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SUMMARY

The problem of testing for genotype—phenotype association with loci on the X chromosome in mixed-sex
samples has received surprisingly little attention. A simple test can be constructed by counting alleles, with
males contributing a single allele and females 2. This approach does assume not only Hardy—Weinberg
equilibrium in the population from which the study subjects are sampled but also, perhaps, an unrealistic
alternative hypothesis. This paper proposes 1 and 2 degree-of-freedom tests for association which do
not assume Hardy—Weinberg equilibrium and which treat males as homozygous females. The proposed
method remains valid when phenotype varies between sexes, provided the allele frequency does not, and
avoids the loss of power resulting from stratification by sex in such circumstances.
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1. INTRODUCTION

Association between genetic markers and disease is most commonly demonstrated by case—control
studies, in which the frequency distributions of genotype in cases and controls are compared. The most
widely useful markers are single nucleotide polymorphisms (SNPs), which are chromosomal loci that have
only 2 forms, or alleles. Since most human chromosomes occur in pairs (autosomes), there are 3 possible
genotypes at such a locus. In the simplest case, the test for association commonly used is the conventional
chi-squared 2 degree-of-freedom test for association in the 3 x 2 contingency table or the Cochran—
Armitage 1 degree-of-freedom trend test. The former test makes no strong assumptions about the disease
association, but the latter is sensitive to departures from the null in which the case—control ratio, reflecting
risk in the underlying population, varies monotonically with genotype, ordered by the number of copies
of a nominated allele (0, 1, or 2). An alternative method has been to carry out the 1 degree-of-freedom
test for association in the 2 x 2 table which counts chromosomes, or alleles, in cases and controls.
Unlike tests at the genotype level, this test assumes that the 2 chromosomes carried by each individual
can be regarded as independently sampled from a population of chromosomes—the assumption of Hardy—
Weinberg equilibrium (Sasieni, 1997). This test is closely related to the Cochran—Armitage test; both
contrast the observed number of alleles in cases with the expected number under the null hypothesis, but
these tests use difference variance estimates for this (O — E) statistic.

For SNPs on the X chromosome, females carry 2 copies but males carry only one copy. At first sight,
it is obvious how the simple allele-counting method can be extended to this case: if the allele frequency
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in males and females can be assumed to be equal, we would count alleles in a 2 x 2 table and calculate a
chi-squared test on 1 degree of freedom as before. However, 2 criticisms can be leveled at this approach;
first, it assumes Hardy—Weinberg equilibrium in females, and second, males have only half the impact
on the analysis as females. The latter problem reflects an implicit alternative hypothesis that the effect of
1 copy of a variant allele on phenotype is the same in males as in females. This may not be a realistic
assumption.

These difficulties can be addressed in the usual method for analysis of case—control studies in epidemi-
ology, that is, to treat the case—control status as the dependent variable in a logistic regression analysis
(Prentice and Pyke, 1979), the genotype entering as a predictor variable. However, if the sex ratio differs
between cases and controls, this necessitates inclusion of sex as a covariate—whether or not the allele
frequency varies between sexes. This is equivalent to stratification of the analysis by sex and can lead to
considerable loss of power. But when the allele frequency does not differ between sexes, stratification by
sex, with its attendant loss in power, would seem unnecessary and undesirable.

The work described in this paper was motivated by a genome-wide association study in which a
common control group was used for several groups of cases of different diseases. Inevitably, for some
comparisons, the sex ratio differed markedly between cases and controls (Wellcome Trust Case Control
Consortium, 2007). However, the problem is not unique to the case—control setting; it extends to any test
for genotype—phenotype association for loci on the X chromosome—particularly when the distribution of
phenotype varies substantially between the sexes.

In Section 2, the standard 1 and 2 degree-of-freedom tests for genotype—phenotype association for
autosomal loci will be reviewed. The subsequent section discusses the modifications necessary for a locus
on the X chromosome. Later sections discuss some extensions and alternative approaches.

2. AUTOSOMAL LOCI

In this section, the derivation of 1 and 2 degrees of freedom for association with autosomal loci will be
briefly reviewed. These test statistics are based on genotype—phenotype covariances and can be derived as
score tests in the context of generalized linear models (GLMs) (McCullagh and Nelder, 1989) which relate
the expectation of the phenotype, transformed by a “link” function, to a linear model which may include
“additive” and “dominance” components. The score statistics (Cox and Hinkley, 1974) are defined by
first derivatives of the log-likelihood function with respect to additive and dominance effect parameters,
evaluated under the null hypothesis, Hp, of no association. In the simplest case, only an additive effect is
assumed; this will be discussed first.

