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and ‡Universidad Autónoma Chapingo, CP 56230, Carretera México-Texcoco, Chapingo, Estado de México, México
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ABSTRACT

The traditional molecular selection index (MSI) employed in marker-assisted selection maximizes the
selection response by combining information on molecular markers linked to quantitative trait loci (QTL)
and phenotypic values of the traits of the individuals of interest. This study proposes an MSI based on an
eigenanalysis method (molecular eigen selection index method, MESIM), where the first eigenvector is used
as a selection index criterion, and its elements determine the proportion of the trait’s contribution to the
selection index. This article develops the theoretical framework of MESIM. Simulation results show that the
genotypic means and the expected selection response from MESIM for each trait are equal to or greater than
those from the traditional MSI. When several traits are simultaneously selected, MESIM performs well for
traits with relatively low heritability. The main advantages of MESIM over the traditional molecular selection
index are that its statistical sampling properties are known and that it does not require economic weights and
thus can be used in practical applications when all or some of the traits need to be improved simultaneously.

MARKER-ASSISTED selection (MAS) is an impor-
tant breeding tool in which molecular marker

alleles linked to quantitative trait loci (QTL) that control
phenotypic variables of important traits are selected.
Marker-assisted selection can be more efficient than
selecting individuals on the basis of phenotypic trait
values. Progeny of specific progenitors can be selected
on the basis of molecular markers as long as these are
associated with breeding values of the traits under
consideration. This is one form of MAS (Dekkers and
Dentine 1991; Arus and Moreno-Gonzalez 1993).
Another form of MAS is based on the molecular selection
index (MSI) proposed by Lande and Thompson (1990).
In MSI the selection response is maximized by combin-
ing information on molecular markers linked to QTL
and the phenotypic values of the traits of interest.

To construct an MSI, it is necessary to identify the
linkage between the molecular marker and the QTL, the
estimated effect of the QTL linked to the molecular
marker (MQTL effect), and the combination of MQTL
effects and phenotypic information that allows geno-
types to be classified and selected using a selection
index. The MQTL effects can be identified and esti-
mated through the linkage disequilibrium that arises
when crossing inbred lines or divergent populations
(Zhang and Smith 1992, 1993; Xie and Xu 1998). The
MSI depends on various factors, such as number and

density of molecular markers associated with QTL,
population size, trait heritability, additive genetic var-
iances that can be explained by molecular markers, and
precision of the estimated effect of gene substitution
(Dekkers and Dentine 1991; Moreau et al. 2000).

The MSI is an application of the selection index
methodology proposed by Smith (1936), in which
MQTL effects are incorporated. As proposed by Lande

and Thompson (1990), the MSI performs a linear re-
gression of phenotypic values on the coded values of the
molecular markers such that selected molecular mark-
ers are those statistically linked to QTL that explain
most of the variability in regression models. The co-
efficient of regression of the molecular marker is the
MQTL effect. Statistical models and methods for
mapping QTL and estimating their MQTL effects have
been developed ( Jansen 2003). Several authors have
pointed out the effectiveness of the MSI in inbred
populations with large population sizes and traits with
low heritability values (Zhang and Smith 1992, 1993;
Gimelfarb and Lande 1994, 1995; Whittaker 2003)
when only one trait (and its associated molecular score)
is considered.

The selection index theory was originally developed
by Smith (1936) and generalized by Kempthorne and
Nordskog (1959) for a restrictive selection index. The
standard selection index is defined as a linear combina-
tion of the observed phenotypic values of the traits of
interest with the traits’ previously defined economic
weights. Selection indexes are based on improving one
trait by incorporating information on related traits (Wei
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et al. 1996; Falconer and Mackay 1997) or incorporat-
ing information on MQTL effects by means of the MSI;
other selection indexes are based on improving several
traits simultaneously, which requires assigning economic
weights to each trait, as proposed by Smith (1936).

Moreau et al. (2000) and Whittaker (2003) found
that the MSI is more effective than Smith’s selection
index only in early generation testing and has the
additional disadvantage of increased costs due to molec-
ular marker evaluation. Selection intensity must also be
considered because it affects genetic marker means and
the ability to detect QTL (Wu et al. 2000). Furthermore,
since selection increases the frequency of the QTL’s
favorable allele, as well as the allele of the molecular
marker linked to it, total variability in the selected
sample is reduced (Mackinnon and Georges 1992).

The MSI has the same advantages and disadvantages
as Smith’s selection index; it is simple to use but its
sampling statistical properties and selection response
are unknown, except in the case of two traits (Hayes and
Hill 1980). Even for two traits, the statistical properties
of Smith’s selection index and its selection response,
obtained using the delta method, are difficult to use and
evaluate (Harris 1964); furthermore, it is not easy to
consistently assign economic weights to the traits.

