosomal
transcripts (60S ribosomal protein L31 and 60S ribo-
somal protein L35a) on LG 6m. CAAG116.1 colocalized
with an eQTL for protein S100-A1 on LG 14f. For the
female-only data set, GGTG105.0 colocalized with eQTL

for two ribosomal transcripts (40S ribosomal protein SA
and 60S ribosomal protein L10a) on LG 1m. Finally, for
the male-only data set, CGTC060.7 colocalized with an
eQTL for the ATP synthase b-chain transcript (putative
biological process ¼ metabolism and energy produc-
tion) on LG 28m (Table 4).

Comparison to transcripts differentially expressed
between parental lines: Transcripts that are differen-
tially expressed between parental lines raised in a
common environment may have diverged due to di-
rectional selection. Thus, eQTL of such transcripts
become candidates for eQTL shaped by adaptive di-
vergence. For an eQTL genomewide a ¼ 0.05 and a
corresponding significance level of differential parental
line expression, we observed 2, 5, and 1 eQTL for
transcripts whose expression level differed between
parental lines for the combined, female-only, and
male-only analyses, respectively (Table 5). Relaxing the
error rate to P , 0.10 for tests of differential gene
expression, we observed 5, 10, and 4 eQTL for tran-
scripts that also differed significantly in expression-level
parental lines for the combined, female-only, and male-
only analyses, respectively. For the combined analyses,
transcripts included Acyl-CoA-binding protein (putative
biological process ¼ neural development), cytochrome
c oxidase subunit 3, and tubulin a-2 chain. For the
female-only data set, transcripts included cytochrome
c oxidase subunit 1, Acyl-CoA-binding protein, tubulin
a-2 chain, actin (putative biological process ¼ neural

TABLE 3

(Continued)

Trait with phenotypic
QTL/transcript with eQTLa

Biological
processb LGc

Location
(cM)d

2.0-LOD
unit of support

(cM)e LRf

Additive
effectg PVE (%)h

CA053291 solute carrier family
23 member 1

Transport protein 24f 128.0 28.7 0.83 80.6

CB497887 [GO] [Q99P72]
Reticulon 4 (neurite
outgrowth inhibitor)

Neural
development

24f 126.0 24.2 0.46 72.0

CB496947 [GO]
[Q08376] zinc-finger protein
161 (Zfp-161)

Transcription
regulation

24f 126.0 23.8 0.96 71.5

123 unknown transcriptsi Unknown 24f 122.0–128.0 25.1 0.70 71.9

a Transcripts names follow cGRASP (http://web.uvic.ca/cbr/grasp/; RISE et al. 2004). Phenotypic QTL are in italics, eQTL in
non-italic type. Hotspot numbers and details follow Table 2.

b Significant eQTL were assigned to biological process categories with the AMIGO browser of Geneontology (http://www.
geneontology.org), the KEGG PATHWAY database (http://www.genome.jp/kegg/pathway.html), and the UniProt database
(http://www.expasy.uniprot.org/), along with additional literature searches.

c LG refers to the linkage group within which phenotypic QTL and eQTL were detected and are numbered according to ROGERS

and BERNATCHEZ (2007) and ROGERS et al. (2007).
d Location refers to the mean chromosomal position, in centimorgans, of phenotypic QTL or eQTL.
e Reported for phenotypic QTL only.
f Likelihood ratio. For sex-specific phenotypic QTL, LR values correspond to values from sex-specific analyses.
g Additive effect, direction provided by (1) or (�) signs. Only the direction of additive effects is shown for phenotypic QTL

since scale differs for eQTL and values are not directly comparable.
h Percentage of variation explained.
i Mean LR, PVE, and additive effects of the 23 eQTL associated with unknown transcripts in male hotspot 4 are shown.
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development), and 40S ribosomal protein. For the
male-only data set, transcripts included protein S100-
A1 and 60s ribosomal protein L13A. This S100-A1
transcript (CK990568) also colocalized with a growth
factor QTL on LG 11f. Interestingly, the eQTL for all
three differentially expressed tubulin transcripts oc-
curred on LG 36f, implicating this linkage group with
divergent neural developmental processes between
dwarf and normal whitefish (Table 5).

