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Abstract
Purpose—Graph theory and the new science of networks provide a mathematically rigorous
approach to examine the development and organization of complex systems. These tools were applied
to the mental lexicon to examine the organization of words in the lexicon and to explore how that
structure might influence the acquisition and retrieval of phonological word-forms.

Method—Pajek, a program for large network analysis and visualization (V. Batagelj & A. Mvrar,
1998), was used to examine several characteristics of a network derived from a computerized
database of the adult lexicon. Nodes in the network represented words, and a link connected two
nodes if the words were phonological neighbors.

Results—The average path length and clustering coefficient suggest that the phonological network
exhibits small-world characteristics. The degree distribution was fit better by an exponential rather
than a power-law function. Finally, the network exhibited assortative mixing by degree. Some of
these structural characteristics were also found in graphs that were formed by 2 simple stochastic
processes suggesting that similar processes might influence the development of the lexicon.

Conclusions—The graph theoretic perspective may provide novel insights about the mental
lexicon and lead to future studies that help us better understand language development and
processing.
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In the present analysis, graph theoretic techniques were used to examine the complex cognitive
system known as the mental lexicon. Graph theory is a branch of mathematics used by
physicists, computer scientists, and other researchers interested in the “new” science of
networks (Watts, 2004) to study the structure of a diverse array of complex systems in the real
world. Complex systems are comprised of a large number of individual units that interact in
relatively simple ways. Despite the simple, predictable nature of the individual components on
a local level, these large systems often exhibit behaviors that may appear unpredictable at a
global level.

Although graphs simply describe the structure of a system, the way in which a system is
organized has important implications for the type of processing that can be carried out in that
system (Strogatz, 2001; Ward, 2002). For example, Montoya and Solé (2002) used the
techniques of graph theory to create a graph (or network) of various ecosystems by representing
the animals in an ecosystem as nodes (sometimes called vertices or actors) and the predator–
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prey relationship between animals as links (sometimes called edges or ties) to examine how
the extinction of a given species might affect the rest of the ecosystem. The present graph
theoretic analyses examined the organization of phonological word-forms in the adult lexicon
to explore how the structure of the mental lexicon might influence the process of lexical
retrieval.

The current structure of a system has been influenced by (among other things) the growth and
development of that system. Certain constraints on development may result in the emergence
of one type of structure but not in the emergence of some other type of structure. By studying
the current structure of a system, one might gain insight into the constraints that could have
led to that type of structure. Although several different constraints may produce the same final
structure, analyses of the current structure do serve to rule out some possible developmental
mechanisms. Therefore, structural analyses employing graph theoretic techniques may help
other research endeavors to focus their investigations on a more reasonably sized search space
of possible developmental mechanisms. The present graph theoretic analyses examined the
current structure of phonological word-forms in the adult lexicon to also gain some insight on
the constraints that may influence lexical acquisition and word learning.

Some readers might be familiar with the terms node, link, and network in the context of
connectionist models, or artificial neural networks. However, it is important to note that the
networks discussed in the present work are not artificial neural networks. That is, the nodes in
the present networks do not have activation states or rules to change activation states like the
nodes in an artificial neural network. Furthermore, the links in the present networks do not
have weights associated with them or a learning rule (e.g., back-propagation of error) to change
the connection weights between nodes. In other words, the present networks are not artificial
neural networks that model a cognitive process. Rather, the present investigation employed
graph theoretical analysis techniques to examine the global structure or organization of
phonological word-forms that might appear in the mental lexicon of a typically developing
adult. Although increased understanding of the structure of phonological word-forms in the
mental lexicon might lead to insights related to the processing of phonological word-forms
during the perception or production of speech and to insights related to the mechanisms that
might influence word learning, it is important to emphasize that the present graph theoretical
analysis is not a model of any language process.

Several researchers have used graph theoretic techniques to examine semantic relationships
among words in the mental lexicon. Similar conclusions about the structure of semantically
related words were reached even though several different definitions of “semantically related”
were used, including words that were free associates of each other, synonym pairs, core words
from dictionary definitions, or co-occurring words in text (Albert & Barabási, 2002; Batagelj,
Mrvar, & Zaveršnik, 2002; Ferrer i Cancho & Solé, 2001b, Motter, de Moura, Lai, & Dasgupta,
2002; Steyvers & Tenenbaum, 2005; Wilks & Meara, 2002; Wilks, Meara, & Wolter, 2005).
Given the arbitrary relationship between semantic and phonological representations (Saussure,
1916/1966), it is unclear whether the same network structure found in a network of semantic
representations will be found in a network of phonological word-forms.

In the present graph theoretic analysis, the nodes in the network represented phonological word-
forms in the English language (i.e., lexemes), and a link was placed between two nodes if they
were phonological neighbors of each other (e.g., Luce & Pisoni, 1998). That is, the links in the
present network were not directed and were not weighted. More complex relationships among
nodes can be modeled by incorporating directed or weighted links. In a network with directed
links (sometimes called arcs), connections between two nodes are not necessarily reciprocal.
For example, X may buy a good from Y, but Y does not buy a good from X. See Harary,
Norman, and Cartwright (1965) for an introduction to graphs with directed links. In a graph
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with weighted links, the relationship between some nodes might be stronger or weaker than
the relationship between other nodes. For example, X and Y might be lifelong friends, so the
link between them might be weighted with a 1. In contrast, X and Z may simply be
acquaintances, so the link between them might be weighted with a .25. See Roberts (1976) for
an introduction to graphs with weighted links.

Although more complex networks can be constructed, the present investigation analyzed
simple network models to explore the most fundamental characteristics that might shape the
mental lexicon. Some of the characteristics that shape the development of the lexicon might
be common to other types of systems that have been explored with these techniques, whereas
other characteristics may be unique to the lexicon. By starting out with a simple yet
mathematically precise model, we can explore how well a few basic mechanisms can account
for the structure found in the mental lexicon and, perhaps, shed some light on additional
assumptions that may be required to account for the structure found in the mental lexicon.