2.1 Additive genetic model

For a general phenotype, the score statistic for testing for an additive effect of a diallelic locus on pheno-
type is the genotype—phenotype covariance

N
Ua = Z(Yi -Y)A;,
i—1

where Y; is the phenotype for subject i and A; codes the corresponding genotype 1/1, 1/2,and2/2t0 0, 1,
or 2, respectively. Y is the arithmetic mean of ¥ in the whole sample. (If there are additional covariates in
the model and a link function other than the “canonical” link is used in the GLM, then additional weights
are needed. This represents a minor extension and will not be discussed further here.)

For reasons that will become clear later, although the test statistic has been introduced in terms of a
model for the effect of genotype on phenotype, it is convenient, initially, to consider its distribution based
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on Pr(A;|Y;) (i = 1,..., N). Then, the statistic is asymptotically normally distributed under Hy with O
mean and variance

N
Var(Ua) = Va D _(Yi = Y)?,
i=1

where V4 is the variance of A; (assumed constant for all ); this can be estimated by
1 N
- _ 1 )
vA—N_IZ;(AI A).
=

Under Hy, the ratio (U4)?/ Va/r(U\A) is asymptotically distributed as chi-squared on 1 degree of freedom.
A well-known special case of this test is the Cochran—Armitage test for a dichotomous phenotype or
case—control data (Cochran, 1954; Armitage, 1955), but it is equally applicable for a quantitative pheno-
type, even when the sample is selected by extremes of phenotype (Wallace and others, 2006). If Hardy—
Weinberg equilibrium in the population can be assumed, the estimate of V4 may be replaced by

Vai=2P(1—-P),

where P is the allele frequency, although this would not usually be recommended.

2.2  Dominance

The test above is locally most powerful against GLMs for genotype—phenotype association in which geno-
type enters as a linear term. Under such models, the heterozygous genotype, 1/2, falls midway between
the 1/1 and 2/2 homozygous genotypes on the linear predictor scale. A broader class of alternatives is
obtained by entering a “dominance” term in the linear model. A convenient way to do this is by an het-
erozygosity indicator, D say, taking the value 1 for heterozygotes and O for homozygotes. An additional
score test statistic for the dominance effect is then

N

Up =) (Y —Y)D;.

i=1

The 2 degree-of-freedom test combines U4 and Up. Under Hy, Up also has 0 mean and

N
Var(Up) = Vp D (¥; = ¥)%,
i=1
N
Cov(Up,Us) = Vap Z(Yi -Y)%,

i=1

where Vp is the variance of each D; and V4 p is the covariance between A; and D;. These can be estimated
by
| N
—~_ 1 =0
VD—N_lg(Dl D),
1=

N

— 1 _ _
Vap = N_1 le(Ai — A)(D; — D).
i=
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(Again, alternative estimates can be used if one is prepared to assume Hardy—Weinberg equilibrium.)

Then, writing
U ~ Vi Van\ <& _
v=( ") V=L Z)>m-12
Up Vap Vb )5

the statistic UTV=1U is asymptotically distributed under Hy as chi-squared with 2 degrees of freedom.
In the special case of a dichotomous phenotype, this test is identical to the conventional Pearsonian
chi-squared test for association in the 3 x 2 contingency table.

3. THE X CHROMOSOME

Loci on the pseudo-autosomal part of the X chromosome can be treated in exactly the same way as
autosomal loci, but others generally require different treatment. For these, males will only carry 1 copy,
while, in females, most loci are subject to X inactivation (Chow and others, 2005), so that a female will
have approximately half her cells with 1 copy active while the remainder of her cells have the other copy
activated. Thus, in the absence of interaction with other loci or environmental factors, males should be
equivalent to homozygous females in respect to such loci. This suggests that, for X loci in males, A;
should be coded O or 2, while D; should be coded 0. This has several consequences, some of which
require modifications to the theory outlined above.

1. If the allele frequency does not vary between sexes, the expectation of A is also equal (at 2P) for
the 2 sexes. Thus, the expectation of U4 will remain at 0 under Hp even when the phenotype, Y, is
related to sex.

