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Olefins are fundamental building blocks for organic synthesis, and a multitude of methods exist
for their preparation. Among various approaches, additions to alkynes offer the promise of
convergence and stereoselectivity while leveraging the wealth of literature related to alkyne
synthesis. Indeed, carbometalation of terminal alkynes represents a general method and has
found widespread use in the synthesis of complex molecules. 1 In contrast, electronically
unbiased internal alkynes react slowly and with poor regioselectivity. However, polar
functionality near the alkyne has been found to affect both the rate and regioselectivity of
carbometalation reactions (eq 1–2).2 For example, addition of Grignard reagents to propargylic
alcohols introduces an organic fragment proximal to the alcohol (eq 1).2b,c The opposite
regioselectivity has been observed in reactions of homopropargylic alcohols and ethers with
vinyl titanium reagents,2d allyl magnesium bromide,2e,f butyl lithium2g and trimethyl
aluminum2h (eq 2, n = 2; X = H or alkyl). Here we report an iron-catalyzed carbomagnesiation
of propargylic and homopropargylic alcohols which generates tri- and tetra-substituted olefins
with high regio- and stereoselectivity (eq 2; n = 1–2; X = H).

(1), (2)

In the absence of catalysts CH3MgBr does not add to the internal propargylic alcohol 1a.
Accordingly, we evaluated a variety of first-row transition metal salts for their ability to
catalyze methylmagnesiation (Table 1). While Cu(I) salts did not effect addition,3 Co(II), Ni
(II) and Fe(III) displayed promising catalytic activity (entries 2–4). In all cases regioselectivity
and stereoselectivity was very high, but the desired trisubstituted olefin (2a) was contaminated
with the dimethyl product 3a. The formation of this side product was largely suppressed when
bis(diphenylphosphino)ethane (dppe, 1 equiv to Fe) was included in the reaction mixture (entry
6). Interestingly, methyllithium proved totally unreactive in the presence or absence of catalyst
(entry 7).2g

Table 2 presents the generality of the carbometalation. In the presence of Fe(acac)3 or Fe
(ehx)3 (ehx = 2-ethyl hexanoate) propargylic alcohols react with methyl magnesium bromide
to yield trisubstituted allylic alcohols as single regio- and stereoisomers. 4 Primary and
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secondary propargylic alcohols represent suitable substrates (entries 1–8), the latter reacting
with complete conservation of optical purity (entry 7). Common oxygen protecting groups,
olefins and tertiary nitrogens appear well-tolerated. Furthermore, primary and secondary
homopropargylic alcohols provide the corresponding homoallylic alcohols on treatment with
methyl Grignard reagent (entries 9–10, 12). In ongoing studies, we have found that the iron-
catalyzed carbometalation can be extended to phenylation5 (entries 11–12) and ethylation
(entries 13–14). In the latter experiments, no diethylation products (analogous to 3) were
observed; instead, we obtained small amounts of the product arising from formal cis-
hydrogenation (see below).6,7

Iron(III) salts are proposed to undergo ligand exchange and reduction with CH3MgBr to yield
LnFeII(CH3)2 complexes at 0 °C.8b Lower oxidation states are available upon warming or in
the presence of longer chain Grignard reagents.9 Accordingly, the oxidation sate of the
catalytically active species here remains ambiguous.8a Regardless, alkoxide-directed
carbometalation likely yields an intermediate (vinyl)Fe species (Scheme 1). In principle, direct
coordination to the iron center could occur (4). Alternatively the interaction could be driven
by association of iron with magnesium (5).10 The (vinyl)Fe(R) species can undergo metathesis
with Grignard reagent to provide the carbometalated product and regenerate catalyst, or it can
suffer reductive elimination to yield the geminally dialkylated product 3. β-Hydride elimination
from an Fe(ethyl) intermediate could give rise to an Fe-H species 6. Subsequent
hydrometalation could lead to the hydrogenated side products observed in ethylation reactions.

The presumptive vinyl Grignard intermediate 7 can be trapped with a variety of electrophiles
to yield tetrasubstituted allylic alcohols. For example, deuteration, formylation, allylation and
bromination proceeds under the conditions indicated in Scheme 2. Likewise, trapping with
benzaldehyde provides the allylic alcohols 8 and 9 as single olefin isomers. Finally, trapping
the vinyl iron or magnesium species with a pendant alkyne yields the cyclic diene 10 in good
yield.

Further studies of the iron-catalyzed carbomagnesiation may reveal intimate details of the
reaction mechanism. In the meantime the method offers an efficient and stereoselective
synthesis of tri- and tetrasubstituted olefins. Of note, the carbometalation reported here yields
Z-configured allylic and homoallylic olefins. In contrast, the opposite olefin geometry is
obtained from procedures based on carbometalation of terminal alkynes followed by trapping
with aldehydes or epoxides.1
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Scheme 1.
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Scheme 2.
Synthesis of tetrasubstituted olefins.
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Table 2
Iron-catalyzed carbomagnesiation of propargylic and homopropargylic alcohols.a

entry Conditions Product Yield (%)b

1 Fe(ehx)3 (0.20 equiv) dppe (0.20 equiv)

R = n-C10H21

75

2 Fe(ehx)3 (0.20 equiv) dppe (0.20 equiv) R = TBSO(CH2)4 80
3 Fe(ehx)3 (0.20 equiv) dppe (0.20 equiv) R = BnO(CH2)3 70
4 Fe(acac)3 (0.20 equiv) dppe (0.20 equiv) 78

5 Fe(acac)3 (0.30 equiv) dppe (0.30 equiv) 85

6 Fe(acac)3 (0.15 equiv) 81

7 Fe(acac)3 (0.30 equiv)

99% ee

61

8 Fe(ehx)3 (0.30 equiv) dppe (0.30 equiv) 80

9c Fe(acac)3 (0.20 equiv) 75

10c Fe(acac)3 (0.20 equiv) 74

11 Fe(acac)3 (0.50 equiv) CuBr (0.60 equiv) 69

12c Fe(acac)3 (0.40 equiv) 63

13d Fe(acac)3 (0.20 equiv) NMP (2.0 equiv)

R=n-C10H21

70

14d Fe(acac)3 (0.20 equiv) NMP (2.0 equiv) R= TBSO(CH2)4 74

a
Reactions carried out in THF (0.1M in substrate) using 5.0 equivalents of RMgBr at 0 °C for 7h unless otherwise indicated.

b
Isolated yield.

c
In toluene at 23 °C.

d
NMP = N-methyl pyrrolidine.
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