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Mesenchymal stem cells: from biology to clinical use
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Introduction
Stem cells are immature progenitor cells capable of self-

renewal and multilineage differentiation through a process
of asymmetric mitosis that leads to two daughter cells, one
identical to the stem cell and one capable of differentiation
into more mature cells.

Stem cells may be: 1) totipotent, i.e. early embryonic
cells (1-3 days from oocyte fertilization), which can give
rise to all the embryonic tissues and placenta; 2) pluripotent,
i.e. embryonic cells from blastocystis (days 4-14 after oocyte
fertilization), which can differentiate only into embryonic
tissues belonging to the inner cell mass (ectoderm,
mesoderm, and endoderm); or 3) multipotent, i.e. embryonic
cells from the 14th day onwards, fetal stem cells, cord blood
stem cells, and adult stem cells, which can give rise only to
tissues belonging to one embryonic germ layer (ectoderm
or mesoderm or endoderm).

Mesenchymal stem cells (MSC) are non-haematopoietic
cell precursors initially found in the bone marrow, but
actually present in many other tissues. MSC in culture are
adherent, proliferating, and capable of multilineage
differentiation into several tissues of mesenchymal origin,
such as bone marrow stroma, adipose tissue, bone,
cartilage, tendon, skeletal muscle, visceral mesoderm, and
endothelial cells1-5. Well known and used for bone
regeneration for many years, MSC came in the limelight at
the end of the 1990s thanks to the evidence that, despite
their adult stem cell nature, these cells are capable of
pluripotent differentiation, which may be useful for
regenerative medicine. In addition, since the beginning of
2000 it has become clear that MSC possess immune
regulatory properties that may make them useful in
autoimmune diseases.

Mesenchymal stem cells
The presence of MSC of bone marrow origin was

formally demonstrated in the second half of the 1970s1, by
seeding whole bone marrow samples in culture plastic disks
and removing non-adherent cells after some hours. The
few adherent "fibroblastic-like" cells formed small cell
clusters, defined fibroblast-colony forming units (CFU-F)1,6.
After several culture passages, surviving cells became
homogeneous and retained their ability to replicate and
form cartilage and bone cells1.

Several studies later confirmed the multipotency of these
cells. In the presence of adequate stimuli they differentiate
into adipocytes (with formation of cytoplasmic vacuoles
containing lipids), osteoblasts (with deposits of
hydroxyapatite crystals), chondrocytes (with synthesis of
cartilage matrix) and muscle cells (rich in myotubes). This
differentiation is detectable through the use of appropriate
cell staining and immunochemistry reactions2-5,7,8. MSC are
also capable of expressing genes of embryonic origin, cell-
cell contact molecules, extracellular matrix, such as interstitial
type I collagen, fibronectin, type IV collagen and basal
membrane laminin. MSC may also secrete cytokines such as
interleukin (IL)-7, IL-8, IL-11, stem cell factor (SCF), and
stromal-derived-factor-1 (SDF-1) that regulates the homing
of haematopoietic stem cells into the bone marrow2-5,7-11. MSC
normally renew the stromal microenvironment necessary for
haematopoiesis. Indeed, MSC are capable of supporting in
vitro long-term haematopoietic cultures very efficiently12.
Patients undergoing allogeneic bone marrow transplantation
show a defect oin the stromal cells' capacity to support the
growth of haematopoietic progenitors13; a reduced support
to granulocyte-monocyte-colony-forming unit (CFU-GM)
formation by bone marrow stroma is well documentable even
in patients undergoing autologous and/or chemotherapeutic
treatments14. Moreover, co-infusion of MSC and
haematopoietic stem cells leads to more rapid haematological
recovery after high-dose chemotherapy as compared to
haematopoietic stem cell transplant alone15.
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MSC are relatively rare in the bone marrow (1/105

mononuclear cells), but they can proliferate very efficiently
preserving their stem cell properties in vivo16,17. The
progressive loss of differentiation potential because of
senescence generally occurs after about 40 doublings16,17.
MSC may also differentiate in vitro into cells of non-
mesodermal origin, such as neurons, skin and gut epithelial
cells, hepatocytes and pneumocytes1-5,18-22, although there
is a lack of precision regarding terminology in some papers.
MSC are considered different from: (i) multipotent adult
progenitor cells (MAPC), which may differentiate in vitro
into endothelial, epithelial, and neural cells, as well as cells
of mesenchymal origin5, and are probably the common
progenitors of haematopoietic and mesenchymal stem cells;
(ii) marrow stromal cells or multipotent mesenchymal
stromal cells, which possess multilineage differentiation
potential restricted only to tissues deriving from mesoderm
(fat, bone, cartilage, muscle)23. The discrepancy between
terminology and biological features is probably due to
variability in methodologies used by different researchers,
rather than to the real co-existence of different stem cells of
mesenchymal origin, even though a gradient of MSC
differentiation potential probably exists, similarly to that
for haematopoietic stem cell precursors. Some tissue
factors, such as basic fibroblast growth factor (bFGF) or
heparin-binding epidermal growth factor (EGF)-like growth
factor (HB-EGF), besides enhancing proliferation, may
interfere with the differentiation potential of MSC, thus
influencing their multipotency24.

