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ABSTRACT

The correlation between alleles at a pair of genetic loci is a measure of linkage disequilibrium. The square
of the sample correlation multiplied by sample size provides the usual test statistic for the hypothesis of no
disequilibrium for loci with two alleles and this relation has proved useful for study design and marker
selection. Nevertheless, this relation holds only in a diallelic case, and an extension to multiple alleles has not
been made. Here we introduce a similar statistic, R 2, which leads to a correlation-based test for loci with
multiple alleles: for a pair of loci with k and m alleles, and a sample of n individuals, the approximate
distribution of n(k – 1)(m – 1)/(km)R 2 under independence between loci is x2

ðk�1Þðm�1Þ. One advantage of this
statistic is that it can be interpreted as the total correlation between a pair of loci. When the phase of two-locus
genotypes is known, the approach is equivalent to a test for the overall correlation between rows and columns
in a contingency table. In the phase-known case, R 2 is the sum of the squared sample correlations for all
km 2 3 2 subtables formed by collapsing to one allele vs. the rest at each locus. We examine the approximate
distribution under the null of independence for R 2 and report its close agreement with the exact distribution
obtained by permutation. The test for independence using R 2 is a strong competitor to approaches such as
Pearson’s chi square, Fisher’s exact test, and a test based on Cressie and Read’s power divergence statistic. We
combine this approach with our previous composite-disequilibrium measures to address the case when the
genotypic phase is unknown. Calculation of the new multiallele test statistic and its P-value is very simple and
utilizes the approximate distribution of R 2. We provide a computer program that evaluates approximate as
well as ‘‘exact’’ permutational P-values.

THE phenomenon of nonrandom co-occurrence of
alleles at two loci on the same haplotype is known

as linkage disequilibrium (LD). It is an important pop-
ulation genetic concept with wide applications including
theoretical studies of evolutionary dynamics (Lewontin

1974), forensic science (Evett and Weir 1998), conser-
vation genetics and studies of effective population size
(Waples 2006), evolutionary history, and human origins
(Tishkoff et al. 1996). The extent of LD in populations
has been of great interest since the development of mo-
lecular techniques allowing genotypes to be obtained at
multiple loci throughout the genome. Characterization
of LD in human populations has been instrumental in
fine mapping of complex genetic traits in both candidate
gene and whole-genome association designs. Although
diallelic loci (SNPs) are utilized in most association
studies, multiallelic markers (microsatellites or SNP
haplotypes) will continue to be useful in genetic research,
most prominently in forensic applications and studies of
populationsizeandhistory.Multiallelic lociprovidegreater
precision and may yield higher power to detect and

characterize LD. A simulation study by Slatkin (1994)
reported an increase in power with the number of alleles
to detect LD by Fisher’s exact test under a finite-allele
mutation model with drift and recombination. More
generally, power is not a simple function of the number
of alleles, as it depends on the actual disequilibria and
allelic frequencies (Weir and Cockerham 1978). For-
mally, the LD coefficient for alleles A and B at loci A and
B refers to thedeviationof the joint frequency,gameticor
haplotypic, from the product of allele frequencies DAB¼
pAB – pApB. The correlation between alleles is defined as

rAB ¼
DABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pAð1� pAÞpBð1� pBÞ
p :

Strictly speaking, the correlation is for the indicator
variables xA and yB that equal 1 when the alleles are A
and B and zero otherwise. This correlation coefficient
has drawn much attention during recent years because
the quantity X 2

AB ¼ nr 2
AB, where rAB is the value of rAB in a

sample of n gametes, is asymptotically distributed as x2
ð1Þ

under the hypothesis that rAB ¼ 0. This relation has
obvious implications for issues of power of association
studies and strategies for selecting subsets of genetic
markers representative of common haplotypes for
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genomewide analysis (Pritchard and Przeworski

2001; International Hapmap Consortium 2003;
Terwilliger and Hiekkalinna 2006). However, no
similar relation has been proposed for markers with
more than two alleles at each locus. There is a statistical
difficulty in that, beyond the two-allele case, the total
squared correlation R 2 does not have a limiting chi-
square distribution. Briefly, a sum of squared normal
variables,

P
Z 2

i , has a x2-distribution only when the
variance–covariance matrix of the Zi’s is a projection
matrix. A more general result is usually stated in the
matrix notation, regarding the distribution of a qua-
dratic form, Z9CZ (Searle 1971, Chap. 2, Theorem 2).
In our case, C is an identity matrix. Pearson’s X 2-statistic
is an example of such a sum, while the sum of squared
LD correlations is not. Thus, despite the vast theory on
contingency tables, the distribution of R 2 has not been
adopted for testing interactions. Nevertheless, different
approximations by a scaled chi-square distribution are
possible for a sum of dependent chi-squares (e.g., Box

1954). Here we report a very simply computed chi-
square approximation that appears to have good prop-
erties. This result is further applied to testing LD at a
pair of multiallelic loci when only single-locus genotypes
are scored unambiguously. Earlier work on character-
ization and testing of LD at a pair of multiallelic loci in-
cludes accounts by Hill (1975); Yamazaki (1977); Weir

and Cockerham (1978); Weir (1979); Karlin and
Piazza (1981); Hedrick (1987); Zaykin et al. (1995);
Kalinowski and Hedrick (2000); Zapata (2000);
Schaid (2004); and Zhao et al. (2005, 2007). Similar
to the methods of Weir (1979) and Schaid (2004), our
correlation LD approach is based on the composite dis-
equilibrium definition. The composite disequilibrium
approach has certain desirable properties. It is robust
with respect to single-locus deviations from Hardy–
Weinberg equilibrium (HWE). The composite disequi-
librium coefficient is estimated directly from genotypic
counts, and thus it is readily computed from data with
the unknown gametic phase. Earlier work (Weir 1979;
Schaid 2004; Zaykin 2004) demonstrated good statis-
tical properties associated with this approach.

The correlation LD test is recommended for usage and
can be readily applied for screening large numbers of
pairs of multiallelic loci. It is also applicable for conduct-
ing correlation-based tests for interaction in contingency
tables. Our program provides exact (permutational)
P-values for tests based on R2.