Method
To represent the adult lexicon, the phonological transcriptions of approximately 20,000 words
(N = 19,340) were examined with Pajek, a program for large network analysis and visualization
(Batagelj & Mrvar, 1998). The sample of words was obtained from the 1964 Merriam-Webster
Pocket Dictionary. Although the entries were those from the Merriam-Webster Pocket
Dictionary, the pronunciations were derived, checked, and edited by several researchers at the
Massachusetts Institute of Technology, including Dennis Klatt, Dave Shipman, Meg Withgott,
and Lori Lamel. Numerous studies have used this same sample of words to derive estimates
of neighborhood density and phonotactic probability in English (e.g., Luce & Pisoni, 1998;
Nusbaum, Pisoni, & Davis, 1984; Vitevitch & Luce, 2004, 2005). Although the number of
words in this sample is slightly larger than the 17,000 base words that comprise the vocabulary
of a well-educated adult native speaker of English (Goulden, Nation, & Read, 1990), it
constitutes a reasonable approximation of the adult lexicon.

A node in the network corresponded to each of the phonological representations from the
Merriam-Webster Pocket Dictionary. A link was placed between two nodes if the two words
were phonologically similar (cf. Batagelj et al., 2002, in which a link connected two nodes if
the words were semantically related). Phonological similarity was operationally defined by
substituting, adding, or deleting a single phoneme in a given word to form a “phonological
neighbor” (e.g., Greenberg & Jenkins, 1967; Landauer & Streeter, 1973; Luce & Pisoni,
1998). For example, the words hat, cut, cap, scat, and _at were considered phonologically
similar to the word cat (cat has other words as neighbors, but only a few were listed for
illustrative purposes). In the present network, links would connect the nodes that corresponded
to those words to the word cat (and to each other as appropriate).

The same definition of phonological similarity has been used in numerous psycholinguistic
studies. The results of these studies have shown that the number of phonological neighbors
activated in the lexicon influences various language processes: (a) the acquisition of sounds in
children (Gierut, Morrisette, & Champion, 1999); (b) the acquisition of words in children
(Charles-Luce & Luce, 1990, 1995; Coady & Aslin, 2003; Dollaghan, 1994; Storkel, 2004;
Vicente, Castro, & Walley, 2003); (c) spoken word recognition in young adults with no history
of speech, language, or hearing impairment in English and in Spanish (Luce & Pisoni, 1998;
Vitevitch, 2002b; Vitevitch & Luce, 1998, 1999; Vitevitch & Rodriguez, 2005), in older adults
with no history of speech, language, or hearing impairment (e.g., Sommers, 1996), and in
postlingually deafened adults who use a cochlear implant (Kaiser, Kirk, Lachs, & Pisoni,
2003), and of accented speech (Imai, Walley, & Flege, 2005); (d) spoken word production in
children who stutter (Arnold, Conture, & Ohde, 2005), in young adults with fluent speech in
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English and in Spanish (Munson & Solomon, 2004; Vitevitch, 1997, 2002a; Vitevitch &
Stamer, 2006), in older adults with fluent speech (Vitevitch & Sommers, 2003), and in
individuals with aphasia (Gordon & Dell, 2001); and even (e) reading by young adults with
no history of speech, language, or hearing impairment (Yates, Locker, & Simpson, 2004).

In addition to being widely used (by many researchers and over several decades), work by
Luce and Large (2001; see also Cutler, Sebastian-Galles, Soler-Vilageliu, & van Ooijen,
2000) provides some evidence for the psychological validity of the one-phoneme metric as a
measure of phonological similarity. In Experiment 2 of Luce and Large (2001), participants
heard a nonsense word, such as /fin/, and were asked to produce the first real word that came
to mind that sounded like the nonword stimulus item. Over 70% of the responses involved a
change of one phoneme in the nonword to form a real word (e.g., mean, fun, feet). Eighteen
percent of the responses involved a two-phoneme change (either CV, C_C, or VC), and the
remaining 11% of the responses consisted of various types of changes involving the addition
of a single segment (or the addition of a syllable). These results suggest that the operational
definition of phonological similarity used in the present analysis also captures, to a large extent,
the definition of phonological similarity that speakers may have.

By employing the same psychologically valid metric that has been used in many
psycholinguistic experiments in the present graph theoretic analysis, psychologically valid
insight about the mental lexicon might be obtained. Analyses of complex cognitive systems
comprised of nodes that are connected in a manner that is not motivated by psycholinguistic
research may be interesting mathematical exercises, but they are unlikely to provide significant
insight into questions of interest to language researchers.

The same techniques used by physicists and computer scientists (e.g., Albert & Barabási,
2002) were used in the current graph theoretic analysis to examine the network structure of the
phonological word-forms in the mental lexicon. Different mechanisms lead to different
network structures, so identification of the structure of a given network can provide some
insight into the mechanisms that might have influenced the development of the observed
network. In conventional graph theoretic analyses, identification of the structure of a given
network is accomplished by comparing several measurements from the graph of interest to the
same measurements made in a random network with the same number of nodes and the same
average number of connections per node as the graph of interest. Random graphs consist of a
network in which links are randomly placed between nodes. They have been widely studied
and are mathematically well understood (see Erdos & Rényi, 1960, for pioneering work on
random graphs) and, therefore, provide a good baseline for comparisons. These conventional
graph theoretic analyses were supplemented in some cases by additional comparisons to
measurements obtained from a sample of random graphs generated by the Pajek program.

The following measurements were made in the present graph theoretic analysis of the
phonological word-forms in the mental lexicon: average path length (ℓ), clustering coefficient
(C), degree distribution, and the extent of assortative mixing by degree in the network. The
average path length of a network refers to the average distance between every node in the
network and every other node in the network (Watts & Strogatz, 1998). The clustering
coefficient characterizes the extent to which nodes connected to another node are also
connected to each other. A clustering coefficient of 0 implies that none of the neighbors of a
node are connected to the other neighbors of that node. A clustering coefficient of 1 implies
that all of the neighbors of a node are connected to each other. Values between 0 and 1 imply
that a number of neighbors of a node are also neighbors of each other (Watts & Strogatz,
1998).
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The number of connections per node is also referred to as the degree of the node, or k. The
degree distribution refers to the proportion of nodes [P(k)] that have a given number of links.
In a degree distribution that resembles a normal bell-shaped distribution (i.e., a Poisson or
Gaussian distribution), a small number of nodes will have fewer than the average number of
connections per node, and a small number of nodes will have more than the average number
of connections per node, but most nodes will have the average number of connections per node.
This type of degree distribution is found in a random network. In a degree distribution that
resembles a power-law, many nodes have a small degree (or a few connections), and a few
nodes have a large degree (or many connections). This type of degree distribution has been
found in graphs of many real-world systems, including graphs depicting connections among
Web pages on the Internet (e.g., Albert & Barabási, 2002); the mechanisms that lead to the
development of this special type of network structure will be described later. Typically a
logarithmic transformation is applied to the degree distribution to reduce variability in the data
and aid in the identification of the network structure.