2. However, the variance of A differs between males and females. For example, under Hardy—Weinberg
equilibrium, its variance is 2P(1 — P) in females and 4P (1 — P) in males. This means that, in
general, an alternative variance estimate for U4 must be used.

3. Only females contribute to the dominance score, Up. For notational simplicity, assume that subjects
are arranged so that subjects 1, ..., F are female and subjects (F + 1), ..., N are male. Then,

F
Up = Z(Yi —Yp)D;,
i=1
where Y is the mean of ¥ “in females.”

A modified estimator for the variance—covariance matrix of U can now be derived. The variance—
covariance matrix for A and D for females can be estimated by

_ 1 & ( (A; — A)? (A — A)(D; — BF))

VE= —— _ _ — 5
F =144\ (A; — A)(D; — Dr) (Di — Dr)

where Dr is the mean of D; in females. (Since allele frequencies are assumed to be equal between males
and females, A may be calculated from the entire sample rather than from females alone.) In males, since
there is only a single copy of the allele, this variance—covariance matrix can be estimated by

(4P -P) 0
A (00 0)
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Again, P can be estimated in the entire sample, perhaps by allele counting or, alternatively, by A/2. The
variance—covariance matrix of the 2-vector of scores, U, is then estimated by

F N
V=Ve> (i =Y+ D, (i —7)"
i=l i=F+1

As before, the 2 degree-of-freedom chi-squared test is then given by U Ty-1y , while the 1 degree-of-
freedom test is given by U 12 / Vi1. It should perhaps be emphasized that Y in the above expression for v
refers to the overall sample mean of the phenotype and not to the sex-specific means.

It has been stated above that the above modifications to Up and to the estimator for the variance—
covariance matrix are necessary “in general.” The exception is when sampling is carried out in such a way
that the sample distributions of phenotype, Y (or at least their first 2 moments), are equal between males
and females. Then, Up, as defined for autosomal loci, will continue to have zero expectation under Hy,
and the autosomal variance—covariance estimator will be unbiased (see Appendix A). This would occur,
for example, in a case—control study in which cases and controls are frequency matched by sex.

4. STRATIFIED TESTS

Stratified score tests in which the alternative hypothesis is one of the equal effects of genotype on phe-
notype across strata are constructed by calculating the 2-vector of scores, U, and its estimated variance,
v, separately in each stratum. Both are then summed over strata. The final stratified chi-squared tests are
then calculated in exactly the same way as before. This mirrors the classical Mantel-Haenszel generaliza-
tions of the standard 2 x 2 table association tests and the Mantel extension of the Cochran—Armitage test
(Mantel and Haenszel, 1959; Mantel, 1963). (It should be noted, however, that this assumes that the GLM
which forms the alternative hypothesis uses a “canonical” link function; otherwise, the different stratum
contributions would need to be weighted appropriately.)

The test outlined in Section 3 was derived under the assumption that the allele frequency does not
vary with sex and, if this assumption cannot be made, it will be necessary to stratify by sex in the analysis.
Note, however, that in the event of strong association between sex and phenotype, this will result in loss of
power (perhaps considerable). An extreme example is provided by the unlikely case in which all the cases
are female and all the controls male; stratification by sex leaves no information for testing association,
whereas, if allele frequencies can be assumed to be equal between the sexes, valid test can be carried out
as described in Section 3.

5. CONDITIONING ON GENOTYPE

If only the 1 degree-of-freedom test were to be derived, a rather simpler derivation might have followed
by taking the phenotype, Y, as the random response, deriving the distribution of U, in sampling from
Pr(Y;|A;) (i = 1,..., N). For an autosomal locus, this leads to precisely the same score test statistic,
U As and

N
Var(Uy) = Vy Z(Ai - Z)2a

i=1

where Vy is the variance of Y;. Estimating Vy by ZtN: Y = Y)?/(N — 1) then leads to an identical
asymptotic test. Similarly, the 2 degree-of-freedom test can be derived in the same way.

It should be noted that a test based on U4 and the above expression for Var(U,4) remains valid in
the presence of relationship between phenotype, Y, and sex, provided there is no relationship between
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genotype and sex. This follows from an argument which mirrors that presented in Appendix A but with the
roles of genotype and phenotype reversed. However, in the presence of sex differences in the distribution of
phenotype, differences in the mean of A between sexes lead to nonzero expectation for U4 under Hy, while
a sex difference in the variance of A between sexes invalidates the above expression for Var(Uy). Either
eventuality would render the standard test invalid. For autosomal loci, it will usually be safe to assume
equality between the sexes for both the mean and the variance of A, but for loci on the X chromosome,
while equality of the mean of A can usually be assumed, equality of the variances cannot.

