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ABSTRACT

The effect of directional selection on the fixation process of a single mutation that spreads in a multigene
family by gene conversion is investigated. A simple two-locus model with two alleles, A and a, is first
considered in a random-mating diploid population with size N. There are four haplotypes, AA, Aa, aA, and aa,
and selection works on the number of alleles A in a diplod (i ¼ 0, 1, 2, 3, 4). Because gene conversion is
allowed between the two loci, when the mutation rate is very low, either AA or aa will fix in the population
eventually. We consider a situation where a single mutant, A, arises in one locus when a is fixed in both loci.
Then, we derive the fixation probability analytically, and the fixation time is investigated by simulations. It is
found that gene conversion has an effect to increase the ‘‘effective’’ population size, so that weak selection
works more efficiently in a multigene family. With these results, we discuss the effect of gene conversion on
the rate of molecular evolution in a multigene family undergoing concerted evolution. We also argue about
the applicability of the theoretical results to models of multigene families with more than two loci.

THE evolutionary rate of a gene may be defined as the
rate of nucleotide substitutions in a certain time

period, say, per year or per generation (Zuckerkandl

and Pauling 1965; Jukes and Cantor 1969). Theoret-
ically, the rate is given by the product of the mutation rate
(m) and fixation probability (u). Under neutrality, it is
well known that, in a random-mating population with N
diploids, the neutral evolutionary rate is identical to the
mutation rate, because on average 2Nm mutations arise
in the population every generation and each will fix in
the population with probability u ¼ 1/2N. When selec-
tion is active, the fixation probability is given by

u1ð�pÞ ¼
1� e�4Ns �p

1� e�4Ns ; ð1Þ

where �p is the initial frequency of the mutant, that is,
1/2N (Kimura 1962).

Although the above theory is for a single-copy gene,
fixations of mutations also occur in genes that belong to
a multigene family. It is possible that a mutation spreads
over all member genes of a multigene family when they
undergo concerted evolution, a phenomenon that the
copy members evolve in a concerted manner by ex-
changing their DNA sequences (Ohta 1980; Dover

1982; Arnheim 1983). A typical observation of con-
certed evolution is that the nucleotide sequence di-
vergence between the copy members in the family is very
low because of frequent exchanges of genetic informa-

tion, while there is substantial divergence from the
orthologous family in other species. This means that
genetic variation within the family can ‘‘migrate’’ be-
tween different copies, and a certain allele eventually
becomes fixed in the species. The accumulation of such
fixations results in the difference between species.

The purpose of this article is to investigate the fixation
process of a mutation through the whole family mem-
bers via gene conversion. Gene conversion between copy
members should be the major mechanism to cause
concerted evolution of small multigene families (Ohta

1983a; Li 1997), while both gene conversion and un-
equal crossing over should be working simultaneously
in middle- and large-size families (Hillis et al. 1991;
Gangloff et al. 1996). This article focuses on the rate
of nucleotide substitutions (i.e., evolutionary rate) in
duplicated genes (or a small multigene family) that are
currently undergoing concerted evolution by gene
conversion. Figure 1 shows a typical gene tree of a pair
of duplicated genes in two species. It is supposed that the
duplication event predates the speciation event; there-
fore, the two duplicated genes are present in both
species. When concerted evolution is going on in the
gene pairs of both species, the sequence similarity
between the two duplicates should be low. Meanwhile,
the accumulation of nucleotide substitutions over time
makes a difference between the two species, which
results in fixed nucleotide differences between the two
species (open circles in Figure 1). When the mutant is
in a transient phase to fixation (or extinction), it could
appear as nucleotide variation between duplicated pairs
within the same species (shaded circles in Figure 1).
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Theoretical aspects of such variation within a family have
been extensively studied by Innan (2002, 2003a) and
Teshima and Innan (2004).

Although the process of interest is emphasized by
comparing the sequences between two different species
(Figure 1), each fixation event is a matter of population
genetics, that is, an event that occurs in a single
population. The process starts with an introduction of
a new mutation in one of the copy members in the
family. The fixation of the new allele in the whole family
is achieved when all individuals in the population have
the new allele at all loci. The process involves ‘‘migra-
tions’’ of alleles from one copy to another, and gene con-
version is the mechanism to cause interlocus migration.
To develop a solid mathematical framework of this com-
plicated fixation process, we use the diffusion method, a
classic mathematical approach in population genetics,
with a simple two-locus model. We here obtain analytical
results for the fixation probability of a mutation, and the
fixation time is investigated by simulations. Walsh

(1985) provided an analytical expression for the fixation
probability with the assumption of a low gene conversion
rate. Our diffusion treatment enables us to derive a
general formula that is applicable to any gene conver-
sion rate (see below for details).

THEORY

Consider a two-locus model in a random-mating
diploid population with size N. Only two alleles (A and
a) are allowed for the two loci in total, so that there are

four gametes (haplotypes), AA, Aa, aA, and aa, where the
two characters represent the allelic states at the first and
second loci. The model is essentially the same as that of
Innan (2002). Let x1, x2, x3, and x4 be the frequencies
of the four gametes, AA, Aa, aA, and aa, respectively.
Because x4 ¼ 1 – (x1 1 x2 1 x3), the behavior of the
frequencies of the four gametes can be described in a
three-dimensional diffusion process within K, where K¼
{0 # x1 # x1 1 x2 # x1 1 x2 1 x3 # 1}. Symmetrical gene
conversion occurs to homogenize the variation between
the two loci at rate c per generation; that is, Aa and aA
change to AA at rate c and to aa at the same rate. The
recombination rate between the two loci is denoted by r.
The population gene conversion and recombination
parameters are defined as C ¼ 4Nc and R ¼ 4Nr,
respectively.