Recently, Cerón-Rojas et al. (2006) developed a
selection index based on eigenanalyses of the pheno-
typic variance–covariance (or correlation) matrix of the
traits of interest (called the eigen selection index
method, ESIM). The authors showed that ESIM does
not require economic weights or estimates of the ge-
notypic variances–covariances. In ESIM the elements of
the first eigenvector determine the proportion each
trait contributes to the selection index, and the first
eigenvalue is used in the selection response. From a
theoretical perspective, Cerón-Rojas et al. (2006) dem-
onstrated that selection responses from Smith’s selec-
tion index and from ESIM are the same, except for
differences in selection index coefficients due to the
different estimation methods. In addition, the ESIM of
Cerón-Rojas et al. (2006) allows constructing a function
to estimate gains (or losses) between selection cycles
and predicting the selection response for future selec-
tion cycles. Following the restrictive selection index of
Kempthorne and Nordskog (1959), Cerón-Rojas

et al. (2008) developed a restrictive ESIM (RESIM) that
facilitates maximizing the genetic progress of some
characters while leaving the others unchanged.

In this article we develop a molecular selection index
(molecular eigen selection index method, MESIM)
based on the RESIM of Cerón-Rojas et al. (2008) and
the molecular selection index developed by Lande and
Thompson (1990), using the selection index method-
ology proposed by Smith (1936), in which MQTL effects
are incorporated. Simulated data were generated for
comparing the selection response based on various
selection indexes: (1) MESIM vs. Lande and Thompson

(1990), (2) RESIM vs. the restrictive selection index
of Kempthorne and Nordskog (1959), and (3) ESIM
vs. the Smith selection index (Smith 1936). Practical
and theoretical properties of estimators from MESIM,
RESIM, ESIM, the Lande and Thompson molecular
selection index, the Smith selection index, and the
restrictive selection index of Kempthorne and Nordskog
are discussed. The efficiency of MESIM, the Lande and
Thompson molecular selection index, ESIM, the Smith
selection index, and the restrictive selection index of
Kempthorne and Nordskog is evaluated using the ge-
notypic means of the selected individuals. The theory
of RESIM is described in Cerón-Rojas et al. (2008).

THEORY OF SELECTION INDEXES

Smith’s selection index: Details of Smith’s selection
index (SI) are given in Cerón-Rojas et al. (2006, 2008).
A brief description follows. Smith’s selection index is
based on the linear combinations

SI ¼ Y ¼ b9p and Z ¼ u9g; ð1Þ

where p9 ¼ ½p1 . . . pq � is the vector of the phenotypic
values and b9 ¼ ½b1 . . . bq � is the vector of coefficients of
p, Z is the breeding value, g9 ¼ ½g1 . . . gq � is the vector
of genotypic values, and u9 ¼ ½u1 . . . uq � is the vector of
economic weights. The phenotypic values pj ( j ¼ 1,
2, . . . , q) are modeled as pj ¼ gj 1 ej , where gj is the
genotypic value of the jth trait and ej is the environ-
mental component. Assuming that gj and ej are in-
dependent and that gj represents only additive effects,
Z ¼ u9g denotes the breeding value (Hazel 1943;
Kempthorne and Nordskog 1959). Hence, selection
based on Y ¼ b9p leads to a selection response

R ¼ ksZ rYZ ¼ ksZ
u9Sbffiffiffiffiffiffiffiffiffiffiffi

u9Su
p ffiffiffiffiffiffiffiffiffiffiffi

b9Sb
p ; ð2Þ

where S and S are the variance–covariance matrices of
genotypic and phenotypic values, respectively, k is the
standardized selection differential, u9Sb is the covari-
ance between Y and Z , b9Sb is the variance of Y , s2

Z ¼
u9Su is the variance of Z , and rYZ is the correlation
between Y and Z .

In Smith’s selection index, the vector bS ¼ S�1Su
(where the subscript S denotes Smith’s method and S�1

is the inverse of the phenotypic variance–covariance
matrix, S) allows us to construct the SI, Y ¼ b9Sp, that
maximizes the correlation with the breeding value
Z ¼ u9g.

Molecular selection index: Lande and Thompson

(1990) extended Equation 1 to include the case where
information on QTL associated with molecular markers is
available and denoted the molecular selection index as

YM ¼ b9pp 1 b9mm

¼ ½b9p b9m �
p

m

� �
; ð3Þ
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where bp is a vector of phenotypic weights, bm is the
vector of weights of the molecular score, p is the vector
of phenotypic values, and m9 ¼ ½m1 . . . mN �, where each
mj ( j ¼ 1, 2, . . . , N; N ¼ number of molecular scores) is
the jth molecular score given by the the sum of the
products of the estimated additive effect of the QTL
linked to the molecular marker (MQTL effects) multi-
plied by the coded values of their corresponding
molecular markers. The response to this molecular
selection index may be written as

RM ¼ ksMrYMZM
¼ ksM

u9MSMbMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u9MSMuM

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b9MSMbM

p ; ð4Þ

where

SM ¼
S M
M M

� �
; SM ¼

S M
M M

� �
;

k has been defined as in Equation 2, s2
M ¼ u9MSMuM is

the variance of the breeding value (ZM ¼ u91g 1 u92m),
u9M ¼ ½u91 u92� is a vector of economic weights (in the
standard molecular selection index, u2 is a vector of
zeros), b9M ¼ ½b9P b9m� is a vector containing phenotypic
(bp) and molecular (bm) weight scores, S and S are the
variance–covariance matrices defined in Equation 2,
and M ¼ VarðmÞ is the variance–covariance matrix of
the molecular scores when two or more traits are con-
sidered (Lande and Thompson 1990). Only statistically
significant additive MQTL effects are included in m.