METHODS

Known gametic phase: When the gametic phase is
unambiguous, the two-locus haplotype observations can
be arranged into a k 3 m contingency table with the
sample size N being equal to twice the number of in-
dividuals n, N¼2n. The cell counts in the table represent
N haplotype observations: the (i, j)th cell has the

number nij of haplotypes carrying allele i at the first
locus and allele j at the second. We assume multinomial
sampling of haplotypes. The observed haplotype fre-
quencies are p̃ij ¼ nij=N . Row and column frequencies
for the table of haplotype frequencies correspond to the
vectors of allele frequencies at the two loci: {p1, . . . , pk}
and {q1, . . . , qm}. The observed correlation for the cell
(i, j) is

rij ¼
p̃ij � p̃i q̃jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̃ið1� p̃iÞq̃jð1� q̃iÞ
p : ð1Þ

We propose the following two correlation-based statis-
tics, both having an approximate chi-square distribution
(as shown in appendix a). The eigenvalue-based statis-
tic is

T1 ¼
N
Pk

i¼1

Pm
j¼1 r 2

ij

s
�app

x2
ðdÞ; ð2Þ

where

s ¼ traceðVR VRÞ
km

d ¼ ðkmÞ2
traceðVR VR Þ

:

The statistic T2 is much simpler, as it does not involve a
computation of eigenvalues:

T2 ¼
ðk � 1Þðm � 1ÞN

km

Xk

i¼1

Xm

j¼1

r 2
ij �

app
x2
ðk�1Þðm�1Þ: ð3Þ

Unknown haplotype phase: Scoring genotypes one
locus at a time creates ambiguity in determining pairs
of haplotypes in individuals that are heterozygous at
both loci. A maximum-likelihood solution for obtaining
sample haplotype frequencies was suggested by Hill

(1974, 1975) and elaborated on by Weir and Cockerham

(1979). This approach was extended to multiple loci
(Excoffier and Slatkin 1995) with the use of the EM
algorithm incorporating the likelihood under the as-
sumption of HWE. Weir (1979) sought to avoid making
the HWE assumption and suggested estimating the
composite disequilibrium defined as DAB ¼ pAB 1 pA/B �
2pApB, where pA/B is the joint frequency of alleles A and B
at two different gametes within individuals. The corre-
sponding composite LD correlation is

rc
AB ¼

DABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½pAð1� pAÞ1 DA�½pBð1� pBÞ1 DB �

p ; ð4Þ

where DA, DB are the the Hardy–Weinberg disequilib-
rium coefficients at the two loci. Strictly speaking, this is
the correlation of the number of A and B alleles carried
by an individual (Weir 1979; Zaykin 2004). The com-
posite coefficient is directly estimated from two-locus
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counts by simple counting (Weir 1979). Under HWE,
the intergametic disequilibrium term DA/B ¼ pA/B �
pApB ¼ 0, and the population value of DAB ¼ DAB.

The composite correlations for a pair of alleles in a
multiple-allele system are

rc
ij ¼

Dijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½pið1� piÞ1 Di �½qjð1� qjÞ1 Dj �

p :

Weir and Cockerham (1989) gave a decomposition
of the two-locus genotype frequency P AB

AB as a sum of
functions of allele frequencies and two-locus disequi-
libria. Writing out the two-locus analog of the Hardy–
Weinberg disequilibrium (HWD), P AB

AB � p2
AB , in these

terms shows that under the two-locus HWE, only the DAB

and thus DAB disequilibria are nonzero. Therefore, as-
suming two-locus HWE, a chi-square statistic for testing
LD can be written as

ðX cÞ2AB ¼ n
Xk

i¼1

Xm

j¼1

D̃
2
ij

p̃i q̃j
; ð5Þ

as was suggested by Weir (1979). Under HWE, the com-
posite coefficient estimates the usual LD. On the basis
of Fisher’s formula for approximate variances, Schaid

(2004) derived the covariance matrix of the sample LD
coefficients (W). He proposed a chi-square test based on a
quadratic form. The test statistic definition involves a
generalized inverse, W�. This test is analogous to (19). For
the vector containing all sample composite LD coeffi-
cients DT ¼ fD̂ijg, Schaid’s test statistic, S2 ¼ DT W�D,
has an asymptotic chi-square distribution with the degrees
of freedom equal to the rank of W. Schaid’s test explicitly
incorporates deviations from HWE.

We base the unknown-phase extension of the corre-
lation LD approach on the approximate sampling dis-
tribution of the total composite LD correlation,

ðRcÞ2 ¼
Xk

i¼1

Xm

j¼1

ðr cÞ2ij

¼
Xk

i¼1

Xm

j¼1

D̂
2
ij

½p̃ið1� p̃iÞ1 D̃i �½q̃jð1� q̃jÞ1 D̃j �
; ð6Þ

where ðr cÞ2ij denotes sample values of ðrcÞ2ij . Comparing
this statistic to (5) shows that now the deviations from
HWE at both loci are explicitly incorporated into the
test.

Schaid’s test statistic as well as (R c)2 assumes that
trigenic and quadrigenic two-locus disequilibria can be
ignored. These disequilibria compare joint frequencies
of three and four alleles at two loci with the products of
allele frequencies, after removing any lower-order dis-
equilibria (Weir 1996). To obtain the Box-type approx-
imation (for the statistic T1), the elements of the matrix
W are scaled as fWij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
WiiWjj

p
g. This gives the correla-

tion matrix WR. As before, the scale parameter is
s ¼ trace(WR WR )=ðkmÞ, and the degrees of freedom
are d ¼ ðkmÞ2=trace(WR WR ). Then the two statistics with
their approximate distributions are

T1 ¼
nðRcÞ2

s
�app

x2
ðdÞ ð7Þ

T2 ¼
ðk � 1Þðm � 1Þ

km
nðRcÞ2 ¼ ðk � 1Þðm � 1Þn�r 2 �app

x2
ðk�1Þðm�1Þ;

ð8Þ

where �r 2 ¼ ðRcÞ2=ðkmÞ is the average composite
correlation.