The model involves selection that favors (or disfavors)
A to a. In this diploid system, we assume that selection
works on the number of the preferred alleles in each
diploid, so that the fitness of diploids with i A alleles (i¼
0, 1, 2, 3, 4) is given by

fi ¼ 1 1 si : ð2Þ

Under this framework, we are interested in the pro-
cess that allele A spreads in the population under our
two-locus system. For an intuitive understanding of the
process of interest, Figure 2 shows simulated behaviors
of the frequencies of the four haplotypes along the
fixation of allele A, given the initial state where haplo-
type aa (represented by the red parts in Figure 2) is fixed.
At time 0, a single haplotype aA (represented in green) is
introduced, and the trajectories of the frequencies of
the four haplotypes are simulated until allele A becomes
fixed in the population; that is, all individuals are
homozygotes of AA (represented in blue). To demon-
strate the point, A is assumed to be advantageous over a.
See the next section for details about the simulations.
Figure 2A is a single realization of the fixation process
of A when there is no recombination between the two
loci, and a relatively high gene conversion rate is assumed.
Along the increase of aA, gene conversion transfers
A from the second locus to the first locus, creating
the most advantageous haplotype, AA. Then, the pop-
ulation is completely replaced by A when AA is fixed.
The pattern is similar with frequent recombination
except that the process involves Aa that is produced by
recombination between AA and aa (Figure 2B). The
fixation process takes a much longer time when the gene
conversion rate is very low (Figure 2C). The fixations of
A at the two loci occur as two essentially independent
events: A is fixed first at the second locus and there is a
long waiting time for the second fixation at the first locus
because of a very low gene conversion rate. Walsh’s
(1985) theory is based on this situation of a weak-
conversion limit; he assumed that the fixation of A at
each locus occurs in a very short time, so that the process

Figure 1.—Gene tree of a pair duplicated genes from two
species. The two boxes represents the duplicated gene pair.
The gene pairs are present in the two species, because the du-
plication event predates the speciation event. The duplicated
gene pairs are still undergoing concerted evolution, so that
the resultant gene tree of the four genes should look as illus-
trated: the paralogous gene pair in each species is more
closely related than the orthologous pairs. The circles repre-
sent the mutations that occurred along the evolution of the
four genes since the speciation event. The open circles are
those fixed in each species, while the shaded ones are the var-
iation between duplicated copies.
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of the spread of A over all copy members can be handled
as a locus-by-locus process. Note that such a locus-by-
locus fixation assumption holds when there are more
than two loci. For example, in a three-locus model, the
fixation of A could occur locus by locus for a low gene
conversion rate as shown in Figure 2E. Meanwhile, when
the gene conversion rate is high, the fixation of A seems
to occur simultaneously in the three loci (Figure 2D). In
this article, we are interested in the general case, in-
cluding cases where the gene conversion rate is relatively
high so that the fixation of A at each locus and the
interlocus spread occur simultaneously. Therefore, any
value of the gene conversion rate can be applied to the
following derivations.

In our model, the expected frequencies of the four
haplotypes in the next generation (x91, x92, x93, x94) are
given by

x91 ¼ x1 1 M1 1 cðx2 1 x3Þ � rD ð3Þ
x92 ¼ x2 1 M2 � 2cx2 1 rD ð4Þ
x93 ¼ x3 1 M3 � 2cx3 1 rD ð5Þ
x94 ¼ x4 1 M4 1 cðx2 1 x3Þ � rD; ð6Þ

where D ¼ x1x4 – x2x3 and Mi is given by

M1 ¼ �2s1x1x4ðx2 1 x3Þ1 s2x1½x4ð1� 2x1Þ � ðx2 1 x3Þ2�
1 s3x1ð1� 2x1Þðx2 1 x3Þ1 s4x2

1ð1� x1Þ;

M2 ¼ s1x2x4½1� 2ðx2 1 x3Þ�1 s2x2½ðx2 1 x3Þð1� x2 � x3Þ � 2x1x4�
1 s3x1x2½1� 2ðx2 1 x3Þ� � s4x2

1 x2;

M3 ¼ s1x3x4½1� 2ðx2 1 x3Þ�1 s2x3½ðx2 1 x3Þð1� x2 � x3Þ � 2x1x4�
1 s3x1x3½1� 2ðx2 1 x3Þ� � s4x2

1 x3;

M4 ¼ s1x4ð1� 2x4Þðx2 1 x3Þ1 s2x4½x1ð1� 2x4Þ � ðx2 1 x3Þ2�
� 2s3x1x4ðx2 1 x3Þ � s4x2

1 x4:

The recursion equations are almost identical to those
used in Innan (2003b) except for the selection terms
(the last term in each equation). Therefore, the ex-
pected changes of the frequencies in a single generation
are given by

dx1 ¼ M1 1 cðx2 1 x3Þ � rD; ð7Þ
dx2 ¼ M2 � 2cx2 1 rD; ð8Þ
dx3 ¼ M3 � 2cx3 1 rD; ð9Þ
dx4 ¼ M4 1 cðx2 1 x3Þ � rD: ð10Þ

Figure 2.—(A–D) Typical trajectories of the frequencies of the four haplotypes, AA, Aa, aA, and aa in a two-locus model, rep-
resented by the blue, green, yellow, and red parts. The trajectories were obtained by simulations with a random-mating diploid
population with size 100, where s ¼ 0.01 is assumed. (A) c ¼ 0.01 and r ¼ 0. (B) c ¼ 0.01 and r ¼ 0.1. (C) c ¼ 0.0001 and r ¼ 0. (D
and E) Typical trajectories of haplotype frequencies in a three-locus model. (D) c ¼ 0.01 and r ¼ 0. (E) c ¼ 0.0001 and r ¼ 0.
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For our purpose, it may be convenient to transfer F:
{x1, x2, x3} 1 {p, q, D}, where

p ¼ freq:ðA*Þ ¼ x1 1 x2; q ¼ freq:ð*AÞ ¼ x1 1 x3; D ¼ x1x4 � x2x3:

ð11Þ

This transformation was first introduced by Ohta and
Kimura (1969) and is useful in models of duplicated
genes with gene conversion (Innan 2002, 2003b). Then,
because

dp ¼ dðx1 1 x2Þ ¼ dx1 1 dx2; ð12Þ

dq ¼ dðx1 1 x3Þ ¼ dx1 1 dx3; ð13Þ

dD ¼ dðx1x4 � x2x3Þ ¼ x4dx1 1 x1dx4 � x3dx2 � x2dx3;

ð14Þ

we have

dp ¼ M1 1 M2 � cðp � qÞ ¼ Mp � cðp � qÞ; ð15Þ

dq ¼ M1 1 M3 1 cðp � qÞ ¼ Mq 1 cðp � qÞ; ð16Þ

dD ¼ M1x4 1 x1M2 �M2x3 � x2M3

1 c½pð1� pÞ1 qð1� qÞ � 2D� � rD

¼ MD 1 c½pð1� pÞ1 qð1� qÞ � 2D� � rD; ð17Þ

where

Mp ¼ s1x4½x2 � 2ðx1 1 x2Þðx2 1 x3Þ�
1 s2fx1x4½1� 2ðx1 1 x2Þ�

1 ½x2 � ðx1 1 x2Þðx2 1 x3Þ�ðx2 1 x3Þg
1 s3x1½2x2 1 x3 � 2ðx1 1 x2Þðx2 1 x3Þ�1 s4x2

1

3 ð1� x1 � x2Þ; ð18Þ

Mq ¼ s1x4½x3 � 2ðx3 1 x1Þðx2 1 x3Þ�
1 s2fx1x4½1� 2ðx3 1 x1Þ�1 ½x3 � ðx3 1 x1Þðx2 1 x3Þ�

3 ðx2 1 x3Þg
1 s3x1½x2 1 2x3 � 2ðx3 1 x1Þðx2 1 x3Þ�1 s4x2

1 ð1� x3 � x1Þ;

ð19Þ

MD ¼ s1x4½�3x1x2 � 2x2x3 � 3x3x1 1 4ðx1 1 x2Þðx2 1 x3Þðx3 1 x1Þ�
1 s2fx1x4½1� 4x1 � x2 � x3 1 4ðx1 1 x2Þðx1 1 x3Þ�

1 2ðx2 1 x3Þð�x1x2 � x2x3 � x3x1 1 ðx1 1 x2Þðx2 1 x3Þ
3 ðx3 1 x1Þg

1 s3x1½�ðx2 1 x3 1 5x1Þðx2 1 x3Þ � 2x2x3 � 4ðx1 1 x2Þ
3 ðx2 1 x3Þðx3 1 x1Þ�

1 s4x2
1 ½1� 3x1 � x2 � x3 � 2ðx1 1 x2Þðx1 1 x3Þ�: ð20Þ

Then, the diffusion process {p(t), q(t), D(t): t $ 0} in
F(K) is governed by a generator

L ¼ pð1� pÞ @
2

@p2 1 qð1� qÞ @
2

@q2

1 ½pqð1� pÞð1� qÞ1 Dð1� 2pÞð1� 2qÞ � D2� @
2

@D2

1 2D
@2

@p@q
1 2Dð1� 2pÞ @2

@p@D
1 2Dð1� 2qÞ @2

@q@D

1 ½�Cðp � qÞ1 4NMp �
@

@p
1 ½Cðp � qÞ1 4NMq �

@

@q

1 ½Cpð1� pÞ1 Cqð1� qÞ � ð2 1 2C 1 RÞD

1 4NMD �
@

@D
; ð21Þ

where time is measured in units of 4N generations. This
operator is almost identical to that used in Innan

(2003b) except for the selection terms. See Kimura

(1964) for more details about derivation.
When we count the degree of terms by the sum of

degrees in p, q, and twice that of D (e.g., the degree of
pqD is 1 1 1 1 2 ¼ 4), in general, Mp and Mq involve up
to the fifth-degree terms, which makes the computation
very difficult. To overcome this problem, it is extremely
important to reduce the degree of terms in the diffusion
operator (21). We found that it is possible to reduce the
degrees of Mp and Mq if we put the conditions s3¼�3s1 1

3s2 and s4 ¼ �8s1 1 6s2. With these conditions, Mp and
Mq involve only up to the third-degree terms, making
the following mathematical treatment feasible. To do so,
we need to reparameterize the selection coefficients by
two parameters, s and h:

s0 ¼ 0; s1 ¼ 3hs � s

2
; s2 ¼ 4hs; s3 ¼ 3hs 1

3

2
s;

s4 ¼ 4s: ð22Þ

h is a parameter to summarize the dominance effect as
illustrated in Figure 3. When h¼ 1

2 , the effect of selection
is additive. The function of si is concave when h , 1

2 ,
while convex when h . 1

2 . With this expression of the
selection coefficients, Mp, Mq, and MD can be given by
relatively simple formulas:

Mp ¼ s

�
ð1� 2hÞ½pð1� pÞðp 1 2qÞ1 qD�

1 3h � 1

2

� �
pð1� pÞ1 h 1

1

2

� �
D

�
; ð23Þ

Mq ¼ s

�
ð1� 2hÞ½qð1� qÞðq 1 2pÞ1 pD�

1 3h � 1

2

� �
qð1� qÞ1 h 1

1

2

� �
D

�
; ð24Þ

MD ¼ sfð2h � 1Þ½D2 � pqð1� pÞð1� qÞ
1 2ðp 1 qÞðp 1 q � 3ÞD� � 4ð1� hÞðp 1 qÞD
1 4hDg: ð25Þ
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Here, we attempt to obtain u(p, q, D), the fixation
probability of allele A with initial condition (p, q, D).
u(p, q, D) satisfies the following partial differential
equation:

Luðp; q;DÞ ¼ 0: ð26Þ

As long as c . 0, the process ends when either A or a fixes
in both of the two loci. In other words, the exit
boundaries are (p, q, D) ¼ (1, 1, 0) and (0, 0, 0), and
we have u(1, 1, 0)¼ 1 and u(0, 0, 0)¼ 0. See appendix a

for details about the other boundary conditions, @F(K) –
{(1, 1, 0), (0, 0, 0)}.

