Skip to main content
. Author manuscript; available in PMC: 2008 Sep 14.
Published in final edited form as: J Am Chem Soc. 2008 Feb 14;130(10):3053–3064. doi: 10.1021/ja076529e

Table 6.

Mg2+ and Mn2+ Ions in Different Ligand Environmentsa

Me(ll) L1 L2 R1b R2c ROwd ΔE ΔEZPC ΔG ΔΔGsole ΔGaqf
Mg2+ 2.11 −318.13 −303.18 −253.13 200.66 −52.46
Mg2+ DMP OP 2.00 2.13 −199.99 −200.42 −197.06 190.50 −6.56
Mg2+ GUA N7 2.21 2.12 −44.27 −44.99 −40.81 83.89 43.08
Mg2+ GUA N7 DMP OP 2.21 2.01 2.13 −223.91 −224.51 −217.52 231.73 14.21
Mn2+ 2.21 −301.29 −288.19 −239.59 170.58 −69.01
Mn2+ DMP OP 2.06 2.24 −199.90 −199.90 −196.23 164.30 −31.93
Mn2+ GUA N7 2.23 2.23 −46.36 −46.77 −42.27 40.76 −1.51
Mn2+ GUA N7 DMP OP 2.26 2.06 2.26 −225.29 −225.54 −217.04 187.17 −29.87
a

Shown are results for the ligand environments. [Me(L 1 · · · Ln)(H2O)6–n] for n = 0, 1 or 2. Metal–ligand distances are listed in Å. The energetic and thermodynamic quantities are in kcal/mol at 298.15 K and correspond to the ligand substitution reaction: [Me(L1 · · · Ln)(H2O)6–n] + nH2O→ [Me(H2O)6] +L1 + · · · Ln, except for n = 0 (fully hydrated metal) in which case the thermodynamic data refers to the absolute ligand binding energy: [Me(H2O) 6] →Me + 6H2O. Shown are the difference in electronic energy (ΔE), electronic energy with zero-point vibrational correction (ΔEZPC), gas-phase free energy (ΔG), solvation free energy (ΔΔGsol) and free energy in aqueous solution (ΔGaq).

b

Me(II) · · · L1 bond length.

c

Me(II) · · · L2 bond length.

d

Me(II) · · · OW average bond length.

e

Solution-phase free energy correction (PCM).

f

Solution phase (water) free energy.