The vector bMSI ¼ S�1
M SMuM allows constructing the

molecular selection index YMSI ¼ b9MSIppm that has
maximum correlation (rYMZM

) with ZM ¼ u91g 1 u92m
(the subscript MSI in bMSI denotes Lande and Thomp-
son’s molecular selection index method). In YMSI ¼
b9MSIppm, p9pm ¼ ½p9 m9� (Equation 3). The variance
of YMSI is Var(Y MSI) ¼ u9MSMS�1

M SMuM and the maxi-
mized selection response can be written as RMSI ¼
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b9MSISMbMSI

p
. Estimators of bp and bm (b̂p and b̂m)

for various traits are obtained directly from the
estimators of S, S, and M (Ŝ, Ŝ, and M̂) and from the
vector uM.

MESIM

Using a concept similar to that of Kempthorne and
Nordskod (1959), which maximizes the selection re-
sponse (Equation 2) by maximizing the square of the
correlation between Y and Z (Equation 1) and utilizing
basic concepts from Cerón-Rojas et al. (2008), it can be
shown that Equation 4 is maximized by maximizing
r2

YMZM
. The key point when maximizing r2

YMZM
is that

the variances (or standard deviations) of YM ¼
b9pp 1 b9mm and ZM ¼ u91g 1 u92m are constants in each
selection cycle. Thus, the selection of genotypes can be
done using either YM or YM=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b9MSMbM

p
. Because of this

fact, when maximizing r2
YMZM

it is possible to impose
restrictions b9MSMbM ¼ 1 and u9MSMuM ¼ 1 such that, in
MESIM, it is required to maximize

F ¼ ðu9MSMbMÞ2 � mðb9MSMbM � 1Þ � vðu9MSMuM � 1Þ

with respect to bM, uM, m, and v, where bM is the vector
of MESIM coefficients, uM is the vector of economic
weights, and m and v are Lagrange multipliers. In
MESIM it is assumed that uM is not a vector of constants.

When F is derived with respect to bM and uM

(appendix) and the result is set to the null vector, it
follows that

ðu9MSMbMÞSMuM � mSMbM ¼ 0 ð5Þ

ðu9MSMbMÞSMbM � vSMuM ¼ 0: ð6Þ

Because the two restrictions b9MSMbM ¼ 1 and
u9MSMuM ¼ 1, when Equation 5 is multiplied by b9M
and Equation 6 is multiplied by u9M, the result is
(u9MSMbM)2 ¼ v ¼ m. Hence, m maximizes r2

YMZM
under

the restrictions b9MSMbM ¼ 1 and u9MSMuM ¼ 1.
The following task is to determine the vector bM that

allows constructing YM that maximizes its correlation
with ZM ¼ u91g 1 u92m. The appendix shows that the
required bM is the solution to the equality

ðQ� mIÞbM ¼ 0; ð7Þ

where Q ¼ S�1
M SM. Thus, for MESIM, the value that

maximizes r2
YMZM

under restrictions b9MSMbM ¼ 1 and
u9MSMuM ¼ 1 is the first eigenvalue (m) of matrix Q, and
the vector that allows constructing YM (with maximum
correlation with ZM ¼ u91g 1 u92m) is the first eigenvector
of matrix QðbMÞ.

Let m and bM ¼ bMESIM be the first (largest) eigen-
value and its corresponding Q eigenvector, respectively;
then, the selection index in the context of MESIM
is YMESIM ¼ b9MESIMppmðp9pm ¼ ½p9 m9�Þ and, because
(u9MSMbM)2 ¼ m, the maximized selection response can
be written as RMESIM ¼ k

ffiffiffiffi
m
p

. From ðQ� mIÞbM ¼ 0 it is
possible to determine the bM -coefficients of YM ¼
b9pp 1 b9mm (Equation 3), b9M ¼ ½b9P b9m�. Although the
partial derivatives of F are obtained with respect to bM

and uM, in estimating YMESIM and RMESIM ¼ k
ffiffiffiffi
m
p

, the
vector of economic weights (uM) is not required because
bM and m are obtained directly from matrix Q.

Note that when information on the QTL linked to
the molecular markers is not incorporated into the
selection index, i.e., when Y ¼ b9p, Z ¼ u9g, and
R ¼ ksZ

u9Sbffiffiffiffiffiffiffiffi
u9Su
p ffiffiffiffiffiffiffiffi

b9Sb
p , then Equation 7 can be written as

ðS�1S� mIÞb ¼ 0 ð8Þ

from which it is evident that Q ¼ S�1S. Equation 8 can
be considered a variant of the procedure developed by
Cerón-Rojas et al. (2006) for cases where the assump-
tion of ESIM (Su ¼ b) is relaxed.

