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SUMMARY

Genome-wide association studies (GWAS) provide an important approach to identifying common genetic
variants that predispose to human disease. A typical GWAS may genotype hundreds of thousands of single
nucleotide polymorphisms (SNPs) located throughout the human genome in a set of cases and controls.
Logistic regression is often used to test for association between a SNP genotype and case versus control
status, with corresponding odds ratios (ORs) typically reported only for those SNPs meeting selection cri-
teria. However, when these estimates are based on the original data used to detect the variant, the results
are affected by a selection bias sometimes referred to the “winner’s curse” (Capen and others, 1971). The
actual genetic association is typically overestimated. We show that such selection bias may be severe in
the sense that the conditional expectation of the standard OR estimator may be quite far away from the
underlying parameter. Also standard confidence intervals (CIs) may have far from the desired coverage
rate for the selected ORs. We propose and evaluate 3 bias-reduced estimators, and also corresponding
weighted estimators that combine corrected and uncorrected estimators, to reduce selection bias. Their
corresponding CIs are also proposed. We study the performance of these estimators using simulated data
sets and show that they reduce the bias and give CI coverage close to the desired level under various
scenarios, even for associations having only small statistical power.

Keywords: Bias-reduced estimator; Genome-wide association study; Odds ratio; Selection adjusted confidence
interval; Selection bias.

1. INTRODUCTION

Genome-wide association studies (GWAS) provide a powerful method for identifying disease suscepti-
bility genes for common diseases, offering the promise of novel targets for therapeutic intervention that
act on the root cause of disease (Risch and Merikangas, 1996). Within the last few years, several GWAS
have been conducted or are underway (e.g. Easton and others, 2007; The Wellcome Trust Case Control
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Consortium, 2007; Samani and others, 2007; Hunter and others, 2007). A typical GWAS calls for the
use of high throughput platforms to genotype a very large number of single nucleotide polymorphism
(SNP) markers located throughout the human genome, in a set of cases and controls. For example, a set
of tagging SNPs, typically in the 100 000–500 000 range, may be selected based on correlation (linkage
disequilibrium) patterns across the genome. Statistical tools are applied that compare the frequencies of
SNP alleles between diseased and nondiseased individuals in a study cohort. Typically, only a very small
fraction of SNPs are plausibly related to disease risk.

In the context of GWAS, logistic regression is often used to test the association between the SNP
markers and the case versus control status. Odds ratios (ORs) may then be reported to display the as-
sociation strengths for selected SNPs. However, the selection of SNPs that meet statistical significance
criterion affects the probability density of the ORs for selected SNPs, thus potentially causing bias in
the OR estimates. This is an example of the “regression to the mean” (Galton, 1886) or “winner’s curse”
effect (Capen and others, 1971). The magnitude of the regression to the mean effect, called the selection
bias in this paper, depends on various factors, including the power of the study. For most genetic vari-
ants contributing to complex human diseases, the association strengths are expected to be weak. Extreme
selection criteria (low p-value) are required to achieve “significance” when the number of comparisons
is large, as in typical GWAS. So at present, many GWAS have only weak or moderate power to detect
associations between complex diseases and weakly related SNPs (Risch and Merikangas, 1996). If the
power is low, restricting attention to SNPs meeting extreme significance criteria will result in profound
selection bias. Therefore, correcting the bias that attends standard OR estimators is particularly relevant
in this context.

Several methods have been proposed for correcting the bias in the observed effect size for linkage
studies and population-based association studies (Garner, 2007; Siegmund, 2002; Sun and Bull, 2005;
Wu and others, 2006; Zollner and Pritchard, 2007; Yu and others, 2007). Sun and Bull (2005) applied
statistical resampling techniques to the initial sample to improve the estimation of locus-specific effects.
Wu and others (2006) proposed bootstrap resampling of locus-specific heritability estimators for bias re-
duction in the context of genome-wide linkage analysis of quantitative trait loci. Zollner and Pritchard
(2007) presented a model with a set of parameters on genotype frequencies and penetrance parameters for
each genotype, and then proposed a computational algorithm to find the parameter values that maximize
the likelihood conditional on having observed a significant association signal. They primarily focused on
a χ2

2 -test that arises from allowing separate ORs for heterozygotes or homozygotes for the minor SNP
allele. Here, we discussed several likelihood-based estimators and confidence intervals (CIs) to estimate
SNP-disease association under an additive model for the log OR. An important feature of the proposed
estimators is their applicability to GWAS that involve 2 or more stages.