Some Authors have shown that very small populations
of MSC circulate in the peripheral blood25,26. More recently,
MSC have also been detected in tissues other than bone
marrow, such as subcutaneous fat (adipose tissue-derived
adult stem cells, ADAS)27-29, scalp subcutaneous tissues30,
periodontal ligament31, umbilical cord blood32, foetal
tissues33-35, as well as lymphoid tissues such as lymph
nodes36, and adult human and mouse spleen and thymus37,38,
thus suggesting that a "mesenchymal system" is virtually
present in all adult tissues39. In practice, however, only
adipose tissue- and cord blood-derived MSC seem to be
alternatives to bone marrow-derived MSC for clinical use,
although with some differences in terms of CFU-F frequency
(higher for adipose tissue-derived MSC, very low for cord
blood-derived MSC), immunophenotype (lower expression
of CD106 in adipose tissue-derived MSC and of CD90 and
CD105 in cord blood-derived MSC), differentiation potential
(reduced in cord blood-derived MSC), and gene
expression27-29,40-44.

MSC can be obtained ex vivo from bone marrow samples
or from tissues disaggregated into single cell components

and resuspended in culture medium. Cells may be seeded
in plates or flasks at different concentrations with culture
media such as modified Eagle medium (α-MEM) or
Dulbecco's modified Eagle medium (D-MEM), enriched with
5-15% foetal bovine serum and antibiotics, and cultured
under appropriate conditions1-5,24,37,38. After a few days,
adherent cells form some proliferating clusters with at least
50 cells (CFU-F) that are counted after 10 days  and put in
relation with the initial seeded cell population to quantify
the clonogenic potential of that tissue1,6,37,38. Adherent cell
clusters grow very quickly and become confluent, so that
cells have to be re-plated periodically for the further
expansion. A homogeneous, adherent cell population is
generally achieved after 3-5 weeks of culture and keeps
proliferating for up to 40 doublings without differentiating
spontaneously2-5,16-19,24,37,38,44,45.

Using specific media, MSC can be induced to
differentiate in vitro into different lineages of mesodermal
origin, such as adipogenic, osteogenic, chondrogenic, and
myogenic lineages2-5,16-19,24,37,38,44-46 (Figure 1). Bone marrow
MSC normally express low levels of neural markers47. By
conditioning MSC with different cytokines, such as bFGF
and EGF, some dramatic changes of MSC morphology
resembling neural cells may be rapidly achieved together
with the strong expression of specific neural markers such
as nestin, neurofilaments, MAP-2, β-tubulin and Neu-N.
On the other hand, MSC-mature neural cell co-culture as
well as MSC injection inside animal brains lead to further
cell maturation, with the acquisition of mature glial and
neural features and neuronal-like excitability19,47-54. Bone
marrow MSC may be induced to differentiate into neurones
by co-culturing them with Schwann cells55. In addition,
even more mature neural or astroglial morphology may be
obtained by co-culturing neural-primed MSC with
astrocytes5,19,47-55 or Schwann cells37.

Immunophenotype
So far, there are still no specific markers for recognising

MSC. MSC may be identified by the lack of expression of
haematopoietic (i.e. CD45 and CD34) and endothelial (CD31/
PECAM-1) markers, as well as by the expression of
combinations of surface molecules such as CD105 (SH2 or
endoglin), CD73 (SH3 and SH4), CD106 (VCAM-1), CD44
(hyaluronic acid receptor), CD90 (Thy 1.1), CD29, STRO-1,
CD54  (ICAM-1), CD13, CD47, CD146, CD49a, CD164, and
CD1662-5,16-18,23,24,37,38,44,45,28-35,56-59. Many other markers may
be expressed by MSC, e.g. adhesion molecules,
chemokines, cytokine receptors (even of epithelial origin),
such as epidermal growth factor receptor (EGFR or HER-
1)24, and molecules involved in immune responses (MHC
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Figure 1 - MSC multilineage differentiation in vitro following culture with specific media. Alkaline phosphatase,
Oil-red-O, Type II collagen, and Myosin: staining for osteocyte, adipocyte, condrocyte, and myocyte
differentiation, respectively.

class I and II, CD119/interferon-g-receptor)56,57. Human MSC
expanded in vitro from the bone marrow of patients with
haematological neoplasms may heterogeneously express
some molecules, such as CD105, CD90, CD184 and HLA-
DR, and this feature inversely correlates with bone marrow
angiogenesis58. Consequently, it is still difficult to compare
precisely the phenotypic pattern of MSC expanded in vitro
with that really expressed in vivo in the tissues. Only in
vitro and in vivo functional studies in animals may aid the
assessment of the MSC nature of these cells.