As indicated by Ceron-Rojas et. al. (2008), the
maximized selection response, RMSI ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b9MSISMbMSI

p
or RMESIM ¼ k

ffiffiffiffi
m
p

, gives a general theoretical assessment
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of the gain for all traits considered simultaneously
but does not provide genetic gains per trait at each
selection cycle. Alternatively, the expected selection
response (Baker 1986; Van Vleck 1993) determines
the expected genetic gain per trait per selection cycle
DG ¼ kðSMbM=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b9MSMbM

p
Þ. However, DG estimates

the expected value of the genetic gains with low pre-
cision; thus in our simulated data we used the genotypic
means of the selected individuals and the regression of
the genotypic means of the selected individuals on the
selection cycles for evaluating the efficiency of MESIM,
RESIM, ESIM, the Lande and Thompson molecular
selection index, the restrictive selection index of Kemp-
thorne and Nordskog, and the Smith selection index on
the response to selection.

Matrix Q is square and nonsymmetric of order q 3 q
(where q is the total number of variables: phenotypic
and molecular scores):

Q ¼ S�1
M SM ¼

ðS�MÞ�1ðS�MÞ 0

I� ðS�MÞ�1ðS�MÞ I

" #
: ð9Þ

Therefore, it is not possible to construct a subset of
orthogonal vectors from Equation 7. However, orthog-
onal vectors from Q can be calculated by means of sin-
gular value decomposition (SVD) (Mardia et al. 1982).
Using SVD, Q can be written as

Q ¼ UDV9; ð10Þ

where the columns of matrix U (U9U ¼ I) are the left
singular vector of Q, and the columns of matrix V
(V9V ¼ I) are the right singular vector of Q; D is a di-
agonal matrix with the square root of the eigenvalues
(singular values) of QQ9 or Q9Q (the eigenvalues of
QQ9 and Q9Q are the same).

The problem now is to determine the following:
From where should the first singular vector for con-
structing YMESIM be taken, from U or from V? Note that
Equation 10 can be written as QV ¼ UD, from which it is
evident that if m is the first singular value of Q, and v1

and u1 are its associated left and right first singular
vectors, respectively, then Qv1 ¼ mu1, from which

u1 ¼ m�1S�1
M Sv1. Let bMESIM ¼ u1; then bMESIM is a

linear transformation of v1. The estimators of m ¼
mMESIM and bMESIM are obtained from Q̂Q̂9, such that
ðQ̂Q̂9� m̂2

MESIMIÞb̂MESIM ¼ 0. According to Anderson

(2003), m̂2
MESIM and b̂MESIM are the maximum-likelihood

estimators of the eigenvector and the eigenvalue of
QQ9, respectively, and are asymptotically consistent
and unbiased. The estimators of Q, U, V, and D are Q̂,
Û, V̂, and D̂, respectively, so Q̂ ¼ ÛD̂V̂9. These results
allow estimating YMESIM as ŶMESIM ¼ b̂MESIM ppm. Asymp-
totically, EðŶMESIMÞ � YMESIM.

When only one trait and its molecular scores are
considered,

SM ¼
s2 s2

m

s2
m s2

m

� �
; SM ¼

s2
g s2

m

s2
m s2

m

� �
;

and

Q ¼

s2
g�s2

m

s2�s2
m

0

s2�s2
g

s2�s2
m

1

2
64

3
75:

When s2
m ¼ 0, then

SM ¼ s2 0
0 0

� �
; SM ¼ s2

g 0
0 0

� �
; and Q ¼ h2 0

0 0

� �
;

where s2 and s2
g are the phenotypic and genotypic

variances of the trait, respectively, s2
m is the variance of

the molecular score associated with the trait under
selection, and h2 ¼ s2

g=s2.

SIMULATED DATA

We have simulated genotypes from a population with
the aim of comparing theoretical and practical results
from MESIM, RESIM, ESIM, the restrictive selection
index of Kempthorne and Nordskog (1959), the
Smith (1936) selection index, and the Lande–Thomp-
son (Lande and Thompson 1990) molecular selection
index. The simulator system used in this study, de-

TABLE 1

Mean genotypic values under MESIM and Lande–Thompson molecular selection indexes when
traits are selected individually until genetic variability is exhausted (cycle 2)

MESIM genotypic means Lande–Thompson genotypic means

Selection
cycles

MFL FFL PHT EHT HKF MFL FFL PHT EHT HKF
(�) (�) (�) (�) (1) (�1) (�1) (�1) (�1) (1)

0 98.54 98.89 139.61 88.37 20.45 98.54 98.89 139.61 88.37 20.45
1 93.89 97.03 124.89 75.83 22.85 93.23 96.91 132.87 72.64 20.80
2 91.66 93.83 120.62 63.33 92.08 94.36 127.18 66.61

The traits were male flowering (MFL), female flowering (FFL), plant height (PHT), ear height (EHT), and 100-kernel weight
(HKF) for one and two selection cycles for simulated data using phenotypic, genotypic, and molecular score variance–covariance
matrices. The signs and economic weights of the selection indexes for each trait are shown in parentheses.
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veloped by Wang et al. (2004), has two main engines,
QU-GENE and QuCim, which require different input
data. To simulate a population, the input file for QU-
GENE should contain the genetic structure of the
genotypes for each specific trait: i.e., number of genes
(or QTL); gene effect for each trait including additive,
dominance, and epistasis; linkage among the genes in
one chromosome; and trait heritability, etc. Component
QU-GENE can generate genotypes making up popula-
tions of cross-pollinated or self-pollinated species or
create different environmental conditions where the
simulated genotypes will be evaluated. On the other
hand, the input file for QuCim must have the type of
crosses and the selection method to be used in each
breeding strategy. Selection methods that can be simu-
lated in QuCim include mass selection, pedigree system,
bulk population system, backcross breeding, top-cross
breeding, doubled-haploid breeding, marker-assisted
selection for one trait, and many combinations and
modifications of these (Wang et al. 2004). The simulator
provides, for each genotype in the population, the true
genotypic value as well as the phenotypic value of the
traits under study.