Because of the continuing high cost, GWAS often follow a staged design. For example, in a 2-stage
design, a proportion of the available case and control samples are genotyped on a large number of SNPs
in stage 1, and a subset of these SNPs, which meet stage 1 test criteria, are then genotyped on the remain-
ing samples in stage 2. Parameter estimation techniques which combine data from all stages have been
proposed (Prentice and Qi, 2006; Skol and others, 2006). These estimation procedures may also involve
OR bias, due to SNP selection at each stage. The combined estimators that are reported are likely to be
biased away from the null (OR ≡ 1) since they are contingent upon a sufficiently large standardized test
statistics from each stage.

A significant SNP-disease risk association may be declared following a single-stage study (e.g. Hunter
and others, 2007), in which case corresponding reliable OR estimates and CIs are needed to interpret the
association and decide upon next research steps. These could, for example, involve an intensive study of
close-by SNPs or neighboring genes. Such a declaration may also take place following an early or inter-
mediate stage of a multistage design. Even the choice of SNPs to take forward to the next stage could be
influenced by OR estimation. For example, a SNP having large OR estimates may provide comparatively
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greater insight into disease pathways and hence be of higher priority for further study, even though statis-
tical significance is likely to provide the principal basis for such decision making.

Substantial methodology has been developed for estimation following group sequential designs for
clinical trials (e.g. Whitehead, 1986). Most of these methods provide an estimator at the terminating stage,
whether or not this stage is prior to planned termination, and the unconditional properties of the estimator
have been the focus of methodology development. A key distinction here is that we are concerned with
estimation only when a SNP turns out to meet significance testing criteria.

One- and 2-stage GWAS designs, selection procedures, and the selection bias are described in
Section 2. Three bias-reduced estimators and corresponding “mean square error” (MSE) weighted es-
timators that combine uncorrected and corrected estimators are defined in Section 3. Selection adjusted
CIs are proposed in Section 4. Simulation studies, described in Section 5, are used to examine and com-
pare the new estimators and the uncorrected estimator. Some closing remarks and discussion are provided
in Section 6.

2. DESIGN AND SELECTION

2.1 One-stage design

In a typical GWAS, controls may be 1-1 or frequency matched to cases on ethnicity, to control population
stratification, on the timing of enrollment into the study cohort, and on age or other disease risk factors.
For each study, subject 1 obtains a score of Z = 0, 1, or 2 according to the number of minor alleles
(allele having frequency � 0.5) present for the SNP. Logistic regression of disease status on Z gives a
log OR estimate β̂ for the coefficient of Z . Note that this OR test will have optimal power properties
under a genetic model for the SNP that is additive on a logit scale. Note also that the logistic regression
model may include other disease risk factors including variables for race, as well as factors related to
enrollment and follow-up in the underlying cohort. A test of no SNP-disease association can be based
on a comparison of the test statistic β̂/σ̂ to standard normal distribution critical values, where σ̂ is the
standard error (SE) estimate for β̂. The control of the familywise error rate (FWE) at some level type
I error rate α requires each of the individual tests to be conducted at lower levels, as in the Bonferroni
procedure, where α is divided by the number of tests. The control of the false discovery rate (FDR) ranks
the test statistics and conducts each of the individual tests at an appropriate different level (Benjamini and
Hochberg, 1995).

After the SNPs that meet statistical criteria are selected, β is then estimated and reported for the se-
lected SNPs as the log OR for persons who are heterozygous for the minor allele. The selection procedure
requires the selected SNPs to have large absolute values for β̂/σ̂ , which materially affects the distribution
of the selected OR estimators. The log OR estimates for the selected SNPs are derived from the distri-
bution of β̂ given |β̂/σ̂ | � c, where c is a cutpoint selected to control the FWE or FDR. Denote by
E(β̂||β̂/σ̂ | � c) the expectation of the selected SNPs. This conditional expectation may be quite far from
β. The sampling distribution of β̂ after selection is fβ̂||β̂/σ̂ |�c(x ; β) = K (β, σ̂ , c) fβ̂ (x, β)1