DISCUSSION

The objective of this study was to elucidate the genetic
architecture of brain gene expression in diverging dwarf
and normal lake whitefish species pairs and to test for
colocalization of brain eQTL with phenotypic QTL
and loci exhibiting signatures of selection in natural
populations. Our results demonstrate that genetic un-
derpinnings of neural transcription colocalize with pre-
viously identified phenotypic QTL in some cases and
that signatures of selection are associated with neural
eQTL. In several cases, these colocalizing eQTL were
associated with transcripts that were also differentially
expressed between dwarf and normal parental lines,
providing further evidence for the adaptive significance
of these transcripts. We also observed a sex bias to brain
transcriptional genetic architecture, suggesting that dif-
ferences between sexes may be another important com-
ponent to adaptive divergence in whitefish.

Genetic architecture of transcription in whitefish:
The 11% of transcripts that we observed to be signifi-
cantly differentially expressed between parental (dwarf
and normal) lines reared in a common environment is
consistent with other eQTL studies to date (Gibson and
Weir 2005) and other studies of gene expression in
brain tissue of salmonids. For example, Aubin-Horth

et al. (2005a) found that�15% of brain transcripts were
significantly differently expressed in wild-caught salmon
of two alternative life histories, and Aubin-Horth et al.
(2005b) found 10.5% were significantly differently ex-
pressed in a comparison of salmon of alternative life
histories reared in either the wild or captivity.

We observed a small proportion of eQTL with
extremely high LR values, which is consistent with
previous eQTL analyses (e.g., Kirst et al. 2005). We also
observed many eQTL that explained a large amount of
transcriptional variation, up to 90%. Other studies have
commonly found eQTL that account for 25–50% of
transcriptional variation (Gibson and Weir 2005). The
distribution of PVE values that we observed, especially
in the sex-specific data sets, could be due to the Beavis
effect (Lynch and Walsh 1998; Gibson 2002). Thus,
absolute PVE values from this study must be interpreted
with caution, but nevertheless suggest that major-effect
eQTL may be common in whitefish.

The vast majority of the 3563 expressed transcripts
had zero significant eQTL, suggesting that the majority

of transcripts did not have additive genetic variation for
gene expression segregating in our backcross family.
However, low power due to the number backcross
progeny that we analyzed might be largely responsible
for this result. It is possible that we would have detected
eQTL for more transcripts had we used an F2 study
design or if a more dense linkage map were available.
Furthermore, the use of a Salmo-based microarray
might have caused a downward bias in the total number
of eQTL detected. However, we expect that this bias is
minimal due to the evidence that sequence divergence
between Coregonus and Salmo transcripts on the
microarray is only 5.1%, less than half of that observed
for genes used to construct phylogenetic relationships.

Our observation that 9% of transcripts were differen-
tially expressed between males and females indicates
moderate sex bias in brain gene expression in whitefish.
Previous studies of sex-biased gene expression have
varied widely, depending on the tissue analyzed, but up
to 57% of genes showed sex-biased expression in a study
of whole adult Drosophila melanogaster (Ranz et al. 2003;
Ellegren and Parsch 2007). In whitefish, a recent
eQTL analysis of muscle tissue that used the same
backcross individuals used in our study revealed that
21% of transcripts were differentially expressed between
males and females (Derome et al. 2008). In addition, our
observation of significantly more eQTL in males than in
either the female-only or combined data set provides
additional support for the results of Derome et al. (2008),
which observed divergence in the genetic architecture of
gene expression between sexes. Together, these studies
suggest that sex-biased genetic architecture of transcrip-
tion may be an important component of evolutionary
divergence in whitefish. It is noteworthy, however, that
the pattern observed in the brain was reversed to that
reported for muscle, where there were significantly more
eQTL in females than either the male-only or combined
data set. This indicates that differential patterns between
sexes may vary according to different tissues and functions.

We observed the greatest number of eQTL in the male-
only subset of the data, despite the fact that this subset
had the smallest sample size. Thus, it appears that low
power is not the cause of these results. By partitioning the
data set between sexes, we observed many different eQTL
that did not appear in the pooled analysis, which suggests
that the sex-specific analyses detected subsets of tran-
scripts that are differentially regulated in each sex. It is
likely that pooling male and female data for the
combined analysis obscured the sex-specific transcrip-
tion signal and, in turn, transcripts detected in the
combined data set were not influenced by sex. This leads
to the prediction that the combined analysis identified
eQTL that are not sex biased in expression, at least in
brain tissue. In addition, the lack of concordance
between males and females in genomic locations of
hotspots indicates that master regulators of transcription
may differ between sexes. Large differences in the
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internal environment of each sex, particularly with
hormone expression (Davies and Wilkinson 2006;
Ellegren and Parsch 2007), is one potential explana-
tion for the observed sex bias in eQTL associations.