Assortative mixing by degree refers to the probability of a highly connected node being
connected to other nodes that are also highly connected (Newman, 2002; Newman & Park,
2003). In other words, there is a positive correlation between the degree of a node and the
degree of its neighbors. In a network with disassortative mixing by degree, nodes that have
many connections tend to be connected to nodes with few connections, producing a negative
correlation between the degree of a node and the degree of its neighbors. In a random network,
where connections are placed at random, the correlation between the degree of a node and the
degree of its neighbors is zero (Newman, 2002). The implications of these different types of
mixing by degree will be addressed later.

Results and Discussion
After connecting the nodes in the phonological network using the similarity metric employed
in previous psycholinguistic studies, I calculated the average path length and the clustering
coefficient by using the Pajek program. Note that the average path length, or distance between
any two nodes in a network, can be computed only on a fully connected network. In the case
of the mental lexicon, there were many “ lexical hermits” (n = 10,265), or words that had no
phonological neighbors, such as spinach and obtuse. These hermits were not connected to the
large group of words that were highly connected to each other, referred to as the largest
component of the network. There were also a number of words in the lexicon (n = 2,567) that
had a few neighbors, but neither the word nor the neighbors were similar to a word in the largest
component of the network. These “lexical islands” contained words like converse, convert,
and converge that were connected to each other but were not connected to any of the words in
the largest component. The calculations of the network characteristics were, therefore, based
on the 6,508 words in the largest component of the phonological lexicon.

Average Path Length (ℓ)
The average path length (ℓ) obtained from Pajek for the phonological network was 6.05. That
is, on average, approximately six links had to be traversed to connect any two nodes in the
(largest component of the) network. For example, to get from the word cat to the word dog,
one can traverse the links between the nodes corresponding to the words bat, bag, and bog.
The value obtained from the phonological network was compared with the average path length
obtained from a comparably sized and connected random network, ℓran. Because of the well-
studied nature of random graphs, the convention in graph theoretic analyses (e.g., Albert &
Barabási, 2002) is to estimate the value of ℓran using Equation 1:

(1)
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where n refers to the number of nodes in the network and <k> refers to the mean degree. In the
phonological network, the largest component contained 6,508 nodes (n), and the mean degree
(<k>) of the nodes in the largest connected component was 9.105; therefore, ℓran = 3.975.

The computationally derived value of ℓran approximates the estimate of ℓran obtained from 100
Erdos-Rényi random networks that were constructed in Pajek and contained the same number
of nodes (n = 6,508) and the same average degree (<k> = 9.105) as the phonological network.
The mean value of the average path length (ℓ100) from the sample of 100 random networks
was 4.22 (SD = 0.01; 95% confidence interval = 4.20–4.24).

Although the average path length for the phonological network (ℓ = 6.05) was somewhat larger
than the derived value of ℓran and the estimated value of ℓ100, the conventions used in graph
theoretic analyses would consider these values comparable (Watts & Strogatz, 1998). To
further demonstrate the comparability of these values, compare them to the average path length
of a similarly sized ordered network (ℓord). In an ordered network, each node is linked to its
nearest neighboring nodes. The average path length of an ordered network can be estimated
by using Equation 2:

(2)

where, again, n refers to the number of nodes in the network, and <k> refers to the mean degree.
Given n = 6,508 nodes, and <k> = 9.105, ℓord = 357.386. The value of the average path length
obtained from the phonological network (ℓ) was much closer to and of the same order of
magnitude as the value obtained for ℓran compared with the value obtained for ℓord, further
suggesting that the average path length of the phonological network is comparable to the
average path length of a similarly sized random network.

Clustering Coefficient
As is the convention in graph theoretic analyses, the clustering coefficient (C) obtained from
the (largest component of the) phonological network was compared with the value of the
clustering coefficient that would be obtained from a comparably sized and connected random
network (Cran). The value of the clustering coefficient (C) obtained from Pajek for the largest
component of the phonological network was .126. That is, neighbors of a given word have a
tendency to also be neighbors of each other (see Vitevitch, 2006, for work on how the clustering
coefficient may influence spoken word recognition).

Because of the well-studied nature of random graphs, the convention in graph theoretic analyses
(e.g., Albert & Barabási, 2002) is to estimate the value of Cran by using Equation 3:

(3)

where n refers to the number of nodes in the network, and <k> refers to the mean degree. Given
n = 6,508 nodes, and <k> = 9.105, the value of Cran obtained from Equation 3 is .0014, which
is about 90 times smaller than the value of C obtained in the phonological network. The value
of Cran was also calculated from the same 100 Erdos-Rényi random networks used in the
analyses of the average path length. The mean value of C from the 100 random networks
(C100) was .00056 (SD = .00006; 95% confidence interval = .00044–.00067). The value of
C100 is similar in magnitude to the derived value, Cran, but both values are smaller in magnitude
than the value of C obtained from the phonological network. In other words, C ≫ Cran (Watts
& Strogatz, 1998).
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Analyses of the average path length and the clustering coefficient are often used to determine
whether a given network can be classified as a small-world network. As described in Watts
and Strogatz (1998; Watts, 1999), a small-world network has (a) an average path length that
is comparable to the average path length of a random network, but (b) a clustering coefficient
that is much greater than the clustering coefficient of a random network with the same number
of nodes and the same average degree. Small-world networks are so called because the pattern
of connections that yields Characteristics A and B makes the network easy to traverse.1 That
is, the very large system has the appearance of being relatively small. The results of the present
analyses suggest that the phonological network has the characteristics of a small-world
network, a structure that is shared with the semantic networks that have been previously
investigated (e.g., Albert & Barabási, 2002; Batagelj et al. 2002; Ferrer i Cancho & Solé,
2001b) and with many other real-world systems. To further examine the structure of the
phonological network, I performed additional analyses, including an examination of the degree
distribution and the extent to which the phonological network exhibits assortative mixing by
degree.