Generating a doubled-haploid population for selec-
tion: The original data were taken from an actual
doubled-haploid maize mapping population of 236
genotypes with five traits; QTL for all five traits were
mapped. The five traits measured were male flowering
time (MFL) (days), female flowering time (FFL) (days),
plant height (PHT) (centimeters), ear height (EHT)
(centimeters), and 100-kernel weight (HKF) (grams).
This data file was used to generate 200 doubled-haploid
genotypes that form the reference population (cycle 0).
Using a selection pressure of 10% (k ¼ 1.755), 20
genotypes were selected under MESIM, the Lande–
Thompson selection index, ESIM, RESIM, the Smith
selection index, and the restrictive selection index of
Kempthorne and Nordskog. These 20 selected doubled
haploids were then crossed in diallel fashion, and a new
population of 200 doubled haploids was generated. This
was repeated during five selection cycles for all five
traits. The efficiency of the indexes was compared, using
the mean genotypic value and the regression of the
mean genotypic value of the selected genotypes on the
selection cycles. We used phenotypic, genotypic, and
molecular score variance–covariance matrices for esti-
mating the singular vectors and singular values.

We also generated populations on the basis of
selection of individual traits with the objective of com-
paring MESIM and the Lande–Thompson (Lande and
Thompson 1990) molecular selection index method for
the simultaneous selection of five traits.

Sign of the coefficients, economic weights, and
expected genetic gains: When using MESIM, ESIM,
and RESIM, it is often necessary to change the sign of
the coefficients of the first singular eigenvector to select
the genotypes according to the desired genetic advance;
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that is, for traits such as MFL, FFL, PHT, and EHT, the
signs are always negative (decreasing the mean geno-
typic value), whereas for HKF the signs are always posi-
tive (increasing the mean genotypic value).

Concerning the economic weights for the Lande–
Thompson molecular selection index, the restrictive
selection index of Kempthorne and Nordskog (1959),
and the Smith (1936) selection index, economics
weights were assigned following Smith et al. (1981).
Then, one set had coefficients of 1 or�1, and the other
had the heritability of each trait multiplied by 1 or
�1, depending on the trait. Therefore, for MFL, FFL,
PHT, EHT, and HKF, the first set of coefficients was
�1, �1, �1, �1, and 1, respectively, whereas the second
set of coefficients was �h2

MFLð�0:51Þ, �h2
FFLð�0:46Þ,

�h2
PHTð�0:38Þ, �h2

EHTð�0:52Þ, and h2
HKF (0.27); all

economic weights of the molecular markers associated
with the traits were equal to zero. All five traits were
simultaneously selected under MESIM, the Lande–
Thompson selection index, ESIM, and the Smith selec-
tion index, whereas for the restrictive selection index of
Kempthorne and Nordskog and RESIM, the traits that
were unchanged were MFL and PHT.

Furthermore, MESIM and the Lande–Thompson
selection index were compared when traits were selected
individually. When selection was performed on individ-
ual traits, the Lande–Thompson molecular selection
index based on heritabilities as economic weights was
not applied, and only the index based on coefficients
1 and �1 (depending on the trait of interest), and 0 for
the economic weights, was employed.

RESULTS AND DISCUSSION

The genotypic means under MESIM and the Lande–
Thompson selection index when selection is practiced
on traits individually (not simultaneously on various
traits) are shown in Table 1. Because genetic variability
became exhausted, only two selection cycles were run.
The MESIM-selected genotypes had better genotypic
means than those selected under the Lande–Thompson
index for all five traits. To clarify the interpretation of
the MESIM, consider, for example, the first selection
cycle on the individual-trait MFL. The estimated phe-
notypic, genotypic, and molecular score variances in the
original population were ŝ 2 ¼ 33:489, ŝ2

g ¼ 18:156, and
ŝ2

m ¼ 2:248, respectively, from which

ŜM ¼
33:489 2:248
2:248 2:248

� �
; ŜM ¼

18:156 2:248
2:248 2:248

� �
;

Q̂ ¼ 0:51 0
0:49 1

� �
; and Q̂Q̂9 ¼ 0:26 0:25

0:25 1:24

� �
:

The first singular value and its associated singular vector
are m̂1 ¼ 1:14 and b̂9MESIM ¼ ½0:2333 0:9724�, respec-
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tively. However, because MFL decreases, it is necessary to
multiply the elements of b̂MESIM by �1 such that the
selection index in the context of MESIM is ŶMESIM ¼
�0:233 MFL� 0:9724mMFL, where MFL denotes the
trait of interest, and mMFL is the molecular score
associated with MFL. In this case, the total expected
genetic response can be partitioned into two compo-
nents, the coefficient related to the phenotypic values
per se and those related to the molecular scores. Value
�0.233 is the phenotypic coefficient, and �0.972 is the
molecular score coefficient.