Our RT–PCR results, where RT–PCR and microarrays
were concordant in one of two cases, suggest that our
eQTL data set may contain a significant proportion of
false positives. However, concordance between micro-
arrays and RT–PCR may not be particularly strong
in cases where individual variability is high and fold
change in transcription is relatively low, or where a
history of genome duplication has given rise to multiple
related genes with high sequence similarity (Harr et al.
2006; Morey et al. 2006). In the case of the G-protein
gene, it is possible that our RT–PCR primers amplified a
paralog or distinct member of the G-protein gene family
instead of the transcript for which expression data were
collected on the microarray. It is also noteworthy that
the percentage difference between microarray and RT–
PCR results was within the range from the one eQTL
study published thus far (of 25 studies) that has
attempted to validate eQTL results (Hubner et al.
2005). These authors observed percentage differences
between the RT–PCR and microarrays ranging from 0 to
233% (data from their supplemental Figure S1) and
concluded that RT–PCR had validated their microarray
data. In our case, the percentage differences that we
observed were 6% and 96%.

Our sequence data provided more compelling evi-
dence that sequence variation should not create bias in
our microarray expression results. Indeed, sequence
variation that might affect hybridization dynamics be-
tween dwarf and normal transcripts was minimal and
rare. Transcripts with significant eQTL did not differ in
the number of SNPs from transcripts without eQTL, nor
did the SNP distributions differ for transcripts with or
without eQTL. Together, these data suggest that it is
unlikely that differential hybridization dynamics owing
to sequence variation would affect more than a small
percentage of transcripts in our eQTL analysis.

Hotspots: Hotspots have emerged as an important
aspect of the genetic architecture of transcription
(Gibson and Weir 2005). eQTL hotspots may occur at
the same location as a regulatory factor that controls a
large set of genes or may represent gene-rich regions
(Kirst et al. 2005). We observed that most, if not all,
transcripts within hotspots had additive effects in the
same direction, with only one exception. These results
are similar to those found by Kirst et al. (2005) in a
study of eucalyptus. This concordance in the direction
of additive effects is consistent with a master regulatory
gene with a strong pleiotropic effect on transcription of
large suites of genes. Such master regulatory genes
could represent mutations of large effect related to gene
regulation, a form of early substitution of large effect
theoretically predicted during adaptive divergence

TABLE 4

Colocalization between brain eQTL and outlier loci from genome scan of natural populations

Outlier locus/transcript with eQTLa

Biological
processb LGb

Location
(cM)b LRb

Additive
effectb

PVE
(%)b

Combined
CATA073.7 (outlier in three populations) 6m 73.7
CB510673 [GO] [P12787] cytochrome c

oxidase polypeptide 5A
Metabolism/energy

production
6m 78.7 19.6 �0.39 39.3

CK990835 [GO] [P62900] 60S ribosomal
protein L31

Protein synthesis 6m 92.1 20.0 �0.71 42.6

CK991325 [GO] [O55142] 60S ribosomal
protein L35a

Protein synthesis 6m 84.1 20.9 �0.50 32.2

CAAG116.1 (outlier in one population) 14f 115.9
CK990473 [NR] [AAC28367]

protein S100-A1
Neural plasticity 14f 115.7 19.9 0.20 29.5

Female only
GGTG105.0 (outlier in one population) 1m 186.9
CK990697 [GO] [P14206] 40S ribosomal

protein SA
Protein synthesis 1m 183.9 20.8 0.47 58.8

CB491051 [GO] [P53026] 60S ribosomal
protein L10a

Protein synthesis 1m 185.9 22.9 0.43 74.4

Male only
CGTC060.7 (outlier in one population) 28m 57.9
CA062071 [GO] [P56480] ATP synthase

b-chain
Metabolism/energy

production
28m 54.6 20.1 0.69 60.8

a AFLP outlier loci from genome scan are in italics; the number of populations for which AFLP loci were outliers are in paren-
theses, and eQTL in non-italic type. Outlier loci and corresponding genome locations are from Rogers and Bernatchez (2007).