Because it may be extremely difficult to obtain a
closed-form solution to u(p, q, D) directly from Equa-
tion 26, as an alternative way, we consider c‘,m,n ¼
E[p‘(t)qm(t)Dn(t)]. Because (p, q, D) ¼ (1, 1, 0) and (0,
0, 0) are the exit boundaries, in the limit t/‘ there is no
probability mass except for these two boundaries. Then,
we have

lim
t/‘

c‘;m;0 ¼ uðp; q; DÞ; ‘1 m ¼ 1; 2; . . . ; ð27Þ

therefore, assuming the selection coefficient is not very
large, u(p, q, D) should be written as a perturbative series
in 4Ns:

uðp; q;DÞ¼ f0ðp; q;DÞ1 4Nsf1ðp; q;DÞ1ð4NsÞ2f2ðp; q;DÞ
1 Oð4NsÞ3: ð28Þ

To obtain the coefficients fj(p, q, D), in the following,
we first consider c1,0,0. The moments can be represented
by perturbative series in 4Ns:

c1;0;0 ¼ c
ð0Þ
1;0;0 1 4Nsc

ð1Þ
1;0;0 1 ð4NsÞ2c

ð2Þ
1;0;0 1 . . . : ð29Þ

Then, after some calculations (appendix a), we have

c
ð0Þ
1;0;0 ¼ �p 1

p � q

2
e�2Ct ; ð30Þ

c
ð1Þ
1;0;0 ¼ �pð1� �pÞ1 c̃

ð1Þ
1;0;0ðtÞ; ð31Þ

where �p is the mean initial frequency of allele A, which
is given by �p ¼ ðp 1 qÞ=2. c̃

ð1Þ
1;0;0ðtÞ is terms that decay

with time, and c̃
ð1Þ
1;0;0ð‘Þ ¼ 0. Therefore, it does not

play an important role in the following derivation, which
focuses on the case of t/‘.

In a similar way, we are able to obtain the expectations
of other moments (appendix b). Then, considering all
moments, up to the second order of 4Ns in Equation 28,
we have the fixation probability of a newly arisen
mutation in this two-locus system as u2ð�pÞ ¼ uðp; q;DÞ,

u2ð�pÞ ¼ �p 1 4Ns �pð1� �pÞ1ð4NsÞ2
�pð1� �pÞð1� 2�pÞ

3
1 Oð4NsÞ3; ð32Þ

when h ¼ 1
2 (the general form is shown in appendix b).

Here, it is interesting to note that Equation 28 has an
extremely similar form to the Taylor series expansion of
the fixation probability u1ð�pÞ as a function of 2Ns, which
is given by

u1ð�pÞ ¼
1� e�4Ns �p

1� e�4Ns ð33Þ

¼ �p 1 2Ns �pð1� �pÞ1 ð2NsÞ2
�pð1� �pÞð1� 2�pÞ

3
1 Oð2NsÞ3: ð34Þ

The first terms of Equations 32 and 34 are identical. For
the second term, the coefficients of �pð1� �pÞ are 2Ns and
4Ns for u1ð�pÞ and u2ð�pÞ, respectively, indicating the
coefficient might be given by 2nNs for unð�pÞ. A similar
logic might hold for the third order: the coefficients
of �pð1� �pÞð1� 2�pÞ=3 are (2Ns)2 and (4Ns)2, suggesting
the coefficient for unð�pÞ should be (2nNs)2. Thus, the
comparison of Equations 32 and 34 enables us to suspect
that unð�pÞ is given by

unð�pÞ ¼ �p 1 2nNs �pð1� �pÞ1 ð2nNsÞ2
�pð1� �pÞð1� 2�pÞ

3
1 Oð2nNsÞ3: ð35Þ

If so, it is straightforward to expect that unð�pÞ has a
closed form,

Figure 3.—Selection coefficients of the five gametes when the dominance effect is incorporated by Equation 22. The solid line
shows the selection coefficients when the effect is additive. (A) h¼ 0.2, representing a case where A is recessive. (B) h¼ 0.5; that is,
the selection effect is completely additive. (C) h ¼ 0.8, representing a case where A is dominant.
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unð�pÞ ¼
1� e�4nNs �p

1� e�4nNs ; ð36Þ

and u2ð�pÞ is given by

u2ð�pÞ ¼
1� e�8Nsp

1� e�8Ns : ð37Þ

Actually, Equation 37 satisfies the partial differential
Equation 26, u(1, 1, 0) ¼ 1, u(0, 0, 0) ¼ 0, and u(p, q,
D)j@F(K)–{(1, 1, 0),(0, 0, 0)} , ‘. Note that, from this equa-
tion, we can derive Walsh’s result (Equation 8 in Walsh

1985) with the condition of low gene conversion rate.
Furthermore, Equation 36 should be the solution of the
fixation probability for similar models with more than
two loci. This equation is also in agreement with Walsh

(1985) at the low conversion limit. Equations 36 and 37
are also consistent with the result of Nagylaki and
Petes (1982), who obtained the fixation probability
under neutrality unð�pÞ ¼ �p.

It should be noted that all terms involving the gene
conversion and recombination rates are canceled out in
the above derivation, so that the fixation probability is
given by a function of Ns and �p. Equation 36 is equivalent
to the fixation probability of a single-copy gene in a
random-mating population with size nN, indicating that
allelic migration between copy members by gene con-
version has an effect to increase the effective population.
An intuitive understanding is that this effect holds as
long as c . 0. Recombination works to enhance the
homogenizing effect of gene conversion (Innan 2002).
Therefore, as long as the gene conversion rate has no
effect, the fixation probability should be independent of
the recombination rate.