(∣∣ x
σ̂

∣∣ � c
)
,

where fβ̂ (x, β) is the sampling distribution of β̂ in the absence of selection and K is an integration con-
stant. For any fixed (β �= 0, c), the right-hand factor becomes negligible as the sample size (number of
cases) becomes large, so that this bias-correction issue is only a moderate sample size problem. In partic-
ular, for sufficiently large sample size, the asymptotic distribution of β̂ for selected SNPs is normal with
mean β and variance consistently estimated by σ̂ . As derived in Garner (2007), the asymptotic sampling
distribution for β̂ after selection is a truncated normal distribution that can be written as

fβ̂||β̂/σ̂ |�c(x ; β) =
1
σ φ

( x−β
σ

)
�

( β
σ − c

) + �
( − β

σ − c
)1

(∣∣∣ x

σ

∣∣∣ � c
)

, (2.1)



624 H. ZHONG AND R. L. PRENTICE

where φ(x) = (2π)−1/2 exp(−x2/2) is the standard normal density and �(x) is the standard normal
cumulative density function. We will examine the moderate sample size impact of random variation and
selection bias in σ̂ in Section 6.

From (2.1), the expectation of β̂ for the selected SNP is, in sufficiently large samples, approxi-
mated by

Eβ̂||β̂/σ̂ |�c(β̂) ≡ E(β̂; β) =
∫

|x |�cσ
x fβ̂||β̂/σ̂ |�c(x ; β)dx

= β + σ
φ
( β

σ − c
) − φ

( − β
σ − c

)
�

( β
σ − c

) + �
( − β

σ − c
) . (2.2)

Evidently, the uncorrected estimator β̂ is biased and the bias depends on the true association strength
β, its SE σ , and the selection cutpoint. The uncorrected β̂ tends to overestimate the association strength
since the bias term has the same sign as β. Figure 1 illustrates the bias term in (2.2) as a function of β.
In Figure 1, c = Z1−α/2, σ is set as the mean of σ̂ in simulation studies, where number of case–control
pairs = N . The minor allele frequency used in these simulations is 20%. Note that a SNP with a weak
disease association has only a small chance of satisfying an extreme testing criterion. So when such a
SNP does so by virtue of the large number of SNPs considered, the observed β̂ depends mostly on the
cutpoint value, rather than on the underlying β value. Therefore, the selection bias will be most severe for
SNPs having small β. On the other hand, a SNP with a large corresponding β value has a higher chance
of meeting the testing criteria. Thus, its sampling distribution after selection may be more similar to its
true sampling distribution, with resulting smaller bias. Hence, one expects little selection bias for SNPs

Fig. 1. Bias versus β in 1-stage designs. c = Z1−α/2, σ is set as the mean of σ̂ in simulation studies, where number
of case–control pairs = N . Minor allele frequency used in simulations is 20%; 10 000 studies were simulated for each
scenario.
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with strong associations. At a fixed β value, the bias is large when the sample size is comparatively small
or the α level is extreme.

2.2 Two-stage design and selection

In a 2-stage design, all M SNPs are genotyped in a proportion of the case and control samples in stage
1. In stage 2, the selected SNPs are genotyped in on the remaining case and control samples. We denote
the log OR estimate from stage j by β̂ j and its corresponding estimated SE by σ̂ j , j = 1, 2, for each
selected SNP. Two strategies for selecting SNPs in multistage designs have been proposed. One strategy
views each stage as a replication study of the previous stages and considers the current stage data alone.
So the bias problem is identical to that described in Section 2.1. The alternative strategy is to use a test that
derives from all the previous stage information. The inverse variance weighted log OR (Prentice and Qi,
2006) is β̂com = σ̂−2

1 (σ̂−2
1 + σ̂−2

2 )−1β̂1 + σ̂−2
2 (σ̂−2

1 + σ̂−2
2 )−1β̂2 with corresponding variance estimator

σ̂−2
com = σ̂−2

1 + σ̂−2
2 . Thus, we choose those SNPs that have |β̂com/σ̂com| greater than the standard normal

distribution 1 − α/2 critical value as disease-selected SNPs. The test based on the combined test statistic
typically results in increased power, compared to separate stage 1 and stage 2 tests at significance level of
α1 and α2, where α = α1α2, to detect genetic association (Prentice and Qi, 2006; Skol and others, 2006).

Consider properties of estimators for the SNPs with the combined OR estimates β̂com given |β̂1/σ̂1| �
c1 and |β̂com/σ̂com| � c2, where c1 and c2 are the selection cutpoints at the 2 stages. Using the (uncondi-
tional) asymptotic distribution of β̂1 and β̂2 and their independence, the conditional sampling distribution
can be approximated asymptotically by
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Hence, the expectation of the OR for selected SNPs is approximated by
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It follows that the bias in the unadjusted β̂com from a 2-stage design, has a similar pattern to, but is
more complicated than, that from a 1-stage design. It is again evident that the selection bias will be most
severe for SNPs having β close to zero, when selection cutpoints are fixed.