Degree Distribution
The degree distribution of a graph provides additional information about the structure of that
system. To maintain consistency with traditional graph theoretic analyses, as well as with the
present analyses of the average path length and the clustering coefficient, the degree
distribution of the largest component of the phonological lexicon—instead of the entire lexicon
—was examined.

One type of network structure that has received much attention is a scale-free network (Barabási
& Albert, 1999). In a scale-free network, many nodes in the network have few links, but there
are a few nodes with many links. That is, a scale-free network can be identified by the presence
of a power law function in the degree distribution. A power-law relationship appears as a
straight line in a log-log plot of the degree distribution (Albert & Barabási, 2002). The degree
exponent, γ, or slope of the line in the log-log plot of the degree distribution, in most scale-
free networks is 2 < γ < 3; however, Montoya and Solé (2002) found several examples of scale-
free networks that had values for γ much less than 2 (one as low as 1.05).

An alternative method to determine whether a network is a scale-free network is to plot the
cumulative degree distribution in a log-log scale (Newman, 2006) or the cumulative degree
distribution in a linear-log scale (Amaral, Scala, Barthélémy, & Stanley, 2000). In a log-log
scale, the cumulative degree distribution would again show a straight line if a power-law
function existed, but this time with a slope of γ – 1 = 1.5 (Newman, 2006). In a linear-log plot,
a power-law distribution would be evident if the line fitting the data had an upward bend to it,
whereas a straight line would indicate an exponential relationship in the degree distribution
instead of a power-law relationship (Amaral et al., 2000). Both the degree distribution and the
cumulative degree distribution will be used to examine the structure of the phonological
network.

1The “small-world” concept may be familiar to many because of the classic work on the social “distance” between any two people in
the United States (Milgram, 1967). In this study, a randomly chosen person received the name and address of a target individual and a
set of instructions directing them to deliver a packet to the target individual. If the randomly chosen person knew the target individual,
they could send the packet directly to the target. If the randomly chosen person did not know the target individual, they were to send the
packet to someone they knew on a first name basis who was more likely to know the target individual. The process of sending the packet
to someone that was more likely to know the target was repeated until the target individual finally received the packet. Milgram found
that approximately six intermediate acquaintances were required to get the packet from the randomly chosen person to the target
individual. This work contributed to the notions that we live in a “small world” and that there are only “six degrees of separation” between
any two people on the planet (see also the work of Granovetter, 1973).
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Figure 1 shows the degree distribution for the 6,508 connected word-forms in the largest
component of the phonological lexicon on a log-log scale. The best fitting power-law and
exponential lines were computed over all of the data points and are also plotted in the figure.
The root-mean-square error (RMSE) measure of fit shows that the observed data fit an
exponential distribution (Y = .141 * e−.123*X, RMSE = .005) better than a power-law
distribution (Y = .672 * X−1.489, RMSE = .089). Given the poor fit of the power-law function,
the degree exponent, γ, was not calculated.

Figure 2 shows the cumulative degree distribution of the phonological network in a log-log
scale (Newman, 2006), with the best fitting power-law (Y = 21.524 * X−2.13) and exponential
(Y = 2.807 * e−.181*X) lines also plotted in the figure. Figure 3 shows the cumulative degree
distribution of the phonological network in a linear-log scale (Amaral et al., 2000), with the
best fitting power-law and exponential lines also plotted in the figure. The RMSE measure of
fit shows that the observed data again fit an exponential distribution (RMSE = .335) better than
a power-law distribution (RMSE = 3.198). Given the poor fit of the power-law function, the
degree exponent, γ, was not calculated. Both methods of evaluation—degree distribution and
cumulative degree distribution—show that the degree distribution of the phonological network
is better characterized as an exponential function than as a power-law function.

Assortative Mixing
A final analysis was performed to determine whether the phonological network showed
assortative mixing or disassortative mixing by degree (Newman, 2002; Newman & Park,
2003). In a network with assortative mixing by degree, the nodes that have many connections
tend to be connected to other nodes that have many connections. In other words, there is a
positive correlation between the degree of a node and the degree of its neighbors. In a network
with disassortative mixing by degree, nodes that have many connections tend to be connected
to other nodes with few connections—a negative correlation between the degree of a node and
the degree of its neighbors. Examination of the type of mixing by degree that occurs in a
network is of interest because Newman (2002) discussed different processing implications for
networks with assortative and disassortative mixing by degree (a point that will be discussed
later in the context of the phonological network).

The number of connections, or degree, of each of the 6,508 nodes in the fully connected
component was correlated with the degree of each of its neighbors. The resulting Pearson’s r
(29,613) = .62, p < .0001, shows a positive correlation. That is, nodes with many connections
tend to be connected to nodes that also have many connections, whereas nodes with few
connections tend to be connected to nodes that also have few connections. Said another way,
words with dense phonological neighborhoods tend to have neighbors that also have dense
phonological neighborhoods, whereas words with sparse phonological neighborhoods tend to
have neighbors that also have sparse phonological neighborhoods; therefore, the phonological
network exhibits assortative mixing by degree.

What Advantages Does This Structure Afford the Mental Lexicon?
The analyses of the average path length and the clustering coefficient suggested that the
phonological network had the characteristics of a small-world network (Watts & Strogatz,
1998). Although such networks may be very large and sparsely connected, processing on
networks with a small-world structure occurs rapidly, accurately, and robustly. Given the
small-world characteristics observed in the network of phonological word-forms, it is perhaps
not a coincidence that language processes are also rapid, accurate, and robust.

Additional analyses showed that the network of phonological word-forms exhibited assortative
mixing by degree. Newman (2002) examined several real-world networks and discussed the
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implications that assortative and disassortative mixing by degree might have on “processing”
in those systems. The assortative mixing observed in the structure of the phonological network
may have similar implications for the process of retrieving word-forms from the mental lexicon.
The following discussion, however, should not be viewed as a proposal for a model of lexical
processing. Rather, it is simply an exploration of how the structure of the phonological network
might affect its function (Strogatz, 2001; Ward, 2002).