Type-I error rates, goodness of fit to the null
distribution, and power: A common way to evaluate a
test performance under the null hypothesis is to report
the type-I error, or the proportion of P-values that fall
below a rejection threshold, such as a ¼ 0.05. An
empirical estimate of the type-I error is that proportion
in a large number of simulations conducted under the
null hypothesis. We denote the number of simulations
by B. For a more complete evaluation of the P-value
distribution produced by a test, we propose to compute
a statistic SB that adds up the squares of deviations of
ordered P-values from the respective theoretical values
expected under the null distribution. A visual method of
plotting ordered P-values against the corresponding
expected values of order statistics is known as a ‘‘rankit
plot’’ (Ipsen and Jerne 1944). Such a plot very closely
corresponds to the common ‘‘Q-Q’’ plot (where values
are plotted against quantiles instead), unless the value
of B is small. The deviation from the null by visual
inspection is judged by the deviation of actual P-values
from the expected straight line. The essence of the
statistic SB is to capture the extent of this deviation. Since
the usual type-I error reports the proportion of P-values
below a single fixed cutoff point (a nominal level), com-
monly chosen to be 5%, it is possible that there would be
a different degree of closeness to the nominal value at a
different cutoff point. In contrast, the statistic SB has an
advantage in that it gives a summary of the correspon-
dence of P-values with the null distribution for the entire
(0, 1) interval.

We denote the ordered set of P-values obtained from
B simulations as fpð1Þ; . . . ; pðBÞg. The random variable
that corresponds to the observed p(i) is denoted by P(i).
The summary statistic measuring the lack of fit to the null
distribution is

SB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B

XB

i¼1

½pðiÞ � EðPðiÞÞ�2
vuut : ð9Þ

Under the null hypothesis, the distribution of the order
statistics P(i) would be Beta(i, B – i 1 1) if the dis-
tribution of the test statistic was continuous and exact,
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rather than approximate. The computational formula
for SB is

SB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B

XB

i¼1

pðiÞ �
i

B 1 1

� �2

vuut : ð10Þ

Larger values of SB indicate larger deviations from the
null distribution. When P-values indeed come from the
null (uniform) distribution, we find the expected value
of this statistic to be

EðSBÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B

XB

i¼1

E½PðiÞ � EðPðiÞÞ�2
vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B

XB

i¼1

iðB � i 1 1Þ
ðB 1 1Þ2ðB 1 2Þ

vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

6ð1 1 BÞ

s
: ð11Þ

Thus, for any test statistic, the fit of P-values to the uniform
distribution can be simply evaluated by computing the
proposed statistic, SB. We report and compare the values
of SB for competing methods, in addition to the usual
empirical type-I error rates.

Performance of the tests under the alternative hypoth-
esis (HA) was characterized by statistical power. Power was
estimated as the proportion of P-values that fall below the
5% rejection threshold, using data sets generated under
HA.

RESULTS

Known haplotype phase: The goal of this section is to
compare performance of the proposed correlation-based
tests. The performance was evaluated in terms of the
classical type-I error and power. Additionally, the fit to
the null distribution was evaluated with the usage of the
coefficient SB, as described above. The following tests
were used in this study:

1. Correlation-based statistic T1 defined by (2).
2. Correlation-based statistic T2 defined by (3).
3. Cressie–Read’s power divergence statistic,

Cl ¼ 2

lðl 1 1Þ
Xk

i¼1

Xm

j¼1

nij
nij

eij

� �
l

�1

� �
ð12Þ

with l ¼ 2
3 (Cressie and Read 1984), where eij¼ ni�n�j/n

are the expected counts. C l has an asymptotic chi-
square distribution with (k – 1)(m – 1) d.f.

4. Likelihood-ratio (LR) statistic,

G2 ¼ 2
Xk

i¼1

Xm

j¼1

nij ln

�
nij

eij

�
¼ lim

l/0
Cl: ð13Þ

5. Pearson’s chi-square statistic,

X 2 ¼ 2
Xk

i¼1

Xm

j¼1

ðnij � eijÞ2
eij

¼ C1: ð14Þ

6. Permutation-based tests using statistics as defined
above, which we denote as Tp, G2

p ; Cl
p , and X 2

p. The
statistics T1 and T2 correspond to the same permu-
tational test, denoted by Tp.

7. Fisher’s exact test Fp, with the P-value approximated
by a permutation test using the statistic

Pk
i¼1Pm

j¼1 lnðnij !Þ.

The P-value for a permutation test is defined as the
proportion of times the test statistic computed from
randomly sampled tables was found to be as extreme or
more extreme than the statistic value for the original
data. These random tables are generated with marginal
counts constrained to be the same as that for the
observed data set. We used K ¼ 19,999 permutations to
compute each P-value, and the number of simulations in
all type-I error evaluation experiments was B¼ 100,000.
Oden (1991) showed that the value of K in simulation
experiments can be very much smaller than B. Boos and
Zhang (2000) suggested that K can be as small as 8

ffiffiffiffi
B
p

,
and if the significance level is a, the value should
preferably be such that (K 1 1)a is an integer. The
number of simulations to evaluate power was 10,000.

Tables 1–3 present results for the type-I error rates at
the nominal 5% level and the closeness of fit to the null
distribution as measured by the SB statistic. The tables of
haplotype counts in this set of simulations have fixed
margins and the cell counts are generated at random
to satisfy the marginal conditions. A similar approach
was used in the evaluation of small sample properties of
some common tests, such as Pearson’s chi square (e.g.,
Larntz 1978; Fienberg 1979). For example, the mar-
ginal frequencies in Table 2 are taken to be proportional
to (2:3:5) for the rows and (2:3:4:5:6) for the columns.
This matches the first setting of Table 6 in Larntz (1978).
Our values for Pearson’s X 2 and the LR statistic G2

replicate the type-I error results of Larntz, who used
sample sizes of 20–100. Across all simulations, our results
confirm the previous observations (Larntz 1978) that
the LR test (G2) has an inflated type-I error when sample
sizes are small to moderate.

Both of the proposed statistics, T1 and T2 show a
correct type-I error for the corresponding test. More-
over, examination of SB values indicates that small-to-
moderate sample size behavior of these statistics is such
that they provide the best fit to the null distribution
among the asymptotic/approximate tests studied here.
The simpler approximation, T2, shows the best fit.

Tables 4–7 present both power and the behavior
under H0, given in terms of the type-I error and the SB

values. The null distribution data sets corresponding to
the power results were generated by randomly shuffling
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the data generated under the association model, to pro-
duce new counts under the hypothesis of no association.
Sample sizes for different simulations are chosen de-
pending on the strength of the population association,
to provide intermediate to high power, and highlight
the difference between the tests.