When selection is practiced on all five traits simulta-
neously, then economic weights �1, �1, �1, �1, and 1
for each trait are used; the heritability of the traits is also
used as weights. The Lande–Thompson molecular
selection index is denoted as Lande–Thompson 1 when
�1, �1, �1, �1, and 1 are used as economic weights,
and when heritabilities are used as economic weights, it
is denoted Lande–Thompson 2. Similarly, the standard
Smith selection index is denoted as Smith 1 in the first
case and Smith 2 in the second case; and the Kemp-
thorne–Nordskog restricted selection indexes are de-
noted as KN1 and KN2, respectively.

For the trait HKF, the selection gain per cycle for
MESIM (0.50 g) was greater than that obtained by
Lande–Thompson 1 (0.21 g) and Lande–Thompson 2
(0.31 g) (Table 2). However, for MFL, the opposite was
true; that is, Lande–Thompson 1 (�0.91 days) and
Lande–Thompson 2 (�0.83 days) under both sets of
economic weights were more effective than MESIM
(�0.71 days) for maturity (Table 2). Comparing the ge-
notypic means when individual traits are selected (Table
1) with those obtained when five traits are simulta-
neously selected (Table 2), it is evident that the ge-
notypic means are higher when only one trait is under
selection. Correlations between traits play an important
role in the correlated response of other traits.

Regarding the Smith SI and ESIM, the genotypic
means of the selected genotypes are shown in Table 3. In
this case, for four of the five traits, MFL, FFL, EHT, and
HKF, the selection gain per cycle of ESIM was greater
than that obtained with the Smith SI. Concerning KN
restricted (R)SI and RESIM (keeping MFL and PHT
unchanged), the genotypic means of the selected
genotypes are shown in Table 4. For HKF, the selection
gain per cycle for RESIM (0.48 g) was greater than that
obtained using KN1 RSI (0.27 g) and KN2 RSI (0.19 g).
However, for FFL, the opposite was true; that is, KN1 RSI
(�1.05 days) and KN2 RSI (�1.10 days) under both sets
of economic weights were more effective than RESIM
(�0.92 days) for maturity. The effective selection gain
per cycle estimated as the linear regression of the mean
genotypic trait value on the selection cycle is also shown
in the last row of Tables 3 and 4.

Figures 1–3 show the genotypic means for HKF, FFL,
and MFL for five selection cycles when the genotypes are
selected under different selection indexes. Increasing
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trends in the genotypic means of the selected genotypes
for the five selection cycles under MESIM, Lande–
Thompson 1 and 2, ESIM, Smith 1 and 2, RESIM, and
Kempthorne–Nordskog for HKF are shown in Figure 1.
Clearly, MESIM selected genotypes with higher HFK in
all cycles. For FFL (Figure 2) ESIM was the best in all
cycles, whereas MESIM was better than Lande–Thomp-
son 1 and 2 in the last three cycles. For MFL, Figure 3
shows that MESIM results are similar to those of Lande–
Thompson 1 and 2. However, ESIM is still the selection
index that gave the highest response to selection.
Furthermore, note that since MFL was unchanged when
applying the restrictive selection indexes (RESIM, KN1,
and KN2), their genotypic means did not change over
the selection cycles and stayed around the mean of cycle
0 (Figure 3).

As previously indicated, the molecular selection
indexes (MESIM and Lande–Thompson) depend on
the heritability of each trait. According to Lande and
Thompson (1990), Zhang and Smith (1992, 1993),
Gimelfarb and Lande (1994, 1995), and Whittaker

(2003), the molecular selection index is expected to be
more efficient than the standard selection indexes (i.e.,
ESIM and Smith’s selection index) when the heritabil-
ity of the trait is low. Figure 1 shows the genotypic means
of HKF with a heritability of 0.27, whereas Figures 2 and
3 depict the genotypic means of the selected genotypes
for FFL and MFL), with heritabilities of 0.46 and 0.51,
respectively. This would explain why MESIM was more
efficient than the other indexes for selecting the
genotypes with the highest genotypic means. Detailed
descriptions of ESIM, RESIM, and the Smith selection
index can be found in Cerón- Rojas et al. (2008). For
the other traits, the gains of MESIM over Lande–
Thompson 1 and 2 are not as clear as for HKF and
FFL (Tables 2–4). However, when traits are selected
individually, the genotypic mean obtained for MESIM
is higher than that achieved by Lande–Thompson for
most traits (Table 1).