To examine how the structure of the phonological word-forms might influence lexical
processing, consider how a common metaphor for lexical processing—activation from
acoustic–phonetic input spreading to phonologically related words—might be affected by a
network exhibiting disassortative versus assortative mixing by degree. In a network with
disassortative mixing by degree, the distribution of highly connected nodes throughout the
network would result in activation spreading among many, if not all, of the word-forms in the
mental lexicon. A large number of potential lexical candidates would then have to be rejected
during each attempt at lexical retrieval, perhaps making the process of word recognition slow,
resource intensive, and—especially in listening conditions that are less than ideal—very
laborious.

However, in a network with assortative mixing by degree, highly connected nodes tend to be
clustered together, thereby restricting the spread of activation to a more circumscribed region
of the network (forming what Newman, 2002, referred to as a “reservoir” in the context of
disease transmission). In this case, activation from acoustic–phonetic input would spread
among a smaller set of potential candidates, even in the case of words that have many
phonological neighbors (see Norris, 1994, for a processing model instead of a structural model
that leads to a “short list” of lexical candidates). The spread of activation to a more restricted
set of candidates means that not every word in the lexicon would have to be considered and
rejected as a potential lexical candidate as it would in a network with disassortative mixing,
ensuring rapid, seemingly automatic retrieval of the correct lexical candidate from the lexicon,
even in less than ideal listening conditions. The assortative mixing found in the phonological
network also suggests that models of spoken word retrieval may not have to postulate a special
ad hoc mechanism that prevents the entire lexicon from being activated whenever any acoustic-
phonetic input is received, as the very structure of the phonological network may prevent this
from happening.

Suppose now that the correct word-form in the lexicon does not receive enough activation to
cross the threshold necessary for successful lexical retrieval. That is, the node is (temporarily)
removed from the network. What are the implications for processing when a node is removed
from a system that exhibits disassortative or assortative mixing by degree? In the case of the
mental lexicon, how might the structure of the system influence recovery from a failed attempt
at retrieving a phonological word-form? In a network with disassortative mixing by degree,
the removal of one of the highly connected nodes that are distributed throughout the network
is likely to result in the fracturing of the fully connected network into smaller components. If
the mental lexicon were structured in this way, the reduced connectivity in the system caused
by the removal of that node may make it difficult for activation to spread to another lexical
candidate, resulting in catastrophic failure of the lexical retrieval process. In other words, if
the correct phonological word-form is not retrieved, then nothing is retrieved.

In a network with assortative mixing by degree, the removal of one of the highly connected
nodes from the cluster of highly connected nodes does little to break up the network, as the
numerous “redundant” pathways found in the cluster of highly connected nodes maintain the
connectivity of the network. The alternative pathways enable activation to spread to another
(albeit, incorrect) candidate. Thus, if the correct word-form is not retrieved in a network with
assortative mixing, catastrophic failure does not occur. Rather, the system experiences graceful
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degradation (McClelland, Rumelhart, & Hinton, 1986) and finds another item that best matches
the input. Evidence from studies of speech perception errors (Vitevitch, 2002b) and speech
production errors (e.g., Vitevitch, 1997) suggests that catastrophic failure is not likely to occur
when the lexical retrieval process fails. Instead, the system experiences graceful degradation,
retrieving at least partial information about a word (e.g., interlopers, or the first letter or syllable
of a word that is on the “tip of the tongue”; Vitevitch & Sommers, 2003). The graceful
degradation that occurs during lexical retrieval failures may in part be due to the assortative
mixing by degree found in the structure of the phonological network.

Furthermore, Newman (2002) found that 5 to 10 times more nodes that were highly connected
had to be removed from a network with assortative mixing than from a network with
disassortative mixing to destroy the connectivity of the network. This finding suggests that the
assortative mixing found in the phonological network may also contribute to the robustness of
language processing in the face of more permanent damage to the system stemming from stroke
or other injury to language-related areas of the brain. Only in the case of massive damage to
the system, when a large number of highly connected nodes in the system are removed, is the
connectivity of the network likely to be compromised, perhaps leading to catastrophic
processing failures. In the case of lexical processing, conditions of catastrophic failure, such
as pure word deafness, may be the result of massive damage to the lexicon that removes a large
number of highly connected nodes from the system.

Although the present graph theoretic analyses simply examined the structure that was observed
among phonological word-forms in the mental lexicon, the nature of that organization has
important implications for the type of processing carried out in that system (Strogatz, 2001;
Ward, 2002). The present discussion highlighted how the small-world nature and the
assortative mixing by degree found in the phonological network might, in part, account for the
speed, accuracy, and robustness of lexical processing. The following discussion considers the
mechanisms that might lead to certain network structures and explores the implications of those
mechanisms for the acquisition of phonological word-forms.

What Leads to This Structure in the Mental Lexicon?
Certain mechanisms lead to the formation of certain types of network structures. Therefore,
the analyses of the degree distribution of a network can be used to help identify the structure
of a given network and to shed some light on the mechanisms that may have led to its formation.
The mechanisms that lead to the formation of certain network structures might be viewed as
mechanisms that operate on a longer time scale, akin to evolution, or as mechanisms that
operate on shorter time scales, akin to development or learning. Indeed, some researchers have
argued that evolution, development, and learning might differ in the time scales in which they
operate, but they are all subject to a similar underlying mechanism (Dickins & Levy, 2001).
Given the possibility that a similar mechanism might govern evolution, development, and
learning, the following discussion will examine the mechanisms that might lead to the
formation of certain network structures and will explore the implications of those mechanisms
for word learning.

Much attention—even in the popular press (Barabási, 2002)—has focused on the apparent
ubiquity of networks with a scale-free structure. The interest in scale-free networks might, in
part, be related to the power-law relationship found in the degree distribution, as power-law
distributions have also been associated with the phenomenon of self-organized criticality (Bak,
Tang, & Wiesenfeld, 1988). Barabási and Albert (1999; Barabási, Albert, & Jeong, 1999)
suggested that two mechanisms lead to the emergence of scale-free networks: growth and
preferential attachment. Growth refers to the addition of new nodes to the network over time.
Preferential attachment is a constraint that makes it more likely for new nodes being added to
the system to connect to nodes that are already highly connected. Barabási and Albert (1999;
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Barabási et al., 1999) found that both growth and preferential attachment were necessary to
create the power-law degree distribution in scale-free networks (however, see Ferrer i Cancho
& Solé, 2001a, for evidence that a process that optimizes the distance between nodes and the
number of links per node may also lead to a power-law degree distribution).