SIMULATIONS

Two-locus model: Forward simulations were per-
formed to check if our predicted Equation 37 works.
The simulations follow the standard Wright–Fisher
model. A random-mating diploid population with size
N¼ 100 is considered. Time 0 is set such that a single aA
haplotype arises in the population where aa is fixed;
therefore, the initial state of haplotype frequencies is
ðx1; x2; x3; x4Þ ¼ ð0; 0; 1=2N ; 1� 1=2N Þ. Following the
recursion (3)–(6), a single run of forward simulation is
continued until one allele is fixed in the two loci; that is,
(x1, x2, x3, x4) ¼ (0, 0, 0, 1) or (1, 0, 0, 0). For each
parameter set, 107 replications of simulations were
performed and the proportion of the fixation events
of allele A was obtained.

Figure 4 summarizes the simulation results, showing
that Equation 37 is in excellent agreement with the
simulations for a wide range of the gene conversion rates
(c ¼ 0.00001–0.01) when there is no recombination
(Figure 4A) and when the recombination rate is very
high (Figure 4B). It is indicated that Equation 37 could
be the solution to the fixation probability in the two-
locus model. As Equation 37 indicates, the probability is
independent of the gene conversion rate or recombina-
tion rate. Almost identical simulation results were
obtained for other recombination rates (not shown).

The simulations also demonstrate that the fixation
time is given by a complicated function of N, c, s, and r, as
shown in Figure 4. When c is very small, the fixation time
dramatically increases as the gene conversion rate
decreases (Figure 4, C and D). This is because a typical
fixation occurs such that a new mutation first fixes in one
locus and waits for the fixation in the second locus. This

Figure 4.—Fixation probability
and fixation time in the two-locus
model. (A and B) Simulation re-
sults for the fixation probability
when the recombination rate is
0 and 0.1, respectively. The
shaded lines represents the theo-
retical result from Equation 37.
(C and D) Simulation results for
the fixation time when the recom-
bination rate is 0 and 0.1, respec-
tively. The results are based on
simulations with 107 replications
for each parameter set.
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waiting time is very long and determined by the amount
of gene flow from the first to the second locus and the
rate of their fixation in the second locus. The gene
conversion rate is negatively correlated with the former,
while the selection intensity determines the latter.
Selection also has a negative correlation with the time
of fixation in each locus. The fixation time is longer with
a larger recombination rate.

When c is so large that there are substantial exchanges
between the two loci, it seems that selection is the
dominant factor to determine the fixation time, because
the fixation occurs almost in a single gene pool with size
4N. As the absolute value of s increases, the mean
fixation time decreases, and the fixation time could be
largest when neutral. This pattern is similar to that in the
standard single-locus system (Crow and Kimura 1970),
except that the expected fixation times for s and –s are
identical in the standard single-locus system, but not in
our two-locus model (Figure 4, C and D).

More loci: The simulations in the two-locus model
demonstrated that Equation 36 works very well when n¼
2. The model is further extended to the case of n¼ 3 to
check the performance of Equation 36. The three-locus
model considers three tandemly arrayed genes, I, II, and
III. The recombination rates between I and II and
between II and III are assumed to be the same (r). It is
also assumed that symmetrical gene conversion occurs
between all three gene pairs at the same rate, c.

The results in the three-locus model are very similar to
those for the two-locus model. The fixation probability
seems to follow Equation 36 regardless of the gene
conversion or recombination rates (Figure 5, A and B).
The fixation time depends on the gene conversion and

recombination rates and selection coefficient, and their
effects on the fixation time are similar to those in the
two-locus model.

Additional simulations show that Equation 36 is in
excellent agreement with the simulation results for n up
to 6 (Figure 6). A narrow range of s is investigated here
because the effect of n is primarily observed when
selection is very weak (see also Figure 7A).

Biased gene conversion: It is known that mismatch
repair following gene conversion likely occurs with bias,
that is, biased gene conversion (Galtier 2003; Marais

2003). Gene conversion could favor particular alleles

Figure 5.—Fixation probability
and fixation time in the three-locus
model. (A and B) Simulation re-
sults for the fixation probability
when the recombination rate is
0 and 0.1, respectively. The num-
ber of replications is 107 for each
parameter set. The shaded lines
represent the theoretical result
from Equation 35 with n ¼ 3.
(C and D) Simulation results for
the fixation time when the recom-
bination rate is 0. Data for the
mean fixation time when s ¼
�0.01 are missing because the fix-
ation event is so rare that we were
not able to obtain reliable mean
values.

Figure 6.—Fixation probability for n ¼ {1, 2, 3, 4, 5, 6} pre-
dicted by Equation 36 with simulation results for c ¼ 0.00001,
0.0001, 0.001, and 0.01. The number of replications is 107 for
each parameter set.
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over others, usually GC over AT base pairs. Because it
is extremely difficult to incorporate biased gene con-
version in the above derivation, we investigate its effect
on the fixation probability by simulations. Following
Walsh (1985), the degree of bias in gene conversion is
denoted by a, such that the recursions of (x1, x2, x3, x4)
are rewritten as

x91 ¼ x1 1 M1 1 2acðx2 1 x3Þ � rD

x92 ¼ x2 1 M2 � 2cx2 1 rD

x93 ¼ x3 1 M3 � 2cx3 1 rD

x94 ¼ x4 1 M4 1 2ð1� aÞcðx2 1 x3Þ � rD:

In this setting, a represents the proportion of a/A gene
conversion. When a ¼ 0.5, there is no bias and these
recursions are identical to (3)–(6). The bias is toward A if
a . 0.5. Figure 8 shows that the fixation probability of A
is elevated for a . 0.5 (red) and vice versa (blue). The
effect of biased gene conversion is especially large when
the gene conversion rate is high (Figure 8B). When the
gene conversion rate is low, the results are in agreement
with Walsh (1985), who suggested that the effect of
biased gene conversion would be minor unless the
selection intensity is very small.