b See Table 3 legend for other columns.
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TABLE 5

Genes both differentially expressed between pure dwarf and normal parental lines (P , 0.10) and with significant
brain eQTL (a ¼ 0.05)

Transcript namea

Biological
processa

P-value of
differential
expressionb

D/N
common

environmentc LGa

Location
(cM)a LRa

Additive
effecta

PVE
(%)a

Combined
CB496981 [GO] [Q24320]

DNA-directed RNA
polymerases I, II,
and III subunit RPABC2

RNA
synthesis

0.015 0.76 28m 70.4 19.1 0.66 28.8

CA044952 [GO] [P42281]
Acyl-CoA-binding
protein homolog (ACBP)

Neural
development

0.017 1.53 2m 72.8 20.1 �0.54 40.2

CK991017 [GO] [P00417]
cytochrome c oxidase
subunit 3

Metabolism
and energy
production

0.063 0.87 10f 8.0 19.3 �0.79 37.9

CA047976 Wu:fc15g08
protein [D. rerio]

Unknown 0.064 1.25 36f 107.6 28.6 �1.23 78.3

CB492276 [GO] [P05213]
tubulin a-2 chain

Neural
development

0.072 0.90 36f 105.6 20.5 �0.77 74.0

Female only
CN442540 [GO] [P00399]

cytochrome c oxidase
subunit 1

Metabolism
and energy
production

0.0074 0.81 26m 19.7 19.7 �0.81 63.8

CA044952 [GO] [P42281]
Acyl-CoA-binding protein

homolog (ACBP)

Neural
development

0.017 1.53 2m 70.8 22.2 �0.71 65.8

CB498203 pleiotrophic
factor-a-2 precursor

Unknown 0.028 0.85 12m 28.2 22.5 �0.32 50.9

CB511393 unknownd Unknown 0.049 0.85 3f, 26m 18.0,
169.0

22.8,
23.4

�0.95,
�0.94

78.2,
77.4

CB496460 [NR] [AAO32675]
hyperosmotic glycine-rich
protein [S. salar]

Unknown 0.059 0.80 26m 20.0 22.7 �1.12 69.9

CA047976 Wu:fc15g08
protein [D. rerio]

Unknown 0.064 1.25 36f 107.6 22.2 �1.23 78.5

CB492276 [GO] [P05213]
tubulin a-2 chain
(a-tubulin 2) (a-tubulin
isotype M-a-2)

Neural
development

0.072 0.90 36f 107.6 23.1 �0.80 77.7

CB497444 [GO] [P68134]
Actin, a cardiac

Neural
development

0.078 1.30 12f 90.2 22.6 1.01 58.7

CB511927 [GO] [P68369]
tubulin a-chain

Neural
development

0.094 0.96 36f 107.6 25.7 �0.71 80.8

CB492855 [GO] [P62242]
40S ribosomal protein S8

Protein
synthesis

0.097 1.25 5f 93.9 19.4 0.65 58.8

Male only
CK990568 [GO] [P56565]

protein S100-A1
Neural

plasticity
0.030 1.29 11f 70.4 22.3 �0.51 59.5

CA047133 [GO] [P02089]
hemoglobin subunit b-1

Blood 0.063 0.85 21f 29.5 20.9 1.01 70.2

CB494514 [GO] [Q9VNE9]
60S ribosomal
protein L13A

Protein
synthesis

0.076 1.25 2m 8.0 21.2 �0.80 62.8

CK990921 unknown Unknown 0.083 1.23 17f 83.5 19.3 �0.87 61.7

a See Table 3 legend.
b Based on F-test implemented in R/MAANOVA and eight individuals of each pure parental line.
c Ratio of dwarf to normal mean expression values.
d Only transcript for which more than one eQTL was detected; parameter estimates for each of these eQTL are separated by a

comma.
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(Orr 2005b). These master regulatory genes may play
an important role in whitefish divergence, particularly
where hotspots colocalize with other phenotypic QTL
(see below). The concordance of directionality within
hotspots is also consistent with a history of directional
selection shaping transcriptional variation for all tran-
scripts within a hotspot, as suggested by Orr (1998) for
the direction of additive effects for QTL.