Immune regulation
MSC possess strong immune regulatory properties that

are present in different animal species, although with
variable and only partially clarified mechanisms. MSC may
suppress immune reactions in vitro and in vivo in a major
histocompatibility complex (MHC)-independent
manner56,57,60.

They inhibit T-cell proliferation in response to
polyclonal, non-specific stimuli61, but in a mouse model
they can also inhibit antigen-specific immune responses,
mediated through both naïve and memory T cells, in a dose-
dependent fashion and strictly associated with cell-cell
contact60.

The inhibitory properties of MSC affect practically all
kinds of immune effector, including CD4+ and CD8+ T
cells56,57,60-65, B cells56,66, NK cells56,67,68, and monocyte-
derived dendritic cells69-72. The MSC interaction determines

lymphocyte62 and dendritic cell73 anergy due to early
proliferation arrest. Immune regulatory effects are expressed
not only by MSC, but also by differentiated cells such as
fibroblasts, adipocytes, and osteoblasts61,74.

In vivo, MSC prolong the survival of MHC-incompatible
skin transplants in baboons63; in humans they lower the
risk of graft-versus-host disease (GvHD) when transplanted
together with haematopoietic stem cells75; they cure the
symptoms of grade IV GvHD, refractory to
immunosuppressive therapy76; and, in mice, they improve
the clinical features of experimentally induced autoimmune
encephalomyelitis77.

Various mechanisms are involved in MSC immune
regulatory properties, including the release of soluble
factors and cell-cell contact56,57,60-72. Unlike in the mouse
model60, in humans the inhibitory effect of MSC persists
even in the absence of cell-cell contact56,65,78,79. Among
various soluble factors, transforming growth factor-b1,
hepatocyte growth factor61,67, prostaglandin E

2
, vascular

endothelial growth factor67,72, and indoleamine 2,3-
dioxygenase38,56,64 have been shown to play a role in MSC-
mediated immune regulation. Even interferon-gamma, which
is a main activation molecule for immune responses, induces
MSC immune regulatory effects towards CD4+ and CD8+
T cells, NK cells, and B cells56.

The expansion of CD4+CD25+ (Foxp3+) regulatory T
cells in the target cell population has been shown by some
Authors72, although this evidence is still controversial56, 60.
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The existence of many different mechanisms demonstrates
a redundancy of the inhibitory function of MSC, suggesting
its relevance also in vivo.

Mesenchymal stem cells for clinical use
MSC for clinical use must be collected and expanded

ex vivo in dedicated facilities, with filtered laminar flow of
environmental air and controlled access ('stem cell factory'),
in compliance with Good Manufacturing Practice (GMP)
rules, which are normally used for industrial production of
intravenously-administered drugs. These rules are absolute
sterility, specific reagents without autologous proteins and
growth factors not authorised for clinical use, and
numerous microbiological, virological, immunological,
immunophenotypic and functional quality controls to
guarantee that the cell product that will be used in vivo is
safe, qualitatively corresponds to the requirements imposed
by law, and possibly effective. Each phase of the ex vivo
cell production must be standardised and traceable, from
sample collection (bone marrow, adipose tissue, cord blood,
etc.), to cell seeding and culture (even by using closed
culture systems to prevent any kind of contamination), to
adherent cell splitting, harvest, qualitative characterisation,
cryopreservation, and in vivo inoculation80. Obviously, the
place where cell production is carried out is pivotal. In the
facilities dedicated to cell manipulation the 'class cascade',
i.e. the presence of different areas compartimentalised
according to the GMP rules, is fundamental: the laboratories
must have a very low air contamination by particles (class
B), contain sterile woods with virtually no particle air
contamination (class A, suitable for cell manipulation), and
an access filter-zone confined in class B, where the wearing
of disposable clothes and access are controlled. Access to
the laboratories is obtained through confined areas with
higher particle air contamination (class C), which are reached
through a wearing room (class D), which, in turn, is
connected to the external part of the 'stem cell factory' and
has similar particle air contamination. Thus, there is always
a one-way access to the laboratories for cell manipulation,
from the areas with higher particle air contamination to the
virtually sterile areas; in addition, disposable clothes and
accurate disinfection are used to prevent any risk to the
cell product. Particle contamination below the maximum
values approved for each area is achieved through the
maintenance of air pressure gradients (about 15 Pa) between
the highest and the lowest class area, and through specific
systems of air filtering, recycling, and vertical fluxes (for
more details see: European cGMP - Annex 1: Manufacture
of Sterile Medicinal Products).