The population association values for Tables 4–6 were
generated as follows. The association value for the cell
(i, j) can be measured in terms of LD, Dij¼ pij – piqj. The
maximum absolute value of Dij is constrained by the
marginal frequencies pi, qj and the association values
for all cells were set as proportions of the maximum
attainable value, D9ij (Lewontin 1964). The population
frequencies, pij, and the values of D9ij are given in
appendix b, Tables B1–B3. Samples for each simulation

experiment were obtained by multinomial sampling
from these population frequencies. Both of the pro-
posed tests (T1, T2) show type-I error rates close to the
nominal 5% level. The simple approximation T2 shows
the best fit to the null distribution among the asymptotic/
approximate tests. Moreover, the power corresponding to
T2 or its permutational equivalent Tp is somewhat higher
than that for the rest of the tests. These differences in
power are highly significant statistically, due to the paired
nature of the data (P-values) and the large number of
simulations.

As mentioned previously, in the known-phase case the
test for LD is equivalent to a test for interaction in a con-
tingency table. In principle, the tests based on the total
correlation can be used in a classical setting of testing

TABLE 1

Type-I error rates and values of the statistic measuring lack of fit to the null distribution, 1000 3 SB for 3 3 5
tables: row margins, 5:3:2; column margins, 2:3:4:5:6

N T2 T1 G 2 C 2/3 X 2 Tp G2
p C2=3

p X 2
p Fp

Type-I error
20 0.041 0.039 0.119 0.037 0.038 0.051 0.049 0.051 0.051 0.048
40 0.047 0.046 0.103 0.047 0.045 0.051 0.051 0.051 0.051 0.051
60 0.050 0.049 0.090 0.050 0.048 0.052 0.051 0.051 0.051 0.052
80 0.049 0.048 0.080 0.049 0.047 0.050 0.051 0.050 0.050 0.051
100 0.049 0.048 0.073 0.049 0.047 0.050 0.050 0.050 0.049 0.049
1000 0.051 0.050 0.052 0.051 0.051 0.050 0.051 0.051 0.051 0.051

1000 3 SB

20 55 56 200 78 58 0.94 17 1.1 2.1 28
40 26 28 120 43 30 1.5 1 1.5 1.4 1.3
60 15 17 77 27 18 1.3 1.3 1.3 1.4 1.4
80 10 12 54 19 13 1.3 1.6 1.5 1.5 1.5
100 8.6 10 41 16 11 0.57 0.68 0.48 0.53 0.56
1000 1 1.6 3.8 2.1 1.7 0.53 0.76 0.78 0.78 0.73

Expected value of 1000 3 SB for the uniform P-value distribution is 1000
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½6ð1 1 100; 000Þ�

p
¼ 1:29.

TABLE 2

Type-I error rates and values of the statistic measuring lack of fit to the null distribution, 1000 3 SB for 3 3 5
tables: row margins, 2:3:5; column margins, 2:3:4:5:6

N T2 T1 G 2 C 2/3 X 2 Tp G2
p C2=3

p X 2
p Fp

Type-I error
20 0.041 0.039 0.119 0.036 0.038 0.051 0.048 0.051 0.051 0.044
40 0.046 0.044 0.100 0.045 0.043 0.049 0.049 0.049 0.050 0.049
60 0.049 0.047 0.088 0.049 0.046 0.050 0.051 0.050 0.050 0.050
80 0.049 0.048 0.079 0.050 0.047 0.050 0.050 0.050 0.050 0.050
100 0.049 0.047 0.072 0.049 0.047 0.049 0.049 0.050 0.049 0.049
1000 0.051 0.050 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050

1000 3 SB

20 55 57 200 78 59 0.82 13 0.86 1.6 23
40 26 27 120 42 29 0.85 1.5 0.85 0.87 1.9
60 17 18 79 28 20 0.67 1.2 1.1 0.91 0.93
80 11 13 54 20 13 1.1 1.3 1.2 1.2 1.2
100 9.1 11 42 16 12 0.66 0.91 0.84 0.77 0.81
1000 1.7 1 3 1.2 0.81 0.77 0.78 0.76 0.76 0.75

Expected value of 1000 3 SB for the uniform P-value distribution is 1000
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½6ð1 1 100; 000Þ�

p
¼ 1:29.
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heterogeneity between several multinomial samples.
Although a detailed examination of the proposed tests
regarding this problem is beyond the scope of this
article, a simulation study (Table 7) confirms that the
proposed approach provides a competitive test. In the
5 3 5 tables used here, rows represent independent
samples taken from five populations; and columns rep-
resent five categories (such as sample-specific allele
frequencies). Population frequencies for each of the
simulations were generated from the Dirichlet distri-
bution with the common parameter, 20. A property
of this sampling is such that the 1 and 99% population
quantiles for the frequency of any of the five column
categories are 0.1 and 0.3, with mean frequency 0.2. This
range gives a measure of the between-population vari-
ability for each of the categories. Samples for each of the
five populations were generated by multinomial sam-
pling for each of the simulation runs. As before, data for
the hypothesis of homogeneity (H0) were obtained by

taking the sample generated as just described and re-
shuffling the counts under the constraints that the mar-
ginal frequencies of a particular sample are preserved.
Table 7 shows good properties of the proposed tests
under the hypothesis of no association. The power values
are found to be identical to those provided by Fisher’s
exact test. The asymptotic version of the LR test (G2)
shows a higher power; however, this value might be
unreliable, because the type-I error of this test was found
consistently inflated in all simulations.