DISCUSSION

The fixation process that a mutation spreads in a
multigene family by gene conversion is investigated by
theory and simulations. By obtaining the coefficients of
moments of 4Ns of the fixation probability (Equation
28), we suspected that the closed form of the probability
might be given by Equation 37 in the two-locus model,
and the results of computer simulations support this. It

is found that the fixation probability is given by a
function of N and s and independent of the gene
conversion (c) and recombination rates (r). The fixation
time is given by a complicated function of N, s, c, and r. It
is demonstrated that selection could be the dominant
factor to determine the fixation time when c is large,
while for a small c, both s and c play the major roles.

Ohta (1983b) discussed the fixation time of a neutral
mutant by computing the decay rate of genetic identity
(identity coefficient in her terminology). In our analysis
of the fixation probability, we focus on the moments
c‘,0,0(‘ $ 1). As shown in appendix b, the derivation of
the moments involves the eigenvalues of matrices. Up to
the second-degree moments in the 0th order of 4Ns,
there are five nonzero eigenvalues involved, which are
�2C, l1, l2, l3, and l4. Among them, the largest is always
l2 (see appendix c), and this value corresponds to
Ohta’s decay rate of genetic identity.

We further extended the situation to models with
more than two loci. The equation for the fixation
probability given by (37) is so simple that we might
expect that the fixation probability in the n-locus model
may follow a similar form, that is, Equation 36. As
expected, simulations showed that Equation 36 works
very well in the models with up to n ¼ 6 (Figure 6). It is
suggested that Equation 36 might work for any positive
integer n. Our theoretical results for the fixation
probability suggest that gene conversion causes migra-
tions between loci; therefore, it can be considered that
the ‘‘effective’’ population size is increased because a
single mutant has to be fixed in a gene pool of size 2nN.
As a consequence, the initial frequency of the single
mutant in the whole gene pool is smaller when n is large.
This effect is well observed when s is small so that the
relative contribution of the initial frequency to the

Figure 7.—(A) Fixation probability
for n ¼ {1, 2, 3, 4} predicted by Equation
36. N ¼ 100 is assumed so that the prob-
ability of the neutral case is given by 1/
(2nN)¼ 1/(200n). (B) Substitution rate
for n¼ {1, 2, 3, 4} from Equation 38. The
substitution rate is measured such that
the rate is 1 under neutrality (note that
the substitution rate per site per gener-
ation is identical to the mutation rate
for any n).

Figure 8.—(A and B) Effect of biased
gene conversion on the fixation proba-
bility in the two-locus model. A total
of 107 replications of simulations were
carried out for each parameter set.
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fixation probability is large (Figure 6). Note that this
effect is small for large Ns, where the fixation probability
is almost independent of the initial frequency (approx-
imately given by 2s).

It is worth pointing out that the expression (37) also
appears in a problem in a subdivided population.
Maruyama (1971) obtained the identical formula as
the fixation probability of a mutant under genic selection,
where the mutant spreads over the whole population that
consists of n subpopulations, whose effective sizes are N
for each. It is remarkable that the expression does not
depend on the migration pattern, as long as the pop-
ulation sizes of each subpopulation are maintained. It is
straightforward to show that the n-unlinked locus version
of the generator (21) is identical to the generator of the
process of a n-island model when the migration rates
between subpopulations are given by C. Our expression
(37) is supported by Maruyama’s solution when R ¼ ‘.

Our theoretical results have interesting implications
on the evolutionary rate of duplicated genes. In the n-
locus model, Equation 36 gives the fixation probability
of a newly arisen mutation, which appears at rate 2nNm

per generation per population. Hence, the substitution
rate can be given by

2nN mð1� e�2sÞ
1� e�4nNs : ð38Þ

Figure 7B shows the substitution rate as a function of s for
n ¼ {1, 2, 3, 4}. It is obvious that this rate is m under neu-
trality for any n, which is in agreement with Nagylaki

and Petes (1982). This is also consistent with the neutral
theory of molecular evolution (Kimura 1983). When s 6¼
0, selection works more efficiently in a larger gene
family: the substitution rate of a beneficial mutation is
higher for a larger family, while that of deleterious
mutation is lower. Thus, it seems that having more copies
in a family could enhance the action of directional
selection, as long as there are exchanges of genetic
materials among them. In other words, the action of
weak selection would be more emphasized in a multi-
gene family with a larger n.

Our theory predicts that the evolutionary rate at
synonymous sites may be not be very different between
a single-copy gene and a multigene family assuming m is
the same and synonymous sites are under very weak
selection. This should not hold for the rate at non-
synonymous sites. It would be faster in a multigene
family, if many sites are subject to positive selection. On
the other hand, the nonsynonymous substitution rate in
a multigene family may be slower if it is under the
pressure of strong negative selection. This prediction
may well explain a recent report, which demonstrated
that the substitution rate at nonsynonymous sites is
accelerated in a concerted gene cluster in Caenorhabditis
elegans and its relatives (Thomas 2006). In this gene

family, the effect of positive selection could be enhanced
by exchanging among the members, as discussed by the
author. It is indicated that gene conversion in a multi-
gene family plays an important role in adaptive evolu-
tion, because beneficial mutations can be shared by the
member genes in the family.
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APPENDIX A: ARGUMENTS ON THE BOUNDARY CONDITION

This article includes appendixes a–c, which requires relatively high background in the diffusion theory. Therefore,
we proceed along with two standard introductory textbooks (Morse and Feshbach 1953; Oksendal 2003), which have
been commonly cited in theoretical literature in population genetics.