Regenerative medicine
Bone regeneration

MSC have been used in several animal models to repair
major segmental bone defects81,82. In a mouse model of
osteogenesis imperfecta, a congenital disease of
mesenchymal tissues characterised by defective bone
formation, bone marrow MSC were infused into irradiated
mice, with formation of normally functioning bone and
cartilage tissues deriving from the transplanted cells83.
Three months after their infusion into children with
osteogenesis imperfecta, MSC caused an increase of the
osteoblastic component, formation of new laminar bone, a
general improvement in the total mineral content, reduction
in the frequency of pathological fractures, and measurable
body growth84.

MSC seeding onto natural or synthetic biomaterials
represents the most effective way to induce regeneration
and repair of bone, cartilage or tendon tissues85-87. In
particular, non-porous, biologically inert materials, such
as ceramic and titanium, have been replaced by porous
biomaterials, which are reabsorbable and osteoconductive,
such as hydroxyapatite and tricalcium phosphate88,89. Some
biodegradable polymers, such as poly-L-lactide (PLA) and
poly-L-lactide-co-glycolide (PLGA)90 are also effective. This
approach has been successfully used in vivo for the
resolution of critical segmental bone defects in which
spontaneous local regeneration does not occur and which
are unresponsive to the implantation of osteoconductive
devices alone91. Local implantation of porous biomaterials
covered with autologous bone marrow MSC represents
the most effective approach to repairing bone defects92,
such as avulsed phalanx93 and wide mandibular defects94.

Cartilage regeneration
Up to a few years ago, the only approach to cure joint

cartilage defects consisted in the local injection of
autologous, in vitro-expanded, chondrocyte suspensions,
described for the first time in 199495. More recently, bone
marrow MSC have been used in vivo to repair partial or
complete cartilage or meniscus defects in animal models,
exploiting several types of biomatrices, especially
hyaluronate, as the support96-100. In these animal models
there has been evidence of meniscus regeneration,
reduction in subchondral bone remodelling, less joint
cartilage degeneration, and reduced formation of
osteophytes as compared with controls treated with
hyaluronate only; all these effects were produced without
signs of inflammation, thus confirming, in vivo, the immune
regulatory effect of MSC99. Similar results have been
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obtained using autologous MSC seeded in a gelatinous
matrix of type I collagen or hyaluronate and calcium
phosphate, and applied to major osteochondral defects of
the knee joint100,101.

Other types of matrix, based on synthetic polymers such
as PLA and PLGA102, or the addition of factors such as
recombinant human bone morphogenetic protein-2103,104,
improve the effectiveness of treatment with MSC. The
combined approach of MSC, bioactive matrices, and
osteoconductive growth factors is most effective for
treating joint cartilage defects103,104. Autologous bone
marrow MSC have also been used for the treatment of
patients with osteoarthritis, exploiting the immune
regulatory effect of these cells: arthroscopic and histological
improvements have been recorded, although a significant
clinical recovery, as compared with controls, has not been
observed105.

Regeneration of tendon, skeletal muscle, and myocardium
The use of MSC to induce tendon repair has been

investigated in animal models and humans102,106.
Autologous MSC, dispersed in type I collagen gel, can
produce about 20% recovery of tendon functions, although
in a dose-independent way and with heterotopic bone
formation in about 30% of cases107. A similar approach led
to a 37% improvement of the biomechanicaal properties,
tissue architecture and functions of Achilles' tendons as
compared to those of normal controls at 12 months after
transplantation108. Some exogenous growth/differentiation
factors (GDF), such as GDF-5, GDF-6 and GDF-7, further
improve such results109, as does the use of biomaterials
based on PLGA instead of collagen gel110. Mechanical
stimulation of fibres improves the repair mechanisms111.

MSC have been used to restore the structure and
functions of skeletal muscles, in cases of muscle dystrophy
or other congenital myopathies. The inoculation of human
adult MSC into mdx mice (an animal model of Duchenne's
muscle dystrophy) led to the formation of myofibres and
long term-acting satellite cells, the restoration of dystrophin
expression in the sarcolemma and the production of several
muscle growth factors112, even by using human bone
marrow MSC with the entire sequence of dystrophin113.
These effects are potentially useful in human Duchenne's
muscle dystrophy, but so far there is no clear evidence of
de novo muscle regeneration and clinical improvement
mediated by MSC.