Overlap between phenotypic QTL and eQTL: Direct
comparison of the genomic distribution of eQTL and
traditional phenotypic QTL, lying within the emerging
field of phenomics, has been used as a powerful method
to bridge the gap between genotype and phenotype and
to generate lists of candidate genes with a potentially
large influence on organismal phenotypes (Schadt

et al. 2003; Bystrykh et al. 2005; Chesler et al. 2005;
Hubner et al. 2005; Wentzell et al. 2007). For example,
Hubner et al. (2005) compared physiological QTL with
eQTL from fat and kidney tissue of rats to identify cis-
and trans-acting eQTL that represent candidate genes
for traits related to hypertension.

We lack positional data for the transcripts for which
we detected eQTL, such that eQTL that we identified
could be either cis- or trans-acting. Cis-acting eQTL are
usually caused by sequence variation in the gene itself,
most likely in the gene’s regulatory region (Chesler

et al. 2005). Trans-acting eQTL represent loci that
influence expression of genes or transcripts remote
from the eQTL itself (Hubner et al. 2005). Cis-acting
eQTL are of particular interest as positional candidate
genes for phenotypic QTL, or in the case of overlap with
outlier loci in our study, candidates for loci under
selection (Hubner et al. 2005). Overlap of eQTL with
phenotypic QTL or with outlier loci suggests that these
loci could be involved with regulatory pathways that
mediate the organismal-level phenotypes of interest or
that components of a particular regulatory pathway may
be influenced by natural selection. However, positional
data will be required to determine cis- or trans-status of
the eQTL identified in this study.

All but one (89%) of the instances of overlap between
previously identified phenotypic QTL and brain eQTL
in our study involved growth rate and condition factor,
which rank among the most important phenotypic traits
differentiating dwarf and normal whitefish (Rogers and
Bernatchez 2007). eQTL of ribosomal protein genes
(both 40S and 60S) were associated with two of these
instances of overlap (on LG’s 1m and 6m). Ribosomal
proteins are integral components of the ribosome
where they stabilize rRNA structure and regulate trans-
location of mRNA and tRNA, both of which are essential
for optimal mRNA translation into protein (Melese and
Xue 1995; Salem et al. 2007). In much the same way that
RNA–DNA ratios are commonly used to estimate growth
and condition (Buckley et al. 1999), we hypothesize
that regulation of ribosomal protein genes is function-
ally related to growth rate and condition factor QTL

through increased protein biosynthesis and turnover
(Smith et al. 2000). The direction of additive effects
were consistent with this hypothesis in the case of
overlap on LG 1m in the female-only analysis, where
the substitution of the normal whitefish allele (the
species with greater growth rate) had a positive effect on
60S and 40S ribosomal protein expression. However,
the eQTL on LG 6m for another 60S ribosomal tran-
script had a negative additive effect on transcript abun-
dance in the combined analysis, implying that this gene
is upregulated in reduced growth rate dwarf whitefish.
An eQTL for the histone H1x gene also colocalized with
a condition factor QTL on LG 32m and, in this case, the
normal allele had a negative additive effect on transcript
abundance. This histone transcript may control gene
expression related to metabolic function, as histones
play an important role in gene expression regulation
through epigenetic modification of chromatin struc-
ture ( Jenuwein and Allis 2001). Finally, one eQTL for
each of two protein S100-A1 transcripts provided an
intriguing colocalization with a growth factor QTL in
the male-only data set on LG 8m. An S100-A gene is a
strong promoter of neurite outgrowth and has been
implicated in neuronal plasticity in rats (Kiryushko

et al. 2006). How gene regulation by histones and neural
plasticity caused by S100-A1 proteins may be related
to condition and growth and thus how they may be
involved in whitefish species pair divergence warrants
further investigation.

Overlap between eQTL hotspots and phenotypic QTL
provides a particularly strong case for a link between
transcriptional phenotype and genes underlying organ-
ismal phenotype. It is possible that one master regula-
tory gene influences the transcription of many other
genes and directly influences organismal phenotype at
these sites. Such colocalization occurred with the growth
rate QTL on LG 24f with male-only hotspot 4. This
hotspot contained eQTL for genes putatively involved
with transcription regulation, neuroprotection, neural
development, protein transport, iron metabolism, and
immune function. A candidate for a master regulatory
genes at this site is transcript CB496947, a zinc-finger
protein and the only transcript with eQTL in this
hotspot that functions in transcription regulation.
Zinc-finger proteins are one of the most common kinds
of transcription regulators (Luscombe et al. 2000) and
have been found to play important roles in develop-
mental regulatory networks (Simpson 2007). Mapping
evidence will be necessary to further test the role of this
zinc-finger transcript in regulating this hotspot. In
addition, the diverse functional roles of transcripts with
eQTL in this hotspot suggest that multiple regulators of
this hotspot may exist and that this zinc-finger transcript
may be one of several regulators.