To address the boundary condition, it is convenient to consider the diffusion process {x1(t), x2(t), x3(t): t $ 0} in K.
The fixation probability u(x1, x2, x3) satisfies the elliptic partial differential equation

X3

i;j¼1

xiðdi;j � xjÞ
@2u

@xi@xj
1
X3

i¼1

viðx1; x2; x3Þ
@u

@xi
¼ 0;

where v is the drift term of the diffusion process (see appendix b for details). Note that the generator degenerates over
@K. Since (x1, x2, x3)¼ (1, 0, 0) and (0, 0, 0) are the exit boundaries, we put the Dirichlet-type conditions: u(1, 0, 0)¼ 1
and u(0, 0, 0)¼ 0 (Morse and Feshbach 1953). However, it is obvious that the other part S¼ @K – {(1, 0, 0), (0, 0, 0)}
does not follow the standard types of boundary conditions such as the Dirichlet and Neumann types (Oleinik and
Radkevic 1973).

For S¼ @K – {(1, 0, 0), (0, 0, 0)}, considering the fixation process in a population, it is reasonable to put ujS¼ finite,
where ‘‘finite’’ represents terms that do not depend on coordinates, which are normal to the boundary and bounded
within (0, 1). These conditions reflect the fact that there should be finite probability of fixation when a population
evolves from an arbitrary point in S. For example, consider a point (e, c2, c3) 2 K, which is close to the x1 ¼ 0 surface
when e is small. We may expand u by e : uðe; c2; c3Þ ¼

P‘

�‘
fjðc2; c3Þej, where fj(c2, c3) is an arbitrary function of c2 and c3

(see p. 374 in Morse and Feshbach 1953). To keep u(e, c2, c3) finite with e/0, we have to set fj(c2, c3) ¼ 0 ( j , 0).
Subsequently, we have u jx1¼0 ¼ lime/0 ¼ uðe; c2; c3Þ ¼ f0ðc2; c3Þ 2 ð0; 1Þ. The solution (36) satisfies these conditions:
limx1/0u ¼ ½1� e�4Nsðx2 1 x3Þ�=ð1� e�8NsÞ and limx2;x3/0u ¼ ð1� e�8Nsx1Þ=ð1� e�8NsÞ. This kind of argument on the
boundary condition is commonly made in the literature, where the fixation time in the one-dimensional diffusion
model is considered (e.g., Kimura and Ohta 1969).

APPENDIX B: DERIVATION OF THE MOMENTS

The diffusion process governed by the generator (21) is represented by a system of stochastic differential equations,

dp ¼ sdb 1 vdt ðB1Þ

(Oksendal 2003), where p ¼ T(p, q, D) and s is given such that sTs is the 4N times covariance matrix of p (Mano

2007). b is a vector of mutually independent Brownian motions, and

v ¼
�Cðp � qÞ1 4NMp

Cðp � qÞ1 4NMq

Cpð1� pÞ1 Cqð1� qÞ � Dð2 1 2C 1 RÞ1 4NMD

0
@

1
A

(Mano 2007). Taking the expectation of (B1), we have the ordinary differential equation for the moments c1,0,0, c0,1,0,
c0,0,1. For other moments, by applying the Itô formula to functions p‘qmDn(‘, m, n ¼ 0, 1, 2, . . .), we have

dðp‘qmDnÞ ¼
X3

i¼1

@ðp‘qmDnÞ
@pi

dpi 1
1

2

X3

i;j¼1

@2ðp‘qmDnÞ
@pi@pj

dpidpj ðB2Þ

(see p. 48 in Oksendal 2003). Substituting (B1) into (B2) and taking the expectation, we have the ordinary
differential equations for other moments (below).
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For c1,0,0, we have

dE ½p�
dt
¼ �CðE ½p� � E ½q�Þ1 4NE ½Mp �;

or

dc1;0;0

dt
¼ �Cðc1;0;0 � c0;1;0Þ

1 4Ns 3h � 1

2

� �
c1;0;0 1 h 1

1

2

� �
c0;0;1 1

3

2
� 5h

� �
c2;0;0

�

1 ð1� 2hÞð2c1;1;0 � c3;0;0 1 c0;1;1 � 2c2;1;0Þ
�
: ðB3Þ

Substituting (29) into Equation B3, we have ordinary differential equations for each order of the perturbation (see p.
1001 in Morse and Feshbach 1953). For the 0th order in 4Ns, we have

dc
ð0Þ
1;0;0

dt
¼ �Cðcð0Þ1;0;0 � c

ð0Þ
0;1;0Þ

with the initial condition c
ð0Þ
1;0;0ð0Þ ¼ p. For the i($ 1)th order, we have

dc
ðiÞ
1;0;0

dt
¼ �C c

ðiÞ
1;0;0 � c

ðiÞ
0;1;0

� �
1 3h � 1

2

� �
c
ði�1Þ
1;0;0 1 h 1

1

2

� �
c
ði�1Þ
0;0;1 1

3

2
� 5h

� �
c
ði�1Þ
2;0;0

�

1 ð1� 2hÞ 2c
ði�1Þ
1;1;0 � c

ði�1Þ
3;0;0 1 c

ði�1Þ
0;1;1 � 2c

ði�1Þ
2;1;0

� ��

with the initial condition c
ðiÞ
1;0;0ð0Þ ¼ 0.