Several studies have shown that MSC have a
cardiomyogenic potential after myocardial infarction114-118.
In a randomised clinical study carried out in 69 patients

and based on the intracoronary infusion of autologous
bone marrow MSC, left ventricular perfusion and heart
contractile function improved remarkably after 3 months119.
However, there was very little formation of new
cardiomyocytes derived from the transplanted MSC120: it
is, therefore, believed that the observed cardiac functional
improvement observed is due to other mechanisms, such
as the release of soluble trophic factors with a paracrine
effect and the stimulation of residual cardiac stem cells121.

Neural tissue regeneration
Systemically infused bone marrow MSC colonise

virtually all organs, where these cells survive only in the
presence of local proliferation122,123. MSC do not normally
seem to pass through the blood-brain barrier: they can
survive, migrate, and differentiate into neural-glial cells after
in utero intraventricular injection inside foetal rat brains51.
Functional recovery has been shown following in vivo
transplantation of these cells inside the lesion in animal
models of Parkinson's disease, hypoxic-ischaemic neural
damage and retinal injury124. So far, however, there have
been no significant clinical studies unequivocally showing
that MSC possess neural regenerative activity in humans.

Gene therapy
MSC may be engineered with genes coding for

molecules that are missing in genetic or acquired defects
or with therapeutic activity, such as erythropoietin, insulin
or coagulation factors; however, preliminary results need
to be confirmed with in vivo studies to assess whether the
correction of the deficiency is long-lasting5,125.

Immune-modulatory therapy
Acute graft-versus-host disease

MSC can inhibit the immune responses against minor
histocompatibility antigens such as HY60,82, they can
prevent the occurrence of GvHD if co-transplanted with
haaematopoietic stem cells75, and they can completely
modulate grade IV GvHD refractory to immunosuppressive
drugs76. Similar results have been obtained with adipose
tissue-derived MSC126. On this background, various clinical
trials with autologous or allogeneic MSC are currently in
progress, evaluating the  effect of these cells on preventing
GvHD in MHC-unrelated transplants and treating severe
acute GvHD, which is associated with a high mortality due
to infectious complications, especially if intestinal mucosa
is involved. These trials are based on the collection and
expansion of MSC obtained from the same donor of the
haematopoietic stem cells.
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Autoimmunity
Allogeneic bone marrow MSC may inhibit T- and B-

cell proliferation and functions in the BXSB mouse, which
is an animal model of human systemic erythematous
lupus127. MSC-based therapeutic approaches for collagen
disorders refractory to conventional immunosuppressive
agents are currently under examination105,128,129. On the other
hand, MSC infusion is clearly associated with a lower
incidence and improved clinical features in experimental
autoimmune encephalomyelitis, an animal model of human
multiple sclerosis77, similarly to what can be achieved with
neural stem cells130. Transplantation of MSC could play an
important role in inflammatory diseases of the central
nervous system, especially if they were able to migrate
through the blood-brain barrier, thus coupling their
regenerative potential and immune regulatory effects77,131.

Anti-cancer cell therapy
It has been shown that MSC may support and amplify

the proliferation of solid tumours both in vitro and in vivo,
by favouring cancer dissemination and proliferating inside
the tumour as fibroblasts of the vascular-stromal
axis38,132,133. This property must always be considered when
large numbers of MSC are infused systemically, even for
regenerative purposes. However, MSC transfection with
genes coding for molecules with antiproliferative activity,
such as interferon-beta, not only inhibits neoplastic growth
in vitro, but also lowers cancer development in vivo132.
Similar results have been obtained with gliomas134.
Therefore, cell therapy with MSC engineered to produce
anti-proliferative molecules could be an efficient strategy
for specific anti-cancer treatments with few side effects.

Conclusions
Since the end of the 1990s a large amount of data

concerning MSC biology and differentiation/immune
regulatory potential has been published, even though many
of these data still remain contradictory. MSC have some
advantages in terms of availability, expandability,
transplantability, and capability of immune regulation,
without the ethical implications associated with the use of
embryonic stem cells. Pre-clinical studies in animals have
shown that a therapeutic approach involving MSC is
feasible in different fields of tissue regenerative medicine
and immune-modulating cell therapy, although many
potential clinical applications remain to be confirmed.

Key words: mesenchymal stem cells, cell therapy, regenerative
medicine, immune regulation.
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