Unknown haplotype phase: This section gives results
of the comparison between the two ‘‘LD correlation’’
statistics (T1, T2) and a chi-square test recently described
by Schaid (2004), which has similarity in that it also
utilizes the composite LD definition. Schaid’s test (S2)
corresponds to Pearson’s chi-square in the ‘‘known-
phase’’ case; however, there is no simple explicit expres-
sion for the test statistic in the ambiguous haplotype phase
case. The calculation of S 2 involves a generalized inverse

TABLE 3

Type-I error rates and values of the statistic measuring lack of fit to the null distribution, 1000 3 SB for 5 3 7
tables: row margins, 2:3:4:5:6; column margins, 1:2:3:4:5:6:7

N T2 T1 G 2 C 2/3 X 2 Tp G2
p C2=3

p X 2
p Fp

Type-I error
20 0.026 0.026 0.012 0.006 0.025 0.049 0.044 0.049 0.049 0.048
40 0.038 0.037 0.078 0.022 0.036 0.050 0.050 0.050 0.050 0.050
60 0.042 0.042 0.109 0.032 0.042 0.050 0.049 0.050 0.050 0.050
80 0.045 0.044 0.117 0.039 0.044 0.050 0.049 0.049 0.050 0.049
100 0.046 0.046 0.112 0.043 0.045 0.050 0.050 0.050 0.050 0.050
1000 0.051 0.050 0.057 0.050 0.050 0.050 0.050 0.050 0.050 0.050

1000 3 SB

20 98 99 180 84 98 0.85 32 0.81 1.3 68
40 47 48 180 47 48 0.56 3.3 0.47 0.54 5.9
60 29 30 190 39 31 0.55 0.62 0.65 0.65 0.89
80 20 21 170 34 22 1.5 1.9 1.6 1.5 1.7
100 17 18 150 30 18 1.2 1.3 1.1 1.1 1.2
1000 0.96 1.1 15 2 0.94 1.6 1.9 1.8 1.8 1.7

Expected value of 1000 3 SB for the uniform P-value distribution is 1000
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½6ð1 1 100; 000Þ�

p
¼ 1:29.

TABLE 4

Power and the corresponding H0 behavior for 4 3 3 tables at abs(D9) ± 0.5 (population parameters are defined
in Table B1 of APPENDIX B)

N T2 T1 G 2 C 2/3 X 2 Tp G2
p C2=3

p X 2
p Fp

Power
30 0.570 0.554 0.558 0.407 0.390 0.575 0.501 0.466 0.422 0.465
60 0.908 0.904 0.890 0.843 0.833 0.908 0.846 0.852 0.844 0.842

Type-I error
30 0.048 0.045 0.071 0.038 0.043 0.051 0.050 0.051 0.051 0.051
60 0.050 0.047 0.080 0.045 0.044 0.050 0.049 0.049 0.049 0.050

1000 3 SB

30 32 38 130 51 41 2.5 3.9 2.2 2.7 6.1
60 13 18 83 29 20 0.59 0.75 0.58 0.56 0.61

Expected value of 1000 3 SB for the uniform P-value distribution is 1000
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½6ð1 1 100; 000Þ�

p
¼ 1:29.
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of the covariance matrix of the sample composite LD. We
assume a common scenario when single-locus genotypes
are scored at each locus, without the knowledge about
arrangement of the alleles on haplotypes across the loci.

The first set of simulations was designed for a two-locus
linkage equilibrium system with five and seven alleles
correspondingly. Both loci have high population levels of
HWD. The amount of HWD and allele frequencies for
various simulation settings are given in the legend to
Table 8. The homozygote HWD values for the two loci
(D9ii) are given as proportions of the maximum possible
value. The heterozygote HW disequilibria are related to
these as

P
i 6¼j Dij ¼

P
i Dii=2. The simulation results

confirm that both the correlation-based tests and Schaid’s
test are robust in the presence of high levels of population
HWD. Similar to the known-phase results, the simple T2

approximation shows the best fit to the null distribution
(under the hypothesis of linkage equilibrium).

The second set of simulations was designed to eval-
uate power utilizing the population LD derived from an
actual set of human short tandem repeat (STR) poly-
morphisms, described in Rosenberg et al. (2002). We
took 30 STR loci from chromosome 1, using a combined
sample of 217 Middle-East and European individuals,

and identified seven pairs of loci in LD by an exact test
(Zaykin et al. 1995). The resulting set of loci used for
these simulations had 4–6 alleles after rare alleles were
grouped together. Two-locus counts of these data were
further used to set the population frequencies. These
fixed population frequencies were used to obtain multi-
nomial samples of individuals for each of the simula-
tions. Results of these simulations are shown in Table 9.
The permutational (‘‘exact’’) version of the correlation-
based tests, Tp was included as well. The fit to the null
(linkage equilibrium) distribution follows the same pat-
tern found in the previous simulations—the simple
approximation T2 shows a better fit than other nonexact
tests. The power values are found to be similar in all cases.

Correspondence between approximations and the
exact test for the total correlation: Overall, we found an
excellent agreement between P-values provided by
either of the approximations (T1, T2) and the exact P-
value given by the test Tp.

Figure 1, a and b, shows a very close P-value correspon-
dence between T2 and the its exact version, Tp. Figure 1a
plots the T2 P-values against the Tp P-values using the
subset of simulations used to produce Table 1 (N¼ 100).
Figure 1b is a similar plot for the unknown haplotype

TABLE 5

Power and the corresponding H0 behavior for 4 3 3 tables at abs(D9) ± 0.5 (population parameters
are defined in Table B2 of APPENDIX B)

N T2 T1 G 2 C 2/3 X 2 Tp G2
p C2=3

p X 2
p Fp

Power
30 0.526 0.510 0.488 0.342 0.318 0.529 0.435 0.397 0.343 0.401
60 0.892 0.885 0.864 0.790 0.771 0.888 0.823 0.806 0.782 0.795

Type-I error
30 0.049 0.045 0.068 0.038 0.046 0.050 0.050 0.051 0.050 0.049
60 0.052 0.048 0.072 0.045 0.047 0.051 0.051 0.050 0.050 0.051

1000 3 SB

30 29 36 120 44 35 3.8 5.2 3.8 4.4 6.8
60 12 18 91 30 20 1.1 0.96 1 1.1 1.2

Expected value of 1000 3 SB for the uniform P-value distribution is 1000
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½6ð1 1 100; 000Þ�

p
¼ 1:29.