3. BIAS-REDUCED ESTIMATORS FOLLOWING SELECTION

3.1 Three corrected estimators based on the conditional likelihood

Three correction methods are proposed to reduce the moderate sample size bias described above, each
of which can be applied to 1-stage or 2-stage designs. Each method is derived from the asymptotic



626 H. ZHONG AND R. L. PRENTICE

approximation to the conditional probability density function of the log OR estimate after selection.
Here, we denote the log OR estimator by β̂com for both 1-stage designs and 2-stage designs, for notational
convenience. First, the maximum likelihood adjusted estimator is defined to maximize the conditional
likelihood at the observed β̂com. It is

β̂MLE = argmaxβ log f (β̂com; β), (3.1)

where f (β̂com; β) is the conditional likelihood at β̂com defined in (2.1) and (2.3). Note this is similar to
the approach of Zollner and Pritchard (2007). The similarities and differences between the β̂MLE method
and the method of Zollner and Pritchard are described in Section 6.

Second, we derive an estimate that has conditional expectation equal to the observed β̂com. This
expectation adjusted estimator is

β̂Mean = γ : E(β̂com; γ ) = β̂com, (3.2)

where E(β̂com; β) is the conditional expectation of β̂com defined in (2.2) and (2.4).

THEOREM 3.1 β̂MLE = β̂Mean, if f (β̂com; β) is in the form of (2.1) or (2.3).

Proof. Denoting the log-conditional likelihood l, the conditional score function of β̂com is

d
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Hence, β̂MLE that maximizes the conditional likelihood for β̂com also has conditional expectation

equal to β̂com. Hence, E(β; β̂MLE) = β̂com. Henceforth, we refer to both estimators as β̂MLE.
The third method proposes an estimator that has the median at the observed β̂com. This median adjusted

estimator is

β̂Med = γ :
∫ β̂com

−∞
f (t ; γ )dt = 0.5. (3.3)

Intuitively, β̂Med is the estimate for which the observed β̂com is the median estimates in the selected SNPs
log ORs.

THEOREM 3.2 β̂Med is median unbiased in sufficiently large samples: F−1
β̂Med

(0.5) = β, where F−1
β̂Med

(0.5)

is the median of β̂Med.

Proof. Denote β̂Med = g(β̂com), therefore, β = g(F−1(0.5)), where F−1(0.5) is the median of the
conditional distribution of β̂com.

∫ β

−∞
fβ̂Med

(y; β)dy =
∫ g(F−1(0.5))

−∞
fβ̂||β̂1/σ̂1|�c1;|β̂com/σ̂com|�c2

(g−1(y); β)

[
d

dy
g−1(y)

]
dy

=
∫ F−1(0.5)

−∞
f (x ; β)dx = 0.5.

�



Bias-reduced estimators and CIs for ORs from GWAS 627

THEOREM 3.3 β̂MLE, β̂Mean, and β̂Med are consistent estimators of β (β �= 0).
This follows from the fact that the asymptotic distribution of β̂ is also an asymptotic approximation

to the conditional likelihood of β̂. Therefore, β̂MLE, β̂Mean, and β̂Med are asymptotically equal to the
uncorrected β̂, which is a consistent estimator of β.

REMARK 3.1 β̂MLE, β̂Mean, and β̂Med are not regular at β = 0: if βn = tn−1/2, then
√

n(β̂MLE − βn) and√
n(β̂Med − βn) have distributions dependent on t .

3.2 Weighted average of the corrected estimators and uncorrected estimators

Preliminary simulation studies confirm that uncorrected estimator β̂com has upward bias but also the cor-
rected estimators, both β̂MLE and β̂Med, tend to overcorrect and to underestimate β (as shown in Section
5). Hence, we also considered a linear combination of β̂com and either of the corrected estimators, denoted
by β̂cor (Chatterjee, written communication). To define weights for this linear combination, we wrote the
MSE of β̂com as the sum of its variance and (βcom − β)2, where βcom is the (conditional) mean of β̂com.
The weight for β̂com is then defined as the ratio of σ̂ 2

com, the estimated variance of β̂com from logistic re-
gression divided by the estimated MSE σ̂ 2

com + (β̂com − β̂cor)
2, whereas the weight for β̂cor is 1 minus this

ratio. This gives an MSE weighted estimator β̂MSE that is approximately equal to β̂com, if |β̂com − β̂cor|
is small and suggestive of little need for correction and is approximately equal to β̂cor, if |β̂com − β̂cor| is
large compared to σ̂ 2

com:
β̂MSE = K̂ β̂com + (1 − K̂ )β̂cor, (3.4)

where K̂ = σ̂ 2
com

σ̂ 2
com+(β̂com−β̂cor)2 and β̂cor is either β̂MLE or β̂Med. Since both β̂cor and β̂com are consistent,