In the case of phonological word forms in the mental lexicon, there is some evidence for growth
and preferential attachment. First, consider that the mental lexicon grows over time. Although
learning new word-forms is something that is typically associated with and primarily studied
in children (e.g., Storkel, 2001, 2003), it is not controversial to state that adults also learn new
words. In other words, the mental lexicon continues to grow over time.

Now consider preferential attachment, or the tendency for a new node to attach to a node that
is connected to many rather than to few nodes in the system. In the case of the mental lexicon,
a novel word-form that is phonologically similar to many known words (i.e., with a dense
phonological neighborhood) should be acquired more easily than a novel word-form that is
phonologically similar to few known words (i.e., with a sparse phonological neighborhood).
Indeed, Storkel (2001, 2003; see also Beckman & Edwards, 2000; Gathercole, Hitch, Service,
& Martin, 1997; Storkel & Morrisette, 2002) found that preschool-age children learned novel
words that had common sound sequences (which are correlated with word-forms with dense
phonological neighborhoods; Vitevitch, Luce, Pisoni, & Auer, 1999) more rapidly than novel
words that had rare sound sequences (i.e., sparse neighborhoods). Similarly, Storkel,
Armbrüster, and Hogan (2006) found that college-age adults learned novel words with dense
neighborhoods more rapidly than novel words that had sparse neighborhoods, further
suggesting that a mechanism like preferential attachment may influence the growth of the
mental lexicon.

Furthermore, work by Page (2000; see also Grossberg, 1972) illustrates how a localist neural
network with a competitive learning algorithm (i.e., not the type of network examined in the
present investigation) might exhibit behavior that resembles growth via preferential
attachment. In a localist neural network, an individual node represents a given concept or, in
the case of the phonological lexicon, a word-form. When a novel word-form is presented to
the localist network, several uncommitted nodes become partially activated by the input and
compete with each other to become the node that will be committed to representing that input
pattern in the future. Each node will adapt its weights to better match the input pattern.
Eventually, one node will match the input pattern better than the other competing nodes and
will become committed to representing that word. The “losing” nodes remain uncommitted
(i.e., they do not represent a known word), but because of the previous competition, their
weights are in an excellent position to represent a new input pattern that is similar to the
previously learned input pattern. Such a mechanism not only accounts for the advantage found
in word learning for similar sounding words (i.e., words with dense neighborhoods) over unique
words (i.e., words with sparse neighborhoods) but also illustrates how a connectionist model
could exhibit behavior that resembles preferential attachment.

Given the evidence for growth and preferential attachment in the mental lexicon, it is somewhat
surprising that a power-law relationship was not observed in the analysis of the degree
distribution of phonologically similar words in the mental lexicon (cf. Albert & Barabási,
2002; Batagelj et al., 2002; Ferrer i Cancho & Solé, 2001b; Motter et al., 2002; Steyvers &
Tenenbaum, 2005). Instead, an exponential function provided a better fit to the degree
distribution of the phonological network.

Also note that Newman (2002) found that the Barabási and Albert (1999) scale-free network
had neither assortative nor disassortative mixing by degree; rather, the correlation of the
degrees of connected nodes, perhaps counterintuitively, was 0. Recall that assortative mixing
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by degree was observed in the phonological network. The exponential degree distribution and
the presence of assortative mixing by degree suggest that it is unlikely that the phonological
network is a scale-free network like those examined by Barabási and Albert (1999). What
mechanisms might lead to the network characteristics observed in the phonological network:
a degree distribution that does not follow a power-law and assortative mixing by degree?

In addition to showing that growth and preferential attachment lead to a scale-free network
with a power-law degree distribution, Barabási and Albert (1999) also demonstrated that a
system that does not grow or that grows without preferential attachment is not likely to exhibit
a power-law degree distribution. Recall, however, that the mental lexicon does grow over time
and does seem to be influenced by a mechanism that resembles preferential attachment. Perhaps
additional constraints on the formation of the network—and by implication, on the acquisition
of novel words—led to the characteristics observed in the phonological network.

Amaral et al. (2000) found that if there is a cost associated with the attachment of a new node
(i.e., the node may be able to accommodate only a fixed number of links), then a power-law
degree distribution, like that in the scale-free model proposed by Barabási and Albert (1999),
is not likely to be observed. In the case of phonological word-forms, restrictions on word length,
on the sounds used in that language (i.e., phonemic inventory), and on the sequencing of those
sounds in a word (i.e., phonotactic constraints) may limit the number of new nodes that can
link to an already existing node. The costs associated with adding a new link in the phonological
lexicon may, in part, account for the failure to find a degree distribution that follows a power
law (see also Krapivsky, Redner, & Leyvraz, 2000, for the influence of nonlinear preferential
attachment on the degree distribution). Although additional constraints on preferential
attachment may produce degree distributions that do not follow a power law (e.g., an
exponential degree distribution), it is not clear whether they will also lead to assortative mixing
by degree or to the presence of lexical hermits—nodes that were not connected to any other
node in the system—as was observed in the phonological network.

One type of growing network that does exhibit all of these characteristics—exponential degree
distribution, assortative mixing by degree, and the presence of isolated nodes and islands—is
the randomly grown network examined by Callaway, Hopcroft, Kleinberg, Newman, and
Strogatz (2001). These characteristics emerged in the growing network examined by Callaway
et al. because of two stochastic processes: (a) new connections are placed between randomly
chosen pairs of nodes, and (b) new nodes that are added to the system are not required to attach
to a preexisting node. Do such processes also influence the acquisition of phonological word-
forms?