Overall, our prediction that brain eQTL would coloc-
alize with genes underlying behavioral QTL was not well
supported, with the exception of the depth preference
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QTL on LG 24f and hotspot F3 in the female-only
analysis. This could be due to lack of power due to the
relatively small number of progeny used. Another
possibility is that previously identified behavioral QTL
may correspond to genes involved with integrated
metabolic phenotypes that result from behavioral differ-
ences instead of identifying genes directly involved with
the measured behavior. Colocalization between the
depth preference QTL of LG 24f and the female-only
hotspot F3 identified candidate genes that may directly
and indirectly influence behavior. Two genes with
colocalizing eQTL that might be directly related to
behavior are SPARC and troponin. SPARC is involved in
neural development through signaling that allows
neurons to end developmental migrations (Gongidi

et al. 2004). SPARC has also been proposed to modulate
synaptic functions and to be involved in higher cortical
functions in adult mammalian brains (Lively et al.
2007), making this an intriguing candidate for depth
preference behavior. Troponin is associated with actin
and tropomyosin in the actin scaffold of muscle tissue
(Roisen et al. 1983). In neurons, these molecules are
collectively associated with neural development and
growth (Schevzov et al. 1997; Aubin-Horth et al.
2005a), thus potentially providing a link between
troponin and behavioral differences between species
pairs.

Two linkage groups in particular appear to play an
important role in adaptive divergence between white-
fish species pairs. First, multiple lines of evidence point
to the importance of LG 24f. In this study, this linkage
group provided one of only two cases where we observed
concordance in eQTL–phenotypic QTL overlap across
data sets. It was also the only linkage group with
colocalization of eQTL with a behavioral QTL. Further,
the eQTL–phenotypic QTL colocalization in the male-
only analysis involved the hotspot with the greatest
number of eQTL. Rogers and Bernatchez (2007)
observed four phenotypic QTL on this linkage group in
addition to an AFLP outlier locus that colocalized with a
number of gill raker QTL. Further understanding of the
genetic underpinnings of the eQTL on this linkage
group (including those in hotspots) promises to shed
light on its evolutionary importance. Similarly, LG 36f
emerged as another highly important linkage group.
This linkage group contained hotspots in both the com-
bined and the female-only analyses, and 26% of the
transcripts significantly differentially expressed between
parental lines had eQTL there as well.

Overlap between eQTL and outlier loci from
genome scan: We compared overlap between brain
eQTL and outlier loci from a genome scan to test the
hypothesis that neural transcriptomes play a direct role
in adaptive trait divergence. The four observed cases of
colocalization provide initial evidence that directional
selection can shape neural transcriptomes. Of the seven
eQTL that colocalized with outlier loci, four were

associated with ribosomal transcripts, providing further
evidence that protein synthesis genes associated with
growth may be involved in adaptive divergence between
whitefish species pairs. An additional colocalizing eQTL
was associated with protein S100-A1, providing addi-
tional evidence that this putative neural plasticity gene
may be involved with whitefish divergence.

The two energetic metabolism transcripts that had
eQTL colocalizing with outlier AFLP loci provide
further evidence that divergence between whitefish is
related to metabolic function. Cytochrome c oxidase
was among the transcripts with eQTL in the genomic
region containing locus CATA073.7 on LG 6m. This
gene is a crucial mitochondrial enzyme that functions in
the final step of the respiratory chain by carrying elec-
trons from cytochrome c to molecular oxygen (Boekema

and Braun 2007) and could be particularly important
in high-energy-demanding brain tissue (Streck et al.
2007). Cytochrome c oxidase emerges as an important
metabolic candidate gene due to this colocalization, es-
pecially since CATA073.7 was an outlier in three
separate species pairs, providing strong evidence that
selection is responsible for elevated divergence at this
region of the genome (Rogers and Bernatchez 2007).
Furthermore, the negative direction of additive effects of
this eQTL were also consistent with the normal allele
leading to reduced transcript abundance since genes
associated with energy metabolism have been shown to
be generally overexpressed in dwarf whitefish. Another
energetic metabolism gene with an eQTL that colocal-
ized with an outlier locus was the ATP synthase b-chain
on LG 28m. ATP synthase is crucial to the mitochondrial
oxidative phosphorylation system in its role of catalysis
of ADP to produce ATP (Boekema and Braun 2007);
however, in this case the additive effects of this eQTL
were positive and thus were not in the direction pre-
dicted if normal whitefish alleles lead to a reduction in
energetic metabolism gene expression.

