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The asymmetric formation of a quaternary carbon represents one of the most difficult
challenges in asymmetric catalysis.1 Perhaps the most successful strategy is the use of
asymmetric copper catalysts; especially with respect to conjugate additions involving non-
stabilized nucleophiles.2 This problem is further aggravated when an adjacent tertiary center
must be formed asymmetrically concurrently. Creating such molecular complexity in a single
step is a daunting challenge. Our recent success in accomplishing this in Pd catalyzed allylation
of enolates3 with meso-like 1,3-disubstituted allyl electrophiles encouraged us to question
whether monosubstituted allyl electrophiles may be employed to give products of attack at the
more substituted allyl terminus to give the branched product. For a process of this kind,
molybdenum catalysis4 appears more appropriate; however, the large steric demand of a fully
substituted enolate would clearly stress this regioselectivity issue. In this communication, we
describe the alkylation of the anions of 3-aryloxindoles with monosubstituted allyl carbonates
in the presence of a chiral molybdenum catalyst. The products of this reaction, containing
highly functionalized chiral oxindoles, should provide new avenues towards asymmetric
preparations of biologically important indole alkaloids.5

Initial optimization was focused on the N-Boc-3-phenyloxindole (1a) as the nucleophile.
However, a modest regio-and diastereo-selectivity were obtained (Table 1, entry 1). The use
of slightly less stabilized N-alkyl oxindoles (entry 2-4) improved the selectivity, especially the
regioselectivity of the reaction, dramatically. The steric size of the N-protecting group does
not seem to be important as methoxymethyl (entry 2), benzyl (entry 3), and methyl (entry 4),
gave essentially identical results. An interesting trend emerged, however, when we
systematically modified the electronics of the 3-aryl substituents on the oxindoles (entry 4-9).
The regio-and diastereo-selectivity of the reaction significantly decreased as more electron-
withdrawing para-substituents were placed on the phenyl ring (entry 5-7). Electron-donating
groups (entries 8 and 9), however, had little effect on the selectivity.6 In all cases, the ee and
yield of reaction showed little sensitivity to the electronic variations.

To determine the steric effects of the nucleophiles, we examined the reactions with several
sterically distinct oxindoles (Table 1, entry 10-20). At the outset, we expected that for steric
reasons, smaller nucleophiles would be more selective towards bond formation at the more
hindered internal position of the π-allyl, compared to more bulky ones. In contrast to this
expectation, the bulky 2-tolyl and 1-naphthy substituted oxindoles gave excellent selectivity
(entries 10 and 11) while the smaller thienyl, indolyl, and thiazoyl substituted ones gave
exclusively linear products (entries 13-15). Interestingly, installing extra steric bulk on these
heterocycles reversed the regioselectivity to give branched products with excellent diastereo-
and enantioselectivity (entry 16-19). Curiously, a N-tosyl substituted 3-indolyloxindole also
gave very high b/1 selectivity (entry 20). It is worth noting that bulkier oxindoles also gave
better diastereoselecitivity (entry 10 vs. 4, entry 11 vs. 12).
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The trends observed in the above electronic and steric studies, are rationalized by a reaction
mechanism involving divergent reaction modes of O-bound and C-bound molybdenum enolate
complexes (Figure 1), both of which have been structurally characterized.8–10 Electronic and
steric variations of the nucleophile may influence the equilibrium ratios of the two enolate
isomers and which isomer reacts to give the product.11 Sterically, a larger aryl group should
disfavor the crowded C-bound enolate and favor the O-bound enolate structure. In this case,
the lower steric strain allows the more substituted allyl terminus to bond to the sp2 carbon of
the enolate to form the normally preferred branched product via a favorable “Claisen-like”
transition state.12 On the other hand, the more compact five-member heterocycle-substituted
oxindoles should accommodate the C-bound enolate more readily. The steric crowding of a
reductive elimination to a quaternary sp3 center only allows bonding to the less hindered
primary allyl terminus in this case. Electronically, electron-withdrawing 3-aryl substituents
should stabilize both enolate complexes and slow down their interconversion.13–14 Hence,
we see a partial linear relationship between the electronic property of the para-substituent and
the regioselectivity of the reaction.6 Furthermore, a more electron-rich molybdenum should
disfavor the reductive elimination and promote the equilibration between the two isomers.
Based on this hypothesis, the electron-rich bis-methoxypyridine ligand should move towards
a Curtin-Hammett type situation and favor reductive elimination via the less hindered O-bound
enolate to give the branched product as observed(entry 22 vs. 7, entry 21 vs. 18).15

Several other aromatic, heteroaromatic and polyenyl carbonates also functioned well with
oxindole 1d (Table 2). The reaction is tolerant of a number of functional groups on the
electrophile and good to excellent selectivity is observed for all substrates.

The relative and absolute stereochemistry was established by X-ray crystallographic analysis
of the product of entry 16 as shown in Figure 2. Between the two depicted paths, path A is
clearly favored as the least sterically demanding in the transition state. This stereochemical
outcome is also consistent with our previous reports.4

In conclusion, we have reported a molybdenum-catalyzed allylic alkylation reaction with
oxindoles that proceeds with high regio-, diastereo-, and enantioselectivity. The products of
this reaction, containing a quaternary center at the 3 position of the oxindole as well as a vicinal
tertiary center that are difficult to access via other methods, are well suited for further
elaborations towards indole alkaloids. The correlation between the electronics and sterics of
the nucleophile and the regio- and diastereo-selectivity of the reaction is highly unusual and
provides the exciting prospect that by careful tuning of the nucleophile, great regio- and
diastereo-control of the reaction can be exercised. The preference for bond formation at the
more substituted position of the π-allyl with even extremely bulky nucleophiles is also
noteworthy.
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Figure 1.
Mo enolate structures
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Figure 2.
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