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Summary
This article introduces methods for use in vaccine clinical trials to help determine whether the immune
response to a vaccine is actually causing a reduction in the infection rate. This is not easy because
immune response to the (say HIV) vaccine is only observed in the HIV vaccine arm. If we knew
what the HIV-specific immune response in placebo recipients would have been, had they been
vaccinated, this immune response could be treated essentially like a baseline covariate and an
interaction with treatment could be evaluated. Relatedly, the rate of infection by this baseline
covariate could be compared between the two groups and a causative role of immune response would
be supported if infection risk decreased with increasing HIV immune response only in the vaccine
group. We introduce two methods for inferring this HIV-specific immune response. The first involves
vaccinating everyone before baseline with an irrelevant vaccine, for example, rabies. Randomization
ensures that the relationship between the immune responses to the rabies and HIV vaccines observed
in the vaccine group is the same as what would have been seen in the placebo group. We infer a
placebo volunteer’s response to the HIV vaccine using their rabies response and a prediction model
from the vaccine group. The second method entails vaccinating all uninfected placebo patients at the
closeout of the trial with the HIV vaccine and recording immune response. We pretend this immune
response at closeout is what they would have had at baseline. We can then infer what the distribution
of immune response among placebo infecteds would have been. Such designs may help elucidate
the role of immune response in preventing infections. More pointedly, they could be helpful in the
decision to improve or abandon an HIV vaccine with mediocre performance in a phase III trial.
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1. Introduction
A vaccine contains innocuous material that provokes a response by the adaptive immune
system. Following vaccination, the immune system mounts a multifaceted, and exquisitely
specific, counterattack based on two types of white blood cells, B-lymphocytes and T-
lymphocytes. These cells respond to specific proteins of the vaccine material, proliferate, and
wait to subsequently attack either floating microbes or infected cells that display such peptides.
B-lymphocytes produce antibodies that recognize proteins in the outer surface of the virus and
neutralize their ability to infect cells. T-lymphocytes produce cells that either kill or aid in
killing infected cells. The magnitude of each component of the adaptive immune response to
the vaccine can be measured. Vaccine development focuses on inducing a strong, measurable
immune response while ensuring that the vaccine is safe (see, e.g., Halloran, 1998; Nabel,
2001; or Chan, Wang, and Heyse, 2003).
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Establishing the role of vaccine-induced immune response on actual protection of infection
and disease is an important open problem in vaccine studies (Halloran, 1998). A “correlate of
protection” is the threshold for immune response, say xp, beyond which infections and disease
do not occur (Lachenbruch et al., 2000). Methods for estimating such a threshold are discussed
in Carey, Barker, and Platt (2001), Chan et al. (2002), and Plikaytis and Carlone (2005).
However, when immune response only occurs in the vaccinated group, validation of a correlate
of protection, or more generally validation of immune response as a true surrogate with a
causative role, is problematic (Chan et al., 2003). The use of Prentice’s criteria to establish
surrogacy, conditional independence of treatment, and outcome given the surrogate (Prentice,
1989) breaks down here because immune response to the vaccine basically only occurs in the
vaccine group and thus the value of the surrogate basically identifies the treatment group.
Strictly speaking, one cannot know whether the measured immune responses, or other
unmeasured vaccine-induced changes, are actually responsible for an efficacious vaccine. For
example, it could be that those individuals who achieve xp in response to a weak vaccine are
more intrinsically fit than others so that even if a more powerful vaccine achieved xp in
everyone, not all would be protected.

That this might be an actual problem was demonstrated in VAX004, the first phase III trial of
an HIV vaccine (Gilbert et al., 2005; The rgp120 HIV Vaccine Study Group, 2005). Overall,
the vaccine was not effective, with infection rates of 0.067 and 0.070, respectively, in the
vaccine and placebo groups based on 5403 volunteers. However, the antibody response to the
HIV vaccine was strongly associated with infection risk in the vaccine group. Tables 1 and 2
provide the relative hazard of infection as a function of antibody response quartiles, first within
the vaccine group and then when the placebo group is used as a control (see Gilbert et al.,
2005). Because antibody response to the HIV vaccine is only measured in the vaccine group,
Table 2 has question marks in the placebo cells—we do not know what HIV immune response
they would have had, had they been vaccinated.