β̂MSE is also consistent.
Each of these estimators is an implicit function of the observed β̂com. Due to the complexity of the

probability density function, there is no closed-form solution for any of them. Rather they can be cal-
culated by a Newton–Raphson root-finding algorithm, and convergence is usually achieved after about 3
iterations starting from β̂com.

4. SELECTION ADJUSTED CIS

First, a profile CI is developed for the maximum likelihood adjusted estimator β̂MLE. The log-likelihood
is asymptotically χ2

1 distributed (assuming underlying β �= 0). Thus, the profile confidence limits are the
intersection of the log-likelihood curve with a horizontal line χ2

1,0.95/2 units below its maximum.

Second, similar to the idea of the median adjusted estimator β̂Med, a quantile-based CI is proposed for
β̂Med as follows. The lower and upper limits for (1 − α)% CI are:

β̂Quantile;α/2 = γ :
∫ β̂com

−∞
f (t ; γ )dt = 1 − α/2, (4.1)

β̂Quantile;1−α/2 = γ :
∫ β̂com

−∞
f (t ; γ )dt = α/2. (4.2)

The MSE weighting method can be applied to the confidence limits of the unadjusted CIs and the
adjusted CIs to obtain a CI for β̂MSE. The unadjusted CI is calculated from β̂com ± σ̂com Z1−α/2, where
σ̂com is the SE from the logistic regression. The adjusted CI can be either the profile CI or the quantile
adjusted CI. Hence,
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β̂MSE;α/2 = K̂α/2β̂com;α/2 + (1 − K̂α/2)β̂cor;α/2, (4.3)

β̂MSE;1−α/2 = K̂1−α/2β̂com;1−α/2 + (1 − K̂1−α/2)β̂cor;1−α/2, (4.4)

where K̂α/2 = σ̂ 2
com

σ̂ 2
com+(β̂com;α/2−β̂cor;α/2)2 and K̂1−α/2 = σ̂ 2

com

σ̂ 2
com+(β̂com;1−α/2−β̂cor;1−α/2)2 .

5. SIMULATION EVALUATIONS

5.1 Simulation setup

We consider a SNP that is associated with a rare disease. At each simulation, we simulate N case–control
pairs. The control group minor allele frequency (p) was set equal to 0.20. Hardy–Weinberg equilibrium
was assumed in the control group. Denote by λ the OR corresponding to Z = 1 and θ the OR for Z = 2.
Using the rare disease assumption, the case group probabilities for Z = 0, 1, and 2 are then K (1 − p)2,
2Kλp(1 − p), and K θp2, where K −1 = (1 − p)2 + 2λp(1 − p) + θp2. The multiplicative genetic model
(additive on the log scale) was assumed, so that λ = θ1/2.

For 1-stage designs, all N case–control pairs are used to build the logistic regression of case versus
control status on Z . Each SNP was tested at α = 10−5. For 2-stage designs, a proportion of the case–
control pairs are randomly selected for stage 1 and the remaining samples for stage 2. Significance level
α1 = 10−2 was used for stage 1 selection and β̂com was tested at α = 10−5.

For each selected SNP, the uncorrected β̂com and the corrected estimators β̂MLE, β̂Med, and β̂MSE
were estimated according to formulas (3.1), (3.3), and (3.4), respectively. Under a 1-stage design, we also
calculated the corrected estimates via the bootstrap method proposed by Sun and Bull (2005) with 1000
bootstrap samples. The unadjusted CI, profile CI, quantile CI, and MSE weighted CI were calculated
according to Section 4. At each θ value, 100 significant associations were simulated.