Consider the first stochastic process described by Callaway et al. (2001), in which new
connections are placed between randomly chosen pairs of nodes in the network. In the
phonological network, there is some probability that a new node might link to an already
existing node in the network. In terms of the mental lexicon, a new word might be
phonologically similar to an already known word. Callaway et al. also noted that older nodes,
or those items that had been in the network for some time, tended to have a higher degree, or
more connections than more recently added nodes. That is, it is also likely that the already
existing node will have a high degree, or in terms of the mental lexicon, it is likely that the
already known word will have a dense phonological neighborhood. Consistent with this
prediction, Storkel (2004) found a positive correlation between age of acquisition and
neighborhood density, such that words learned early in life tended to sound similar to many
words (i.e., they had a higher degree) than a word learned later in life. The resemblance between
the network model examined by Callaway et al. and the mental lexicon regarding the
relationship between age of acquisition and neighborhood density is quite striking.
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It is important to note, however, that the relationship observed by Storkel (2004) is correlational
in nature and, therefore, could be the result of several possibilities. For example—as implied
by the first stochastic process in the network model examined by Callaway et al. (2001)—the
first words that are learned may lay a lexical foundation that makes it more likely that some
words (i.e., those that are similar to known words) but not others (i.e., those that are not similar
to known words) will be acquired in the future. Another possibility—as the results of
laboratory-based word-learning experiments by Storkel and others might suggest (Storkel
2001, 2003; Storkel et al. 2006; see also Beckman & Edwards, 2000; Gathercole et al., 1997)
—is that words with dense neighborhoods are easier to learn and are therefore acquired earlier
in life than words with sparse neighborhoods. Alternatively, a third variable may be responsible
for the apparent relationship between age of acquisition and neighborhood density. In the case
of the mental lexicon, the frequency with which a word occurs in the language is correlated
with both age of acquisition and neighborhood density. Finally, a combination of some or all
of these possibilities might be at work. The exact nature of the relationship between age of
acquisition and neighborhood density is an interesting question that cannot be definitively
answered by the present analyses and must, therefore, be left for future research to address.

Consider further the first stochastic process described by Callaway et al. (2001): New
connections are placed between randomly chosen pairs of nodes in the network. This stochastic
process also implies that there is some probability that a link may be placed between two
preexisting nodes in the network. That is, two known words that were not previously identified
as being phonologically similar may, at a subsequent point in time, become phonologically
similar. How can two words that were not previously phonologically similar become
phonologically similar at a later point in time? Perhaps the lexical restructuring hypothesis
proposed by Metsala and Walley (1998) might account for the later emergence of links between
nodes in the lexicon. Metsala and Walley suggested that continued vocabulary growth leads
to the internal restructuring of lexical representations. That is, lexical representations gradually
become more detailed throughout early and middle childhood. Such a process may lead to
changes in phonological similarity between previously unrelated items and may account for
the subsequent placement of a link between two preexisting nodes.

To illustrate how the lexical restructuring hypothesis might account for the subsequent
placement of a link between two preexisting nodes, imagine that the lexicon of a child at an
early point in time consisted only of the words cat and dog. With such a small vocabulary, very
abstract representations of those word-forms that lack much detail might be sufficient to
distinguish between those two word-forms. Abstract representations for cat and dog might
consist of the first segment in each word and some general information indicating that (perhaps,
a certain number of) additional speech sounds follow; suppose something like /k–/ and /d–/.

If a new node with the abstract representation /d–/, corresponding to the recently learned word
doll, was added to the network, one would no longer be able to distinguish between the word-
forms for dog and doll. More detail would need to be added to the phonological representations
for dog and doll (perhaps /d-[stop]/ and /d-[glide]/) in order to distinguish between those similar
words. The subsequent addition of this more detailed information might result in a link being
placed between these two preexisting yet similar nodes at some later point in time.

Although there is some evidence to support the lexical restructuring hypothesis (e.g., Edwards,
Beckman, & Munson, 2004; Munson, Swenson, & Manthei, 2005; Storkel, 2002; Walley,
1993), it has been articulated only in very general terms and is not without its critics (e.g.,
Swingley, 2003; Swingley & Aslin, 2002). Admittedly, there are still some open questions
regarding the lexical restructuring hypothesis, including whether the addition of more detailed
information to lexical representations may result in two words that were previously considered
similar to each other to no longer be phonological neighbors. This possibility might correspond
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to the removal of a link between two nodes in a network. However, such a mechanism is not
present in the model proposed by Callaway et al. (2001). Despite the lack of specific details in
the lexical restructuring hypothesis, such a mechanism makes it at least plausible that the simple
stochastic process proposed by Callaway et al. not only contributes to the structure observed
in the randomly grown network that they examined, but may also contribute to the structure
observed in the phonological network.

Consider now the second stochastic process described by Callaway et al. (2001): New nodes
added to the system are not required to attach to a preexisting node in the network. Accidental
gaps and various restrictions (e.g., on word length, on the phonemic inventory, or on
phonotactic sequencing) have resulted in numerous word-forms that are not phonologically
related to any other extant word. The process of adding new nodes to the system without
requiring them to attach to a preexisting node in the network can account for the presence of
these lexical hermits in the phonological network. This would not be true in the scale-free
network model proposed by Barabási and Albert (1999), in which a new node has to also
connect to a preexisting node. In that model, there is no way to account for the presence of
lexical hermits as observed in the phonological network. Thus, this simple stochastic process
not only contributes to the structure observed in the randomly grown network examined by
Callaway et al., but may also contribute to the structure observed in the phonological network.

It is quite striking that these two simple stochastic processes can account for several nontrivial
results related to the acquisition and subsequent organization of phonological word-forms in
the mental lexicon. The present analyses certainly do not prove that (only) these two stochastic
processes caused the structure observed in the phonological network, nor do they account for
all of the patterns that were observed, but they do suggest that a long list of complicated and
detailed constraints that capture the microscopic details of language may not be necessary to
produce the structure observed in the phonological network. Future simulations and graph
theoretic analyses will further investigate which mechanisms led to the structure that was
observed in the phonological network examined here.

General Discussion
Although graph theoretic concepts have been used for some time to study social interactions
and social networks (e.g., Kochen, 1989; Wasserman & Faust, 1994; Wellman & Wortley,
1990), their use has been conspicuously absent from studies of cognitive processing (see
Sporns, Chialvo, Kaiser, & Hilgetag, 2004, for the application of graph theory to neuroscience).
The present work (see also Steyvers & Tenenbaum, 2005) suggests that these techniques can
also be used to increase our understanding of complex cognitive systems, such as the mental
lexicon. Speech-language pathology, psycholinguistics, and cognitive science more generally
might obtain great insights by viewing complex cognitive systems from this alternative
perspective.