Two hypotheses were postulated to explain these results (Gilbert et al., 2005; Graham and
Mascola, 2005). The first was that antibody response is identifying volunteers with different
constitutional ability to avoid infection but the vaccine-induced immune response had no
causative role. We call this the association hypothesis. The second was that the vaccine caused
infections in those with the weakest immune response and prevented infections in those with
the strongest immune response. We call this the causation hypothesis. As it stands, neither of
these hypotheses can be evaluated on the basis of data.

In this article we introduce two new designs to help understand the role of immune response
in vaccines. These designs can discriminate between the two hypotheses outlined above. The
first design is to inoculate everyone in both arms prior to randomization with an irrelevant
vaccine, say rabies. We call this baseline irrelevant vaccination (BIV), and let W0 be the
immune response to the rabies vaccine at baseline. Also, we define X0 as the immune response
to the HIV vaccine, which is measured just after randomization in the vaccine group.
Randomization ensures that the relationship between W 0, X0 observed in the vaccine group is
the same in the placebo group. Based on this relationship, the observed W0 of a placebo
participant can be used to infer his X0. Figure 1 illustrates how W0 can be used to impute X0
in the placebo group when they are very highly correlated (ρ= 0.98). It is important to note that
a rabies vaccine is not required—any baseline measurement that correlated well with X0 would
work, but an irrelevant vaccination is a good choice. This type of thinking to predict a post-
randomization characteristic only observed in the treatment group has been used before in heart
disease (see, e.g., Follmann, 2000, or Hallstrom et al., 2001).

The second way to get at X0 in the placebo group would be to vaccinate all the uninfected
placebo recipients at the closeout of the trial with the HIV vaccine and then measure their

Follmann Page 2

Biometrics. Author manuscript; available in PMC 2008 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



immune response, say XC. If we make the assumption that XC is the same as X0, we effectively
obtain X0 in many. We call this closeout placebo vaccination (CPV). Table 3 provides
hypothetical data illustrating how CPV can be used to suggest that X0 is associated with
constitutional ability to remain uninfected, but has no causative role.

Figure 1 and Table 3 are meant to informally illustrate how to infer X0 in the placebo group.
In the sequel, we develop formal methods that rely on the thinking of counterfactuals, causal
inference, and principal stratification. We also describe some simple methods, investigate
performance of different methods by simulation, and discuss some more elaborate approaches.

2. Model-Based Approach
Suppose that n patients per group are randomized to placebo or vaccine. Prior to randomization,
all patients receive a rabies vaccine and the immune response to rabies vaccine (W0) is measured
before randomization. Patients are then randomized to either a placebo or HIV vaccine injection
and shortly thereafter, immune response to the HIV vaccine (X0) is measured in the vaccine
group. At the closeout or end of the trial, all uninfected placebo recipients receive the HIV
vaccine and shortly thereafter, immune response to this vaccine is measured (XC). Let Y be the
infection indicator and Z be the vaccine indicator. A schematic representation of a vaccine trial
augmented with BIV and CPV is given in Figure 2.

Our approach to using these data is perhaps best described using counterfactual reasoning
(Rubin, 1974, 1977, 1978; Halloran and Struchiner, 1995) and principal stratification
(Frangakis and Rubin, 2002). First, let W0i be the baseline rabies-specific adaptive immune
response for patient i. This is seen in everyone. The response to HIV vaccination is different.
One can write X0i(z) as the (post) baseline HIV-specific immune response to HIV vaccination.
We call X0i(0), X0i(1) potential covariates; X0i(1) is measured in vaccine recipients while
X0i(0) would be 0 in nearly everyone. We say that X0i(1) is realized in the vaccine group and
unrealized in the placebo group. Using the terminology of Frangakis and Rubin (2002), Xi (1)
= x, Xi (0) = 0 defines a principal stratum indexed by x. Principal strata are a classification of
subjects defined by the potential values of a post-treatment variable under each of the treatments
being considered. They also call X0(1) a principal surrogate and distinguish it from a
“statistical” surrogate, which for our setup would be Xobs = X0(1)Z + X0(0) (1 − Z). We next
define Yi(z) as the outcome for person i following treatment z. We call the pair Yi(0), Yi(1)
potential outcomes. We also define XCi(z, y) as the closeout HIV-specific adaptive immune
response for person i when given treatment z and following outcome y. Only XCi(0, 0) is
measured and meaningful:

We make the following simplifying assumptions:
• All patients receive the assigned injections so there is no noncompliance.
• There are no missing data; W0, Y0 are measured on everyone, X0 is measured on all

vaccinees, and XC is measured on all placebo uninfecteds.
• No infections occur between the time of randomization and when X0 is measured, say

the interval [0, m].

The first two are for simplicity and can be relaxed. For example, if there is some noncompliance
but it is governed by an independent random mechanism, our methods could be applied to just
the compliers. With data missing completely at random the methods can be applied directly to
the observed data. If the data are missing at random, methods that incorporate covariates
associated with missingness can be used. The last assumption is more likely to be met if m is
small. If a few infections occur in [0, m], an analysis that throws them out may be acceptable.
We discuss how to modify our approach to incorporate infections during [0, m] in Section 6.
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We next specify probit models for the effect of the “baseline covariate” X0(1) on the probability
of infection in both groups:

(1)

where Φ( ) is the standard normal c.d.f. (cumulative distribution function). This equation
specifies a model for a standard covariate by treatment interaction for a clinical trial. The probit
is handy because it is easy to integrate over x, which we will need to do later. Note that (1)
assumes that W0 has no effect on Y(z) once X0(1) and Z are in the model. This can also be
relaxed, as we discuss in Section 5.

Different causal estimands can be used to quantify the effect of the vaccine as a function of
X0(1). For example, following Hudgens and Halloran (2004) we define vaccine efficacy as

With our probit model, a natural estimand is

Note that when β3 = 0, ΔP(x) is free of x, this is not true for VE(x).

If X0i(1) were observed in everyone, estimation would be straightforward. As X0i(1) is not
observed in the placebo group, we require at least one of the following two assumptions to
proceed:

• X0i(1) can be viewed as a baseline covariate or

• For placebo uninfecteds, X0i(1) = xi + U1 and XCi(0, 0) = xi + U2 where U1 and U2
are i.i.d. (independent and identically distributed) mean 0. We call this time constancy
of immune response.

The first assumption is true by design in randomized trials and allows us to impute X0i (1)
based on W0i in the placebo group. While technically measured post-randomization, this “post-
baseline” covariate can be used as a baseline covariate. The second assumption allows us to
replace X0i(1) with XCi(0, 0) as a covariate in the probit model for placebo uninfecteds. Under
the model X = x + U, one can think of x as the true time constant immune response, which is
observed subject to measurement error and our interest focuses on the regression of Y on X.
This assumption cannot be accepted uncritically as immune response can diminish with age,
such as for herpes zoster, if the trial is long enough. Additionally, volunteers might get
subinfectious exposures to a virus that modifies immune response. This is thought possible for
HIV where commercial sex workers showed immune responses to HIV but remained
uninfected. However even here, the assumption might hold if the immune response is
effectively primed by subinfectious exposure pre-baseline and this response is maintained
during the course of the trial. Additionally, this assumption can be examined, as we will discuss
in Section 5.

Our final assumption allows us to easily integrate over the distribution of X0(1)|W0:
• The distribution of X0(1), W0 is bivariate normal with moments μx, μw, , , ρ.
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This assumption can also be relaxed but the integration would be more complicated.