5.2 Simulation results under various β values

Figure 2 shows the bias and the SEs for estimates calculated from SNPs that meet the selection criteria.
The results from 1-stage designs are very similar to those from 2-stage designs with equal sample size
between the 2 stages. The upward bias is most severe under the null hypothesis. This is because the
estimation that is performed conditional on the test statistic exceeds the selection threshold. The absolute
value of the naive estimate of the effect size from the same data is at least Z1−α/2σ̂ . Therefore, the
uncorrected estimate greatly overestimates the genetic effect for those selected false-positive SNPs. When
the true association strength is low, the design has low power and the anticipated upward bias of the
uncorrected estimator is evident and most pronounced. For example, when the OR of one copy of risk
allele is 1.1, only 1.3% of SNPs were selected, and its bias is 0.215 in a 1-stage design and 0.217 in a
2-stage design. In moderately powered studies, the uncorrected estimate is still clearly biased upward.
For example, when OR = 1.3, 66.7% of SNPs were selected. The bias of the uncorrected estimator is
0.040 in a 1-stage design and 0.051 in a 2-stage design. Only in the high-powered study are the estimates
centered on the true underlying value. For example, when OR = 1.5, study power is 98%. The bias of the
uncorrected estimator is negligible.

In contrast, the average of the corrected estimates is close to the true value, although the estimates
are biased slightly downward in small to moderate power situations. Under the null hypothesis, all the
proposed corrected estimators have mean values close to zero. The MLE adjusted estimators have smaller
bias especially in small OR situation. As noted in Section 3.1, the median adjusted estimators have ap-
proximately unbiased medians in all scenarios (not shown in the figure). Its means are very similar to
the MLE adjusted estimators, which also have downward bias. The weighted MSE adjusted estimators
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Fig. 2. Simulation results under various heterozygote OR values. Bias and SE of β̂Naive, β̂MLE, β̂Med, β̂MSE(MLE),

β̂MSE(Med), β̂Boot, and β̂Replication, based on 100 significant associations. N = 2000 case–control pairs in 1-stage
design, and n = 1000 case–control pairs at each stage in 2-stage design.

have the smallest bias among all estimators. Especially, the version that is the weighted average of the un-
corrected estimator and the median-corrected estimator is nearly unbiased in all scenarios, except under
very small power situation. All the corrected estimates are closer to the uncorrected estimates as study
power increases.

We can also observe differences in the variances of the estimates. Figure 2 reveals that the uncorrected
estimates for low- and moderately powered studies are tightly clustered around the biased average. The
variance of the uncorrected estimates gets larger as OR gets larger. Estimates generated with the cor-
rected method are comparatively more widely dispersed in small and moderately powered situations. The
variance of the corrected estimates gets smaller and closer to the variance of the uncorrected estimate at
larger ORs. This is expected because the findings from an underpowered study are prone to random errors,
and greater uncertainty in point estimation is appropriate, even though not evident with the uncorrected
estimator, which tends to take values just above the selection cutpoint. The uncorrected estimators arti-
ficially underestimate the variation, while the corrected estimators appropriately recover this uncertainty.
The variance of the corrected estimators and the weighted estimators decrease and are closer to that of the
uncorrected estimator as study power gets larger.

In general, the corrected estimates are very similar to the uncorrected estimates when the uncorrected
estimates are much larger than the selection cutpoint. When a large β̂com is observed, it very likely comes
from a large β value, thus the selection does not have much impact on its distribution. So the uncorrected
estimate does not contain much bias, and the corrected estimate therefore is similar to the uncorrected one.
However, when the uncorrected estimates are slightly larger than the selection, the selection has a great
impact on the distribution of the observed β̂com. Therefore, the uncorrected β̂com has a substantial bias
(shown in Figure 1). Under this situation, the corrected estimator is much smaller than the uncorrected
estimates.

The bootstrap estimate from the approach of Sun and others corrected some bias in the naive estimate
but it is still biased upward especially under the null or small power studies. This is consistent with the
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results shown in Sun and Bull (2006). They explained that when the effect size is small, all sample points
of a data set that gives an overall significant result tend to be sampled from the right tail of the true
underlying distribution. Thus, the value obtained in the bootstrap sample, which is correlated with the
overall sample, overestimates the true effect size (Sun and Bull, 2006).

The coverage rate and CI length are presented in Table 1 in the supplementary material, available at
Biostatistics online. The 95% CI coverage rate for the unadjusted estimator ranges from 0% to 98%. Thus,
the selection affects the coverage rate, and the amount of reduction in coverage rate is a function of β. The
quantile adjusted CIs have coverage rates close to the desired level in all scenarios. The profile CIs are a
little conservative in small power studies that the coverage rate is about 98%. But it has similar or shorter
length than the quantile adjusted CIs.