TABLE 6

Power and the corresponding H0 behavior for 5 3 5 tables at abs(D9) 2 (0.19–0.21) (population parameters
are defined in Table B3 of APPENDIX B)

N T2 T1 G 2 C 2/3 X 2 Tp G2
p C2=3

p X 2
p Fp

Power
150 0.752 0.749 0.747 0.719 0.726 0.754 0.672 0.723 0.733 0.709
200 0.884 0.882 0.868 0.862 0.867 0.884 0.826 0.863 0.870 0.847

Type-I error
150 0.050 0.048 0.084 0.048 0.047 0.050 0.050 0.050 0.050 0.050
200 0.050 0.049 0.075 0.050 0.049 0.050 0.050 0.051 0.051 0.050

1000 3 SB

150 9.6 11 76 19 12 2.1 1.9 2.2 2.4 2
200 5 6.4 52 12 6.8 1.3 0.88 1.2 1.3 1.2

Expected value of 1000 3 SB for the uniform P-value distribution is 1000
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½6ð1 1 100; 000Þ�

p
¼ 1:29.
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phase data (locus pairs 11 and 23 from Table 9). For
comparison, Figure 1c plots T2 P-values against those
obtained by Pearson’s chi-square test (N¼ 100, data from
Table 1 simulations). There is no similar correspondence,
which indicates that the two statistics are capturing
somewhat different aspects of sample associations.

Figure 2 shows the correspondence between the
two correlation-based test approximations, T1 and T2.
Figure 2a illustrates the correspondence for the known

haplotype phase case (N ¼ 100; data for Table 1). Figure
2b illustrates a similar correspondence between the P-
values for the unknown haplotype phase case (data from
simulations to produce ‘‘setting I’’ in Table 8).

Due to closeness of P-values resulting from the T1 and
the T2 tests, and much greater simplicity of the T2-statistic
computation, we recommend its usage over the test
based on T1.

TABLE 7

Power and the corresponding H0 behavior for the ‘‘sample heterogeneity’’ model (5 3 5 tables)

N T2 T1 G2 C2/3 X 2 Tp G2
p C2=3

p X 2
p Fp

Power
100 0.655 0.655 0.670 0.658 0.655 0.657 0.656 0.658 0.657 0.657
150 0.836 0.835 0.841 0.835 0.835 0.836 0.836 0.836 0.835 0.836

Type-I error
100 0.050 0.050 0.054 0.050 0.050 0.050 0.050 0.050 0.050 0.050
150 0.049 0.049 0.052 0.049 0.049 0.049 0.049 0.049 0.049 0.049

1000 3 SB

100 2.9 2.9 10 4 3 1.2 1.1 1.2 1.2 1.1
150 2.9 2.9 8.3 3.8 2.9 1.6 1.7 1.6 1.6 1.7

Expected value of 1000 3 SB for the uniform P-value distribution is 1000
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½6ð1 1 100; 000Þ�

p
¼ 1:29.

TABLE 8

Type-I error and values of the statistic measuring lack of fit to
the null distribution, 1000 3 SB, for the composite LD tests:

locus A, five alleles; locus B, seven alleles; n ¼ 100

Setting T2 T1 S2

Type-I error
I 0.050 0.046 0.045
II 0.044 0.043 0.043
III 0.050 0.046 0.045
IV 0.051 0.049 0.049
V 0.050 0.049 0.048

1000 3 SB

I 12.2 15.2 15.8
II 14.0 16.0 16.4
III 8.2 11.6 11.2
IV 8.0 10.1 10.9
V 5.2 5.8 6.1

Setting I: locus A, pi, 0.15, 0.22, 0.15, 0.23, 0.25 and D9ii , �1,
0.13, �1, 0.20, 0.12; locus B, qi, 0.16, 0.17, 0.11, 0.16, 0.16,
0.18, 0.05 and D9ii , 0.10, 0.09, �1, 0.10, 0.10, 0.07, 1. Setting
II: locus A, pi, 0.20, 0.18, 0.20, 0.20, 0.22 and D9ii , 0.25, 1, 0.25,
0.25, 0.32; locus B, qi, 0.14, 0.14, 0.12, 0.16, 0.16, 0.14, 0.14
and D9ii , 0.17, 0.17, 1, 0.23, 0.23, 0.17, 0.17. Setting III: locus
A, pi, 0.18 0.18, 0.16, 0.24, 0.25 and D9ii , �0.37, �0.37, �0.20,
0.24, 0.17; locus B, qi, 0.11, 0.15, 0.13, 0.14, 0.15, 0.16, 0.17
and D9ii , 0.40, �0.31, �0.14, �0.19, 0.25, 0.22, 0.18. Setting
IV: locus A, pi, 0.23, 0.38, 0.38 and D9ii , 0.57, 0.68, 0.68; locus
B, qi, 0.22, 0.25, 0.27, 0.27 and D9ii , �0.35, �0.5, �0.56, �0.56.
Setting V: locus A, pi, 0.32, 0.32, 0.35 and D9ii , 0.60, 0.60, 0.48;
locus B, qi, 0.26, 0.24, 0.24, 0.26 and D9ii , 0.55, 0.67, 0.67, 0.55.
Expected value of 1000 3 SB for the uniform P-value distribution
is 1000

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½6ð1 1 10; 000Þ�

p
¼ 4:08.

TABLE 9

Human diversity panel results

Locus pair n T2 T1 S2 Tp

Power
15/16 50 0.785 0.768 0.730 0.780
9/16 150 0.870 0.861 0.857 0.863
19a/23 150 0.882 0.874 0.874 0.880
11/23a 150 0.814 0.805 0.791 0.809
5/12 150 0.775 0.762 0.790 0.765
23a/25 150 0.957 0.955 0.952 0.956
21/26 100 0.848 0.838 0.870 0.842

Type-I error
15/16 50 0.050 0.044 0.043 0.044
9/16 150 0.053 0.047 0.044 0.047
19a/23 150 0.050 0.047 0.047 0.050
11/23a 150 0.051 0.047 0.047 0.050
5/12 150 0.051 0.047 0.048 0.050
23a/25 150 0.048 0.045 0.046 0.047
21/26 100 0.051 0.048 0.048 0.049

1000 3 SB

15/16 50 18.9 25.3 26.6 3.5
9/16 150 3.4 7.8 7.9 2.9
19a/23 150 2.8 6.7 6.9 4.3
11/23a 150 5.1 9.0 9.1 2.7
5/12 150 5.1 9.6 9.1 4.2
23a/25 150 4.7 7.6 8.4 2.6
21/26 100 10.9 14.9 14.9 3.4

Expected value of 1000 3 SB for the uniform P-value distri-
bution is 1000

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½6ð1 1 10; 000Þ�

p
¼ 4:08. Locus abbrevia-

tions: 5, ATA47D07; 9, GATA26G09; 11, GATA109; 12,
GATA6A05; 15, ATA25E07; 16, ATA42G12; 19, GGAA5F09;
21, ATA4E02; 23, GATA48B01; 25, GATA4H09; 26, ATA29C07.

a Loci in HWD.