Let the Laplace transform of c
ðiÞ
‘;m;n be n

ðiÞ
‘;m;n . For the first-degree moments, we have

ðA1 1 lEÞ
n
ð0Þ
1;0;0

n
ð0Þ
0;1;0

 !
¼ p

q

� �
; ðB4Þ

where

A1 ¼
C �C
�C C

� �
; ðB5Þ

and E is the unit matrix. Also,

ln
ð1Þ
1;0;0 ¼ �C n

ð1Þ
1;0;0 � n

ð1Þ
0;1;0

� �
1 3h � 1

2

� �
n
ð0Þ
1;0;0 1 h 1

1

2

� �
n
ð0Þ
0;0;1 1

3

2
� 5h

� �
n
ð0Þ
2;0;0

1 ð1� 2hÞ 2n
ð0Þ
1;1;0 � n

ð0Þ
3;0;0 1 n

ð0Þ
0;1;1 � 2n

ð0Þ
2;1;0

� �
; ðB6Þ

ln
ð1Þ
0;1;0 ¼ C n

ð1Þ
1;0;0 � n

ð1Þ
0;1;0

� �
1 3h � 1

2

� �
n
ð0Þ
0;1;0 1 h 1

1

2

� �
n
ð0Þ
0;0;1 1

3

2
� 5h

� �
n
ð0Þ
0;2;0

1 ð1� 2hÞ 2n
ð0Þ
1;1;0 � n

ð0Þ
0;3;0 1 n

ð0Þ
1;0;1 � 2n

ð0Þ
1;2;0

� �
: ðB7Þ

For the second-degree moments, we have

ðA2 1 lEÞ

n
ð0Þ
2;0;0

n
ð0Þ
0;2;0

n
ð0Þ
1;1;0

n
ð0Þ
0;0;1

0
BBBBB@

1
CCCCCA ¼

2n
ð0Þ
1;0;0 1 p2

2n
ð0Þ
0;1;0 1 q2

pq

c n
ð0Þ
1;0;0 1 n

ð0Þ
0;1;0

� �
1 D

0
BBBBB@

1
CCCCCA; ðB8Þ
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where

A2 ¼

2ð1 1 CÞ 0 �2C 0
0 2ð1 1 CÞ �2C 0
�C �C 2C �2
C C 0 2 1 2C 1 R

0
BB@

1
CCA:

For the third-degree moments, we have

ðA3 1 lEÞ

n
ð0Þ
3;0;0

n
ð0Þ
0;3;0

n
ð0Þ
2;1;0

n
ð0Þ
1;2;0

n
ð0Þ
1;0;1

n
ð0Þ
0;1;1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼

6n
ð0Þ
2;0;0 1 p3

6n
ð0Þ
0;2;0 1 q3

2n
ð0Þ
1;1;0 1 p2q

2n
ð0Þ
1;1;0 1 pq2

2n
ð0Þ
0;0;1 1 Cðn2;0;0 1 n1;1;0Þ1 pD

2n
ð0Þ
0;0;1 1 Cðn0;2;0 1 n1;1;0Þ1 qD

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ðB9Þ

where

A3 ¼

6 1 3C 0 �3C 0 0 0
0 6 1 3C 0 �3C 0 0
�C 0 2 1 3C �2C �4 0
0 �C �2C 2 1 3C 0 �4
C 0 0 C 6 1 3C 1 R �C
0 C C 0 �C 6 1 3C 1 R

0
BBBBBB@

1
CCCCCCA
:

Solving (B4), we have

n
ð0Þ
1;0;0 ¼

�p

l
1

p � q

2ðl 1 2CÞ ;
ðB10Þ

where �p ¼ ðp 1 qÞ=2. Solving (B6) and (B7) with (B4), (B8), and (B9), we have

n
ð1Þ
1;0;0 ¼

�pð1� �pÞ1 ðh � 1=2Þũ ð1Þ
l

1
X

i

ai

l� li
; ðB11Þ

ũð1Þ ¼ ð1� 2�pÞ �pð1� �pÞ 2

3
1

4RC

ð1 1 CÞð6 1 4C 1 RÞ

� 	
� ð3 1 2CÞD
ð1 1 CÞð6 1 4C 1 RÞ �

pq � �p

2ð1 1 CÞ

� �
;

where li(, 0)(i ¼ 1, 2, . . . , 10) are eigenvalues of A2(i ¼ 1, 2, 3, 4) and A3(i ¼ 5, . . . , 10), whose explicit forms are
discussed in appendix c. ai are polynomials of p, q, D, R, C, h. Applying the inverse Laplace transformation to (B10) and
(B11), we obtain

c
ð0Þ
1;0;0 ¼ �p 1

p � q

2
e�2Ct ; ðB12Þ

c
ð1Þ
1;0;0 ¼ �pð1� �pÞ1 h � 1

2

� �
ũð1Þ1 c̃

ð1Þ
1;0;0ðtÞ; ðB13Þ

where c̃
ð1Þ
1;0;0ðtÞ represents terms that decay with t/‘. Thus, up to the first order in 4Ns, we have

uðp; q;DÞ ¼ �p 1 4Ns �pð1� �pÞ1 h � 1

2

� �
ũð1Þ

� 	
1 Oð4NsÞ2: ðB14Þ

APPENDIX C: EIGENVALUES

The two eigenvalues of A1 are 0 and �2C. The four eigenvalues of A2 are l1 ¼ �2(1 1 C) and the three roots of a
cubic equation
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S3 1 ðR � 2ÞS2 � 2ðR 1 2C2ÞS 1 4C2ð2� RÞ ¼ 0; ðC1Þ

where S ¼ l 1 2(1 1 C). This is the same equation as that obtained by Ohta (1983b), where x in her Equation 4 is
replaced by 4Nl 1 1. Let l2, l3, l4 be the three roots and assume l2 is the largest one. We have

l2 ¼ �2C � 4 1 R

3
1 2

ffiffiffiffiffi
z1

3

r
cos

u1

3
; cos u1 ¼ �

h1

2

3

z1

� �3=2

; ð0 # u1 # pÞ;

where

z1 ¼
ðR 1 1Þ2

3
1 1 1 4C2; h1 ¼

2

27
ðR � 2Þ½ðR 1 1ÞðR 1 4Þ � 36C2�:

Note that the largest eigenvalue of the five nonzero eigenvalues (�2C, l1, l2, l3, and l4) is always l2. This is clear from
the cubic equation (C1), where we have l2 1 2(1 1 C) $ 2 and l2 $ �2C . l1 ¼ �2C – 2 because the left side of this
equation is �4C 2R # 0 at S ¼ 2.

The six eigenvalues of A3 can also be computed by a similar method. The results are too complicated to show here
and are available upon request.

Evolutionary Rate of Duplicated Genes 505