Differential expression between parental lines: Sev-
eral of the candidate transcripts above were also
differentially expressed between common environment
parental lines. Significant divergence in expression
between pure dwarf and normal whitefish reared in a
common environment is potentially due to adaptive and
historical genetic divergence between these species.
Thus, divergence in expression between parental forms
provides additional evidence that eQTL are highly
important in evolutionary diversification in whitefish,
especially when the same eQTL colocalize with pheno-
typic QTL or outlier AFLP loci. For example, the same
protein S100-A1 transcript (CK990568) that had an
eQTL that colocalized with the growth rate QTL on LG
11f in the male-only analysis was also differentially
expressed between parental lines. The eQTL that
colocalized in the combined analysis with outlier locus
CAAG116.1 on LG 14f was a different S100-A1 transcript
(CK990473). These two transcripts share only 46%
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sequence identity (data not shown) and thus may be
alternative forms of the S100 gene or may be duplicate
gene copies. Additionally, cytochrome c oxidase sub-
units 1 and 3 were significantly differentially expressed
between parental lines. While different from the cyto-
chrome oxidase transcript with an eQTL that colocal-
ized with an AFLP outlier locus, these results attest to
the general importance of cytochrome c oxidase genes
in whitefish adaptive evolution. Further work is needed
to disentangle issues related to functional role, gene
copy number, and genome locations of these genes.

Additional data from two lakes with naturally occur-
ring species pairs support some of the above conclu-
sions ( J. St-Cyr, unpublished data; populations
described in Derome and Bernatchez 2006; St-Cyr

et al. 2008). 40S ribosomal protein S15 and troponin,
two of the transcripts with eQTL that map to female-
only hotspot 3, the hotspot colocalizing with the depth
preference QTL, are also significantly differentially
expressed in one of the natural lakes investigated in
these studies. In addition, the same protein S-100-A1
transcript (CK990568) with eQTL that colocalize with a
growth rate QTL on LG 11f in the male analysis and that
is significantly differentially expressed in captive paren-
tal lines was also significantly differentially expressed in
one of these natural lakes, with greater expression in the
dwarf species in both the laboratory and the wild. Finally,
one of the cytochrome c oxidase genes (subunit 1) that
was differentially expressed between lab-reared parental
lines was also significantly differentially expressed in a
natural lake.

Conclusions: Analyses of the genetic architecture of
gene transcription in systems undergoing adaptive
divergence provide a powerful method for understand-
ing the link between genotype and phenotype and the
effects of natural selection on gene expression. To our
knowledge, this is the first report to integrate data from
traditional phenotypic QTL, genome scans in natural
populations, and eQTL in a study system undergoing
adaptive evolution. Genetic architecture of brain gene
expression in whitefish species pairs was divergent
between sexes. This study revealed candidates genes
for adaptive divergence of dwarf and normal whitefish
and evidence that natural selection may act on neural
transcription. The most important candidate genes
included multiple ribosomal protein genes, cytochrome
c oxidase, ATP synthase, and protein S100-A1. Hotspots
colocalized with previously identified phenotypic QTL
in several cases and in a sex-specific manner, revealing
possible locations where master regulatory genes, such
as a zinc-finger protein in one case, control gene
expression directly related to adaptive phenotypic di-
vergence. With one exception involving depth prefer-
ence, we observed little evidence of colocalization of
neural eQTL with behavioral QTL. Yet, colocalization of
brain eQTL with four previously identified outlier loci
from a genome scan demonstrated that the neural

transcriptome can be associated with signatures of
selection in natural populations. In addition, eQTL of
transcripts that were differentially expressed between
parental lines and colocalized with either phenotypic
QTL or outlier loci were especially promising candidate
genes. In future investigations, candidates that emerged
from this analysis should be sequenced to determine
genetic differentiation among natural populations, to
map the positions of these genes, and to further test for the
effects of directional selection on the genes themselves.
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