It is worth noting that when the eigenvectors are
obtained from the variance–covariance phenotypic and
genotypic matrices, then MESIM, ESIM, and RESIM
assign weights proportional to the heritability of the
trait; that is, the higher the heritability, the more weight,
and vice versa. As mentioned by Cerón-Rojas et al.
(2006), a solution would be to use the phenotypic
and genotypic correlation matrices. Another solution
would be to use the inverse of QðQ�1Þ and thus give
more weight to traits with low heritability. The latter
solution for constructing MESIM comes naturally from
Equation 7, since ðQ� mIÞbM ¼ 0 and can be written as
QbM ¼ mbM, from which m�1bM ¼ Q�1bM. Then the
equation to obtain the eigenvectors is ðQ�1 � m�1IÞ
bM ¼ 0, in which case

Q�1 ¼ S�1
M SM ¼ ðS�MÞ�1ðS�MÞ 0

I� ðS�MÞ�1ðS�MÞ I

� �
;

when only one trait and its molecular scores are
considered, then

Q�1 ¼
s2�s2

m

s2
g�s2

m
0

s2
g� s2

s2
g�s2

m
1

2
64

3
75;

and when s2
m ¼ 0,

Q�1 ¼
1
h2 0
0 0

� �
;

from which it is evident that traits with low heritability
will have higher weights.

Finally, it is worth noting that although MESIM, ESIM,
and RESIM may occasionally not to turn out to be the
indexes with the highest selection gains, they have the
statistical properties of the principal components. Accord-
ing to Okamoto (1969), these are optimal properties estab-
lished in terms of maximization and minimization. Thus
thefirstcomponenthas the largest varianceandthesmallest
loss of information (Rao 1964). On the other hand, statis-
tical properties of other selection indexes are unknown.

Figure 1.—Mean of the genotypic values of the
selected genotypes under under MESIM, Lande–
Thompson (Lande T1 and Lande T2) molecular
selection indexes, ESIM, Smith selection indexes
(Smith 1 and 2), RESIM, and Kempthorne–Nord-
skog restricted selection indexes (KN1 and KN2)
during five selection cycles of traits 100-kernel
weight (HKF) (grams) using simulated data.
The simultaneously selected traits were male flow-
ering (MFL), female flowering (FFL), plant
height (PHT), ear height (EHT), and 100-kernel
weight (HKF). The economic weights used for
MFL, FFL, PHT, EHT, and HKF under the
Lande–Thompson molecular selection indexes,
the Smith selection index, and the Kemp-
thorne–Nordskog restricted selection index were
�1, �1, �1, �1, and 1, respectively, and the her-
itability of the corresponding traits.
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This research found that MESIM has three advan-
tages over Lande–Thompson 1 and 2: first, it can be
used to solve practical problems faced by breeders
attempting to select plants or animals for the next
generation when no estimates of economic weights are
available. Even if economic weights are available, in
practice it is very unlikely that they would maximize the
derivative of u9MSMbM with respect to bM and to uM

(under the imposed restrictions). Furthermore, if two
breeders are interested in improving, say, n traits, it is
very unlikely that they would assign the same weights to
them. Second, estimates of MESIM have known statisti-
cal sampling properties, but estimates for the Lande–
Thompson molecular selection index are unknown.
Third, results from MESIM using simulated data show
that realized genetic gains for various traits simulta-
neously are similar to, or higher than, those obtained by
Lande and Thompson (1990).

CONCLUSIONS

This research presents a molecular selection index
based on principles developed by Cerón-Rojas et al.

(2008). Simulated results show that when genotypes are
selected on the basis of individual traits, MESIM in-
creased the response to selection over the Lande–
Thompson index. When several traits are selected
simultaneously, MESIM outperformed Lande–Thomp-
son for traits with low heritability. For traits with high
heritability, ESIM performed very well. One of the most
important results of MESIM is that b̂MESIM is the
maximum-likelihood estimate of bMESIM, whereas b̂MSI

is an estimate of bMSI, whose sampling properties are
unknown. MESIM can be considered a generalization of
ESIM (Cerón-Rojas et al. 2006) when information on
QTL is incorporated through molecular markers. The
sampling properties of ESIM (and therefore of MESIM)
and its selection response are known, and its estimators
showed desirable statistical properties such as consis-
tency and asymptotic unbiasedness.

It should be pointed out that MESIM is more general
than ESIM (Cerón-Rojas et al. 2006) because the basic
underlying assumption made in ESIM, Su ¼ b, is re-
laxed in MESIM. MESIM maximizes the selection re-
sponse by maximizing the square of the correlation

Figure 2.—Mean of the genotypic values of the
selected genotypes under MESIM, Lande–
Thompson (Lande T1 and Lande T2) molecular
selection indexes, ESIM, Smith SIs (Smith 1 and
2), RESIM, and Kempthorne–Nordskog re-
stricted selection indexes (KN1 and KN2) for five
selection cycles of the trait female flowering
(FFL) (days), using simulated data. The simulta-
neously selected traits were male flowering
(MFL), female flowering (FFL), plant height
(PHT), ear height (EHT), and 100-kernel weight
(HKF). The economic weights used for MFL,
FFL, PHT, EHT, and HKF under the Lande–
Thompson molecular selection indexes, the
Smith selection index, and the Kempthorne–
Nordskog restricted selection index were �1,
�1, �1, �1, and 1, respectively, and the heritabil-
ity of the corresponding traits.