Table 2 in the supplementary material, available at Biostatistics online, presents the point estimates
performance under various sample size partitioning ratio between the 2 stages while the total sample
size is fixed. Varying this ratio between the 2 stages will impact the study power, especially when the
underlying OR is small or the first stage sample size is small. A small sample size in the first stage results
in a significant loss of power to pick up SNPs for the next stage even when the α level is 0.01. For example,
under OR = 1.2 when n2/n1 = 1/1, the study power is 12.4%, and the upward bias of β̂com is 0.110,
which is very similar to the power and bias magnitude for a 1-stage design. However, when n2/n1 = 3,
the power is about halved, and the upward bias is a slightly larger 0.118. The weighted MSE adjusted
estimate β̂MSE(Med) reduced the bias under all scenarios considered.

5.3 Simulation results on the asymptotic performance under fixed β value

Figure 3 shows additional simulation results with larger sample size to examine the asymptotic perfor-
mance of the 3 estimators under a fixed heterozygote OR = 1.2. As sample size gets larger, the study
power increases, thus the uncorrected estimate has less bias. Again, the MLE-corrected estimates and the

Fig. 3. Simulation results under various sample size. N is total case–control pairs in 1-stage design and N /2 is case–

control pairs at each stage in 2-stage design. Bias and SE of β̂Naive, β̂MLE, β̂Med, β̂MSE(MLE), β̂MSE(Med), β̂Boot,

and β̂Replication, based on 100 significant associations. Heterozygote OR = 1.2.
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median-corrected estimates have smaller bias in small sample size, but overcorrect when sample size is
larger. Their downward bias and SE become smaller as sample size increases. Similar to Figure 2, the
weighted MSE adjusted estimator using the median adjusted estimate is nearly unbiased except in very
small power scenarios. But β̂MLE and β̂MSE using the maximum likelihood adjusted estimator have smaller
bias when power is extremely low (e.g. N = 1000, study power = 0.78%).

Table 3 in the supplementary material, available at Biostatistics online, compares the performance of
CIs under OR = 1.2 with various sample size. Again, the coverage rates of the unadjusted CIs can be far
away from the desired level, while the adjusted CIs have coverage rates close to the nominal level in all
scenarios. The adjusted and unadjusted CIs become similar as sample size increases.

6. GENERALIZATION AND DISCUSSION

6.1 The comparison between the β̂MLE method and the method of Zollner and Pritchard

The method of Zollner and Pritchard (2007) parameterizes the likelihood with 4 parameters: p, mi-
nor allele frequency and p0, p1, and p2, the penetrance parameter corresponding to major allele ho-
mozygotes, heterozygotes, and minor allele homozygotes. Thus, the parameter that corresponds to β
is log

( p1
1−p1

/ p0
1−p0

) = log
( p2

1−p2
/ p0

1−p0

)
/2 in their parameterization under the multiplicative OR model

assumption and a test for H0: log
( p1

1−p1
/ p0

1−p0

) = 0. Because the conditional likelihood function used
here is the same concept as that used by Zollner and Pritchard and the maximum likelihood estimate
is invariant under 1-1 parameter transformation, log

( p̂1
1− p̂1

/ p̂0
1− p̂0

)
from their approach is conceptually

very similar to β̂MLE. However, Zollner and Pritchard use a somewhat different likelihood formulation
and seek the MLE via a computational algorithm, while we could use the exact formula provided by the
above asymptotic approximations to compute a corrected OR estimator. Another advantage of β̂MLE is the
convenient ability to accommodate additional covariates in the logistic regression.

6.2 Selection bias in σ̂

σ̂ is consistent estimator of σ , even under selection, for any nonzero β. Thus, it has sampling variations
that is negligible in large samples. But because σ̂ is calculated from the inverse of the Fisher information
matrix with β replaced by β̂, it has slightly upward bias, under selection, as the selected β̂ overestimates β
in small samples. We examined this from 1-stage design simulation studies. When OR = 1.1, the selected
σ̂ has mean 0.0556, while the σ̂ has mean 0.0552 if there were no selection. When OR = 1.2, the selected
σ̂ has mean 0.0549, while the σ̂ has mean 0.0546 without selection. But for OR greater than 1.3, the
upward bias in selected σ̂ is negligible. Therefore, the bias in the selected σ̂ is very small compared to
that in the selected β̂.