540 D. V. Zaykin, A. Pudovkin and B. S. Weir



DISCUSSION

We introduce correlation-based testing for linkage
disequilibrium with multiple alleles. Following earlier
work by Weir (1979) and Schaid (2004) we adopt the
usage of the composite LD that provides robust infer-
ence even under conditions of high deviations from
HWE. Simulations confirm that the test maintains the
proper error rate even when the HWD reaches its
maximum value for some of the genotypes. Our ap-
proach provides several advantages. The behavior of the
proposed method under the hypothesis of no associa-

tion is found to be consistently closer to the expected
than that of other ‘‘nonexact’’ tests included in this
study. Values of the statistic SB that we introduced for
evaluation of the null distribution of the studied test
statistics show that in 35 of 38 experiments, the approx-
imation T2 was closer to its null expected value than the
chi-square statistic (Tables 1–9). Power evaluations
suggest that the correlation-based tests provide higher
power than other tests under the alternatives where
associations are present among multiple pairs of alleles
(Tables 4–6). The novelty and advantages of our
approach also include tractability of the corresponding

Figure 1.—(a) Plots of T2 P-values against the Tp P-values for the known haplotype phase simulations. (b) Plots of T2 P-values
against the Tp P-values for the unknown haplotype phase simulations. (c) Plots of T2 P-values against Pearson’s x2 P-values for the
known haplotype phase simulations.
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test statistic, simplicity, and high speed of computations.
The relation of the sum of squared LD correlations to
chi-square extends the well-known relation for the two-
allele case and thus may have implications for the design
of genetic association studies. Good power properties of
the test based on a simple statistic T2 ¼ ðk � 1Þðm �
1Þn�r 2 give justification for usage of the average correla-
tion to characterize and compare multiallelic LD in
various settings, including estimation of the effective
population size (Waples 2006) and fine mapping of
genetic traits, where LD coefficients could be compared
between samples with and without a specific disease
(Nielsen et al. 2004; Zaykin et al. 2006). Further work
may include investigation of confidence intervals for R 2,
on the basis of the proposed chi-square approximation.

Although the method is motivated by testing the LD,
the test provides high power when used to detect hetero-
geneity among samples in contingency tables. For exam-
ple, the correlation-based test can be used to compare
allele or genotype frequencies (columns) between sam-
ples from several populations, represented by rows in
a contingency table. In this setting, the power is very
similar to the power of common tests such as Pearson’s
chi-square and Fisher’s exact test. Further study may be
required to fully investigate properties of this test as
a general purpose test for detecting interactions and
heterogeneity in contingency tables.

A computer program implementing the methods
described here is available at (http://www.niehs.nih.
gov/research/atniehs/labs/bb/staff/zaykin/rxc.cfm)
or by a request to D.V.Z. The provided implementation
computes average correlations with the corresponding
P-values on the basis of the T2 statistic, using multilocus
genotype data. For those P-values that fall below a user-
specified threshold, a Monte Carlo P-value is reported as
well. This approach allows rapid computations for large
collections of loci. Correlation-based tests for contin-
gency tables are implemented as well.

Shyamal Peddada and David Umbach provided useful discussion.
Noah Rosenberg provided STR genotypes for deriving data sets used
in the simulation study. Daniel Schaid and Jason Sinnwell provided a
program implementing Schaid’s S2 test. This research was supported
in part by the Intramural Research Program of the National Institutes
of Health (NIH), National Institute of Environmental Health Scien-
ces, and by NIH GM 07591.
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APPENDIX A

We denote the km 3 1 vectors of population and
sample frequencies by P and P̃; the elements of P̃ are the
observed haplotype frequencies, p̃ij ¼ nij=N . Under the
null hypothesis, H0: P ¼ P0, we have that

ffiffiffiffiffi
N
p
ðP̃� P0Þ

converges in distribution to a multivariate normal. Row
and column frequencies for the table of haplotype
frequencies correspond to the vectors of allele frequen-
cies at the two loci: p, {p1, . . . , pk}T; q, {q1, . . . , qm}T. For
complete absence of linkage disequilibrium, the vector
of frequencies is a (km 3 1) Kronecker product,

P0 ¼ p 5 q ¼ fp1q1; p1q2; . . . ; piqj ; . . . ; pkqmgT

and the vector of expected (equilibrium) sample fre-
quencies is based on sample values

P̃0 ¼ fp̃1q̃1; p̃1q̃2; . . . ; p̃i q̃j ; . . . ; p̃k q̃mgT :

Under H0, the covariance matrix of P̃ is

VarðP̃Þ ¼ 1

N
ðdiagðP0Þ � P0PT

0 Þ;

and the variance of ðP̃� P̃0Þ is

VarðP̃� P̃0Þ ¼
1

N
ðdiagðpÞ � ppT Þ5ðdiagðqÞ � qqT Þ

(Holt et al. 1980). The contingency table Pearson’s chi-
square statistic is

X 2 ¼ N
Xk

i¼1

Xm

j¼1

ðp̃ij � p̃i q̃jÞ2
p̃i q̃j

: ðA1Þ
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Denote

VP ¼ diagðP0Þ � P0PT
0

V ¼ ðdiagðpÞ � ppT Þ5ðdiagðqÞ � qqT Þ

G ¼ diag f1=
ffiffiffiffi
p̃i

p
g5f1=

ffiffiffiffi
q̃i

p
g

h i
C ¼ diag f1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃ið1� p̃iÞ

p
g5f1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̃ið1� q̃iÞ

p
g

h i
Z ¼ GðP̃� P̃0Þ
R ¼CðP̃� P̃0Þ:

The notation {�} above denotes vectors; e.g., f1= ffiffiffiffi
pi
p g[

f1= ffiffiffiffiffi
p1
p

; . . . ; 1=
ffiffiffiffiffi
pk
p g. The elements of the vectors Z and

R are

Z ¼ p̃ij � p̂i q̂jffiffiffiffiffiffiffiffi
p̃i q̃j

p
( )

ðA2Þ

R ¼ p̃ij � p̃i q̃jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃ið1� p̃iÞq̃jð1� q̃iÞ

p
( )

: ðA3Þ

The elements of R are sample correlations for each pair
of alleles, and RT R ¼

P
i;j r 2

ij is the sum of squared
correlations for the entire table.