Figure 3.—Mean of the genotypic values of the
selected genotypes under MESIM, Lande–Thomp-
son (Lande T1 and Lande T2) molecular selection
indexes,ESIM,SMITHSIs(Smith1and2),RESIM,
and Kempthorne–Nordskog restricted selection
indexes (KN1 and KN2) for five selection cycles
of the trait female flowering (MFL) (days), using
simulated data. The simultaneously selected traits
were male flowering (MFL), female flowering
(FFL), plant height (PHT), ear height (EHT),
and 100-kernel weight (HKF). The economic
weights used for MFL, FFL, PHT, EHT, and HKF
under the Lande–Thompson molecular selection
indexes, the Smith selection index, and the Kemp-
thorne–Nordskog restricted selection index were
�1,�1,�1,�1, and 1, respectively, and the herita-
bility of the corresponding traits.
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between YM and ZM, r2
YMZM

, which is the same as max-
imizing ðu9MSMbMÞ

2. This basic idea, used for develop-
ing a restrictive selection index (Cerón-Rojas et al.
2008), is valid for MESIM when no restrictions are
imposed on any of the traits.

Some advantages of MESIM over MSI should be pointed
out: (1) the sampling properties of MESIM, R̂MESIM, are
known and easy to evaluate; (2) the MESIM eigenvalue
and eigenvector are estimated by the maximum-likeli-
hood method; and (3) a restrictive SI can be developed
from MESIM when only some markers and/or traits are
used. In summary, the results of this study indicate that
MESIM is a generalization of ESIM when information
on QTL linked to molecular markers is incorporated.

The availability of abundant molecular markers can
help to achieve faster breeding progress than with
traditional breeding methods or marker-assisted selec-
tion by means of genomewide selection (Bernardo and
Yu 2007). The MESIM could be a valid option for a
genomewide selection method because the serious
problem of parameter identification created by the
collinearity of the markers is overcome by the singular
value decomposition method of MESIM. Furthermore,
MESIM naturally performs cross-product between all
trait–environment combinations and markers; thus it
implicitly introduces estimates of particular epistatic
interactions into the seletion index. Further research on
the use of MESIM in genomewide selection is required.
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APPENDIX: THEORETICAL DERIVATION OF MESIM

The procedure shown below is a slight modification
of that used by Cerón-Rojas et al. (2008) within the
context of a restricted selection index method based on
eigenanalysis (RESIM). In this case, ðu9MSMbMÞ2 must be
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maximized under the restrictions b9MSMbM ¼ 1 and
u9MSMuM ¼ 1; i.e., we should maximize

F ¼ ðu9MSMbMÞ2 � mðb9MSMbM � 1Þ � vðu9MSMuM � 1Þ

with respect to bM, uM, m, and v, where bM is the vector of
MESIM coefficients, uM is the vector of economic
weights, and m and v are Lagrange multipliers. In
MESIM it is assumed that uM is not a vector of constants.

When F is derived with respect to bM, uM, m, and v,
and the result is set to the null vector, it follows that

ðu9MSMbMÞSMuM � mSMbM ¼ 0 ðA1Þ

ðu9MSMbMÞSMbM � vSMuM ¼ 0 ðA2Þ

b9MSMbM ¼ 1 ðA3Þ

u9MSMuM ¼ 1; ðA4Þ

where Equations A3 and A4 denote the restrictions
imposed for the maximization of ðu9MSMbMÞ2 with
respect to bM and uM. Because the restrictions
b9MSMbM ¼ 1 and u9MSMuM ¼ 1, when Equation A1 is
multiplied by b9M and Equation A2 is multiplied by u9M,
both equations can be written as

ðu9MSMbMÞ2 � m ¼ 0

ðu9MSMbMÞ2 � v ¼ 0:

Clearly, ðu9MSMbMÞ2 ¼ v ¼ m. Therefore, m maximizes
r2

YMZM
under the restrictions b9MSMbM ¼ 1 and u9MSM

uM ¼ 1.
The following problem is to determine the vector bM,

which allows constructing the selection index YM that has
maximum correlation with ZM. Because ðu9MSMbMÞ

2 ¼
v ¼ m, Equations A1 and A2 can be written as

ffiffiffiffi
m
p

SMuM � mSMbM ¼ 0 ðA5Þ

ffiffiffiffi
m
p

SMbM � mSMuM ¼ 0: ðA6Þ

Multiplying Equation A5 by m�1=2S�1
M , we obtain that

uM �
ffiffiffiffi
m
p

S�1
M SMbM ¼ 0, from which uM ¼

ffiffiffiffi
m
p

S�1
M SMbM

is computed.
Substitute, in Equation A6,

ffiffiffiffi
m
p

S�1
M SMbM for uM and

get SMbM � mSMbM ¼ 0, from which Equation 7 (see
the text) is obtained,

ðQ� mIÞbM ¼ 0;

where Q ¼ S�1
M SM, and m and bM are the eigenvalue and

the eigenvector of Q, respectively. Thus, for MESIM, the
values that maximize r2

YMZM
under the restrictions

b9MSMbM ¼ 1 and u9MSMuM ¼ 1 are the eigenvalues
(m) of the matrix Q and its eigenvector vector, bM, that
allows constructing the index YMESIM ¼ b9MESIMp that
maximizes its correlation with ZM ¼ u91g 1 u92m.
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