We also implemented an iterative bias-correction algorithm to examine the impact of bias in σ̂ on β̂.
In the algorithm, after β̂ is corrected, we plugged in the corrected β̂ into the Fisher information matrix
to calculate the corrected σ̂ . We then repeated the above procedure until β̂ and σ̂ both achieved conver-
gence. Simulation results showed that the iterative σ̂ corrected the slight selection bias in σ̂ , while the
iterated corrected β̂ is very similar to the “1-step” corrected β̂ previously described, with slightly reduced
overcorrection. For example, in the above simulation setup, when OR = 1.1, the 1-step β̂MLE has bias
−0.013, the iterative β̂MLE has bias −0.006, and the iterative corrected σ̂MLE is 0.0552. When OR = 1.2,
the 1-step β̂MLE has bias −0.041, the iterative β̂MLE has bias −0.035, and the iterative corrected σ̂MLE is
0.0546. For OR greater than 1.3, there is no detectable difference between 1-step β̂MLE and the iterative
β̂MLE. Similar pattern is observed for the iterative β̂Med. Therefore, we concluded that the selection bias
in σ̂ has little impact on the bias-correction procedure for β̂.
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6.3 Generalization to multistage designs or other tests

Although the above illustration is based on a 2-stage design, it can be generalized to the designs that have
more than 2 stages. At stage i , β̂i is normally distributed with mean β and independent to all β̂s prior to
the stage i . The combined estimator at each stage is defined as β̂com;1 = β̂1 and β̂com;i = α̂i β̂com;i−1 +
(1 − α̂i )β̂i , for i > 1, where α̂i = ∑i−1

j=1 σ̂−2
j

(∑i
j=1 σ̂−2

j

)−1, with variance σ−2
com;i = ∑i

j=1 σ−2
j . The

continuation region at stage i is Ci = {β̂com;i : |β̂com;i/σ̂com;i | � ci }. At each stage i , if β̂com;i ∈ Ci , the
SNP can move on to the next stage; otherwise, it stops at stage i . Thus, in a K -stage study, the SNPs that
are finally selected are those with β̂com;K |(β̂com; j ∈ C j , ∀ j � K ). Denote fβ̂com;i ;β̂com; j ∈C j ,∀ j<i (x ; β) by

f (i, x ; β). Its asymptotic approximation can be derived recursively as follows:

f (1, x ; β) = 1

σ1
φ

(
x − β

σ1

)
,

f (i, x ; β) =
∫

Ci−1

1

σi
φ

(
t − β

σi

)
1

(1 − αi )
f

(
i − 1,

x − (1 − αi )t

αi
; β

)
dt .

Therefore, the probability density function of the combined log OR for the final selected SNPs is

fβ̂com;K |(β̂com; j ∈C j ,∀ j�K )(x) = f (K , x ; β)∫
CK

f (K , t ; β)dt
1(x ∈ CK ).

One can further apply the correction method and the adjusted CIs discussed above to this conditional
probability density function.

For a biallelic markers, an Armitage trend test (Cochran, 1954; Armitage, 1955) is often used to test
for association between the disease probability and the number of minor SNP alleles. The Armitage trend
statistic is equivalent to the score statistic for testing H0 : β = 0 in the logistic regression, where Y is the
disease status and X is the risk allele count and with no additional covariates (Agresti, 1990). Therefore,
the p-values and bias from the Armitage trend statistic can be expected to be very similar to the p-values
obtained from the log-additive logistic regression.

6.4 Conclusions

In this paper, we discussed bias-reduction procedure to estimate the SNPs association ORs under GWAS.
In GWAS, tens of SNPs may be selected among hundreds of thousands of SNPs tested, and there is not
much interest in quantifying associations for unselected SNPs. Rather, conditional inference, including
conditional expectation and conditional coverage rate, is pertinent. We demonstrated that the uncorrected
estimator β̂com has very large upward bias in small to moderate power situation. The median corrected
estimator β̂Med and the MLE-corrected estimator β̂MLE have reduced bias for the selected SNPs when the
study power is small. In modest power situations, they tend to overcorrect the bias and have downward
bias. The weighted estimator β̂MSE is nearly unbiased except in very low power scenario. β̂com severely
underestimates the variation of the OR point estimates for the selected SNPs in small power studies,
while the corrected estimators recovered the uncertainty in small power studies and have variance that
reduces appropriately when study power is large. Selection has very large effects on the coverage rate of
the unadjusted CIs regardless the study power. Whereas the profile CIs and the quantile adjusted CIs have
coverage rates close to the desired levels under all power scenarios. We conclude that the bias-reduced
estimators, especially β̂MSE and the corresponding selection adjusted CIs, can be recommended for GWAS
reporting criteria.
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