Pearson’s X 2 in (A1) can be expressed differently,
using either the vector of the chi-square contributions,
Z, or the vector of correlations, R,

1

N
X 2 ¼ RT ðCṼ�CÞR ðA4Þ

¼ ZT ðGṼ�GÞZ ðA5Þ

¼ ZT Z; ðA6Þ

where V� denotes a generalized inverse of V. The
reduction to a simple sum was given by Pearson (1922).

Our primary interest is in the approximate distribu-
tion of RT R. For any multivariate normal vector Z* with
covariance matrix V*, the distribution of (Z*)T Z* is that
of
P

i lix
2
i , where li denote the nonzero eigenvalues of

V* and x2
i are the 1-d.f. chi-square variables (Box 1954).

The asymptotic covariance matrix of
ffiffiffiffiffi
N
p

Z is idempotent
with all (k – 1)(m – 1) nonzero eigenvalues being equal
to 1. Hence, the sum of NZ 2

ij , that is, ð
ffiffiffiffiffi
N
p

ZT Þð
ffiffiffiffiffi
N
p

ZÞ, has
an asymptotic x2-distribution. In contrast to (GVG), the
matrix (CVC) with (k – 1)(m – 1) positive eigenvalues
is not idempotent. Therefore, NRT R does not have an
asymptotic x2-distribution. Box (1954) suggested that
the distribution of weighted chi-square variables,P

wix
2
ðviÞ, where each chi square is with the degrees of

freedom vi, can be approximated by a scaled chi-square
distribution, sx2

ðdÞ, where

s ¼
P

viw
2
iP

viwi
ðA7Þ

d ¼ ð
P

viwiÞ2P
viw

2
i

: ðA8Þ

The degrees of freedom d need not be integral. In the
case of a sum of correlations, all vi ¼ 1, and the weights
are computed from the eigenvalues of

VR ¼ ðCṼCÞ: ðA9Þ

Since only the sums of eigenvalues or of their squares
are needed, and not the eigenvalues themselves, the
computations simplify substantially:X

wi ¼ traceðVR Þ ¼ km ðA10Þ

X
w2

i ¼ traceðVR VRÞ: ðA11Þ

This makes use of the fact that eigenvalues of a squared
matrix are given by squared eigenvalues of that matrix
and that the trace of a symmetric matrix is given by the
sum of its eigenvalues. Therefore, for our first scaled chi-
square approximation we have

N RT R

s
�app

x2
ðdÞ; ðA12Þ

where ‘‘�app
’’ stands for ‘‘approximately distributed’’

and

s ¼ traceðVR VRÞ
km

ðA13Þ

d ¼ ðkmÞ2
traceðVR VRÞ

: ðA14Þ

In the second and much simpler approximation, we set
the degrees of freedom equal to (k – 1)(m – 1), which is
the number of nonredundant disequilibrium coeffi-
cients, Dij ¼ pij – piqj, and note the expected values

EðN RT RÞ ¼ N
km

N
¼ km

Eðsx2
ðdÞÞ ¼ sd

Varðsx2
ðdÞÞ ¼ Eðx2

ðdÞÞ
h i2 2

d
: ðA15Þ

By matching moments, the scale parameter is found to
be s ¼ km=½ðk � 1Þðm � 1Þ�. Thus, we obtain our second
approximate distribution as

N ðk � 1Þðm � 1Þ
km

RT R �app
x2
ðk�1Þðm�1Þ: ðA16Þ

Note that RTR/(km) is just the average squared
correlation. Waples (2006) noted that approxi-
mately, the distribution of such a coefficient might
be a chi square and that with k alleles per locus, the
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number of independent comparisons (and thus the
degrees of freedom) for a comparison of two loci
should be (k – 1)2. Nevertheless, he did not provide a
distribution explicitly.

APPENDIX B

Tables of population joint frequencies (pij) to provide
a specified amount of association (measured by D9) for
the power study.

TABLE B1

The 4 3 3 table of joint frequencies with the corresponding
level of association

pij\D9 Sum

0.0871\0.5 0.1567\0.5 0.1134\�0.5 0.357
0.0133\�0.5 0.0240\�0.5 0.1697\0.5 0.207
0.0107\�0.5 0.0192\�0.5 0.1359\0.5 0.166
0.0174\�0.5 0.0313\�0.5 0.2213\0.5 0.270

Sum 0.128 0.231 0.640

Absolute values of D9 for this set of simulations are set to
be ±0.5.

TABLE B2

The 4 3 3 table of joint frequencies with the corresponding
level of association

pij\D9 Sum

0.0844\0.5 0.0114\�0.5 0.0106\�0.5 0.106
0.1390\�0.5 0.1534\0.5 0.1437\0.5 0.436
0.0803\0.5 0.0108\�0.5 0.0101\�0.5 0.101
0.2825\0.5 0.0381\�0.5 0.0356\�0.5 0.356

Sum 0.586 0.214 0.200

Absolute values of D9 for this set of simulations are set to
be ±0.5.

TABLE B3

The 5 3 5 table of joint frequencies with the corresponding level of association, pij\D9

pij\D9 Sum

0.1183\0.20 0.0233\�0.20 0.0434\�0.21 0.0529\�0.20 0.0385\�0.20 0.277
0.0233\�0.20 0.0086\�0.20 0.0365\0.20 0.0196\�0.20 0.0142\�0.20 0.102
0.0228\�0.20 0.0084\�0.20 0.0357\0.20 0.0192\�0.20 0.0139\�0.20 0.100
0.0399\�0.19 0.0147\�0.20 0.0275\�0.20 0.0335\�0.20 0.0592\0.20 0.175
0.0791\�0.19 0.0502\0.20 0.0545\�0.20 0.1143\0.20 0.0483\�0.20 0.346

Sum 0.284 0.105 0.198 0.239 0.174

Absolute values of D9 for this set of simulations are set to be in the range 0.19–0.21.
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