Dependency of the variance of Y on sex can be allowed for by using separate estimates for males
and females, in the same way as was used for the variance of A in the earlier derivation. Alternatively,
a variance estimator in the spirit of the Huber—White “sandwich” estimator (Huber, 1967; White, 1980)
could be used. A valid Wald test for additive effect of a locus on the X chromosome could be carried
out by simply regressing ¥ on A in a GLM and testing for a nonzero regression coefficient of A using
a Huber—White estimate for the variance—covariance matrix of coefficients. The stratified version of the
test would be obtained by additionally including the stratifying factor in the GLM. Generalized score tests
which do not make the equal variance assumption have been discussed by Boos (1992).

At first, it seems natural to derive the 2 degree-of-freedom test in exactly the same way—by simply
adding the heterozygosity indicators, D, into the model and testing for nonzero coefficients for both
A and D. However, this is incorrect, since D is confounded with sex—males are always coded as
homozygous, while females are only sometimes homozygous. Thus, when the phenotype varies with
sex, this will generate a false dominance effect. Putting sex in the model corrects this but at the expense
of power to detect the additive effect. There would seem to be no way to obtain the 2 degree-of-freedom
test in 1 step by simple regression methods. It can, however, be done in 2 steps:

1. Calculate a 1 degree-of-freedom chi-squared test for additive effect, using a GLM in which neither
dominance nor sex effects are included as predictors. To allow for the omission of sex from the
model, Huber—White “robust” variance estimates must be used.

2. Calculate a 1 degree-of-freedom chi-squared test for dominance using a GLM which includes
additive and dominance effects, together with sex. There is no need to use robust variance estimates
at this stage.

Adding the 2 chi-squared tests yields a 2 degree-of-freedom test.

It would also be possible to test for a dominance effect by discarding males altogether. This would be
less powerful since the additive effect would be less precisely estimated. However, this approach would
be less reliant on the assumption that the effect of genotype in males mirrors that in homozygous females.

6. DISCUSSION

It has been argued that, when testing for genotype—phenotype association for loci on the X chromosome,
males should be treated as homozygous females. If allele frequencies do not vary between the sexes, the
additive genetic effect is not confounded with sex and there is no need to stratify by sex in the analysis.
Indeed, to do so could seriously reduce power. However, if the first 2 moments of the distributions of
phenotype are not equal in males and females, it becomes necessary to modify the variance calculations.
In contrast, the dominance component of the genetic effect is, in general, confounded with sex, and testing
for its presence requires allowance to be made for this fact.

This argument has been presented from the point of view of both probability models for genotype
conditional on phenotype and for models for phenotype conditional on genotype. These are asymptotically
(and sometimes algebraically) equivalent. However, the latter approach is more flexible in that it more
naturally allows for the presence of further covariates.
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APPENDIX A
A.1 Ignoring sex in analyses of autosomes

The variance estimator for the score statistic U4 for autosomal loci is
VO = ST Y-
A_N_lizl l i=1 l .
When the variance of A differs between the sexes, it can be shown that

o 2l N1, 2
END (A=A = ——(Foi + Moyy),
i=1

where JFZ and 01\24 are the variances of A in females and males, respectively, and ' and M are the numbers
of males and females in the sample. If the first and second sample moments of Y are equal for males and
females, then

N N F N N

L _yvy\2 R 72 VAR V2
DW=V =53 == > (=)
i=1 i=1 i=F+1

so that

R X _ F _ N B
E [m Z(Yi -Y)? Z(A,- - A)2] = of Z(Yi —V)2 40l Z ¥, = 7)%

i=1 i=1 i=1 i=F+1

This is the true variance of U4 when the variance of A differs between the sexes. Thus, when the first 2
sample moments of the phenotype Y do not differ between the sexes, the usual variance estimate will be
unbiased even when the variance of A does differ between the sexes.

A similar argument shows that the usual variance estimator can be used when the distribution of
phenotype varies between the sexes, provided that the first 2 moments of A do not vary between the sexes.
This justifies ignoring sex (even when it has a strong effect) in analyses of autosomal loci.
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