Alternative perspectives, such as connectionist modeling, have, in the past, reshaped and
advanced our understanding of various psychological processes—including the influence of
evolution, development, and learning on those processes—in significant ways (e.g., Elman,
Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett, 1996). Looking at the mental lexicon in
graph theoretic terms may have similar consequences, as it places the lexicon, and other
complex psychological systems, in a broader context and allows us to see that cognitive systems
may be governed by the same underlying principles—such as those that led to small-world
structures—that govern other complex systems found in the world. If complex cognitive
systems are subject to the same constraints as other real-world systems, then ad hoc specific
mechanisms may not be needed to account for processes like word learning and word retrieval
(e.g., Markson & Bloom, 1997).
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Callaway et al. (2001) stated, “We do not claim that our model is an accurate reflection of any
particular real-world system, but we find that studying a model that exhibits network growth
in the absence of other complicating features leads to several useful insights” (p. 1). The present
analyses employed simple models, like those explored by Callaway et al. These networks with
uncomplicated features indeed provided several useful insights regarding lexical access and
acquisition. Specifically, a few simple stochastic processes may lead to a structure that
significantly influences the learning and retrieval of word-forms in the mental lexicon.

Although the quantitative fit between the phonological network and the graph theoretic models
was not perfect (e.g., the faster-than-exponential decay in Figure 3), the qualitative similarity
of the phonological network, a real-world cognitive system, to the model examined by
Callaway et al. (2001) may offer a unique opportunity for each field to learn from and contribute
to the development of the other. Cross-disciplinary analyses of the mental lexicon might lead
to the discovery of various parameters that influence the development of network structures in
many real-world systems. The study of the structure observed in the mental lexicon might also
lead to the development of new techniques to better classify different types of networks. Indeed,
several experts in network analysis recently discussed 10 topics that future research should
focus on (“Virtual Round Table,” 2004). First among those research topics was the following
question: Are there formal ways of classifying the structure of different growing models? The
present analyses have revealed a number of puzzles that might stimulate such cross-disciplinary
investigation.

One puzzle that might capture the attention of researchers relates to the amount of assortative
mixing by degree that was observed in the phonological network. Recall that the analysis of
assortative mixing by degree in the phonological network found a correlation of .62. The value
of the correlation coefficient obtained in the present analyses, however, is much greater than
that reported by Newman (2002) for other real-world networks (a maximum of .363 for a
coauthorship network of physicists) and is greater than the value predicted by the randomly
grown network examined by Callaway et al. (2001; less than .4). It is not clear that any of the
network models that were examined in the present analysis can account in any way for this
observation.

What could lead to a greater amount of assortative mixing by degree? Perhaps somewhat
counterintuitively, such a situation might emerge in the phonological network because of
numerous restrictions or constraints on word formation. With some constraints on what
constitutes a legal word in a given language, one might imagine that maximally dissimilar
word-forms would populate the lexicon to limit confusability among the items and to facilitate
the transmission of information. With many more constraints, however, the lexicon that
emerges might instead resemble a group of individuals wearing a uniform of some sort. That
is, the options for what shirt and what pants to wear (or what segments can co-occur) are so
limited that everyone ends up looking very similar, like students in a Catholic school,
employees in a fast food restaurant, soldiers in the military, or words that are morphologically
related to each other.

In addition to leading to greater assortative mixing by degree, additional constraints on word
formation, such as those imposed by morphology, might also underlie another anomaly that
was observed in the phonological network, namely, the existence of a rather large island of
related word-forms. Recall that the phonological network consisted of many words in a large
interconnected component, many lexical hermits, and a number of islands containing several
words that were related to each other but not to anything else. Although the processes proposed
by Callaway et al. (2001) predict the existence of hermits and of islands of various sizes,
additional analyses (that were not reported here) suggest that it is not very likely that an island
containing over 50 nodes, as was observed in the phonological network, should exist in a
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network of this size and connectivity. (Because approximately two thirds of the words in this
group contain the morphologically relevant sequence of segments /shin/, such as faction,
fiction, and fission, I facetiously refer to this group of words as the island of the “shunned.”)
Further research is required to determine how to best represent additional constraints on word
formation, like those imposed by morphology, in a network model, and to determine whether
analogous constraints also influence other real-world systems.

Although there is much to be gained from such opportunities for interdisciplinary research,
future research focusing on the mental lexicon may also benefit from the application of graph
theoretical techniques. Advances in our understanding of language processing and language-
related disorders might be made by examining the lexicon of individual children, instead of an
“average” lexicon as was done in the present analyses, to determine whether language
acquisition is proceeding along a typical trajectory. One might also employ graph theoretic
approaches to help identify certain words in the vocabulary of an individual child that might
facilitate the diffusion of sound change throughout the lexicon (e.g., Gierut, 2001).

Future graph theoretic analyses of the lexicon could also use more complex graphs to examine
other structural characteristics that might influence language processing. For example, a
network with weighted links might be used to examine how overlapping words like cap and
captain might influence lexical retrieval (however, see Newman, Sawusch, & Luce, 2005).
Alternatively, a graph that allows multiplexity (two or more links of different types might exist
between nodes; see Koehly & Pattison, 2005) could be used to examine how semantic
information might interact with phonological information during lexical processing. The
present analysis shows some of the potential that graph theory and the new science of networks
(Watts, 2004) hold for understanding cognitive processing. In short, graph theory offers a new
and useful set of mathematically rigorous tools to increase our understanding of language-
related processes and other complex cognitive systems.
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Figure 1.
The degree distribution for the 6,508 word-forms in the largest fully connected component of
the phonological network in a log-log plot (the solid squares). The best fitting power-law
(straight line) and exponential functions (curved line) are also displayed for comparison.
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Figure 2.
The cumulative degree distribution for the 6,508 word-forms in the largest fully connected
component of the phonological network in a log-log plot (the solid diamonds). The best fitting
power-law (straight line) and exponential (curved line) functions are also displayed for
comparison.
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Figure 3.
The cumulative degree distribution for the 6,508 word-forms in the largest fully connected
component of the phonological network in a linear-log plot (the solid diamonds). The best
fitting power-law (upward curving line) and exponential (straight line) functions are also
displayed for comparison.
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