To estimate β = (β0, β1, β2, β3), we use maximum likelihood. We begin by constructing a
likelihood incorporating both BIV and CPV. The likelihood contribution for vaccinees is
simple,

where V is the set of vaccinees. For uninfected placebo volunteers we use XCi in lieu of X0i
and their contribution is

where ℘ (U) is the set of uninfected placebo recipients. In the placebo infecteds, X0(1) is
missing and we need to integrate p0(X0(1)) over the distribution of X0(1)|W0 to obtain their
likelihood contribution. Under our last assumption, it follows that X0(1)|W0 = w is normal with
mean μ*(w0) = μx + ρσx/σw(w0 − μw)and variance . The (integrated) probability
of infection for a person with W0 = w0 is thus

The right-hand side obtains the result that  for U normal(μ,
σ2). The overall likelihood is thus

Note that  depends on the moments of X0(1), W0, which are unknown. We advocate
estimating these moments using vaccine group data and regard them as fixed in LBC. Because
of this, the standard error estimates obtained by the Fisher information matrix are incorrect and
we suggest using the nonparametric bootstrap method to obtain standard errors.

We can also construct likelihoods based on augmenting the usual design with BIV alone or
CPV alone. These are, respectively,

where ℘ is the set of placebo recipients, and
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where #℘(I) is the number of placebo infecteds. The last Φ( ) in LC(β) is just the probability
that a generic placebo patient is infected and equals E{β0 + β1X0(1)}, where X0(1) is normal
(μx, ). Based on the estimated β’s it is a simple matter to plug them into a causal estimand.
Standard errors and confidence intervals for causal estimands can be computed from the
bootstrap.

3. Closeout Placebo Vaccination Alone
The previous section outlined how BIV and CPV can be used to estimate the effect of immune
response using a model and likelihood. In this section, we show how closeout placebo
vaccination by itself can be used without a model to assess immune response. The approach is
inspired by Tables 1 and 2 and Gilbert, Bosch, and Hudgens (2003).

Denote by f0(x) and f1(x) the densities of X0(1) for the placebo and vaccine groups, respectively.
In each group we can decompose the distribution of immune response into a mixture of those
who would/did become infected and those who would not/did not. Thus we can write the
immune response densities in mixture form,

(2)

(3)

where θℓ is the true proportion of infected volunteers in group ℓ. In the vaccine group the mixed
density and the two constituent densities are directly estimable as is θ1. In the placebo group

θ0 and f0(x|Y = 0) are directly estimable, provided . To get f0(x|Y = 1)
we replace f0(x) with f1(x) and solve by subtraction.

With these arguments and Bayes’ theorem, one can deduce that

(4)

(5)

The terms on the right-hand side can be estimated nonparametrically and thus so can the left-
hand side.

Interestingly, the different conditional distributions of X0(1) can be compared to test the role
of X0(1). To motivate these tests, consider Table 3. Suppose the counts in the placebo uninfected
row were very similar over the four quartiles. This would suggest that unrealized potential
immune response was unassociated with infection risk. Using the fact that f1(x) = f0(x), the
continuous analog to see whether the counts in the placebo uninfected row are similar can be
written as
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Note that if the probit model (1) is correct, then  is equivalent to β2 = 0. Also note that 
corresponds to the causation hypothesis that was suggested to explain Tables 1 and 2.

At the other extreme, suppose that the counts in the vaccine uninfected row were quite similar
to the counts in the placebo uninfected row. This would suggest that immune response has no
causative effect on infection. The continuous analog is

Unlike  does not correspond to β3 = 0 even if (1) is correct, unless β1 = 0. Note that 
corresponds to the association hypothesis suggested to explain Tables 1 and 2.

Different methods could be used to test equality of the densities specified by  and  such
as t-tests, rank tests, or Kolmogorov-type tests. For a t-test of , one compares all X0i(1)’s in
the vaccine group to the XCi ’s of the placebo uninfecteds. For a t-test of , one compares the
X0i(1)’s of the vaccine uninfecteds to the XCi’s of the placebo uninfecteds.

4. Simulation
To assess these designs, we conducted a simulation under the model assumptions given in the
previous section. We generated data where P{Y(z) = 1 |Z = z, X0(1) = x} is given by (1), and
W0, X0(1) are bivariate Gaussian with correlation ρ. We set E[p0{X0(1)}] = θ0 = 0.10 and θ1
= 0.08. We selected β2, β3 in terms of relative risk,

where Q(7/8), Q(1/8) are the seventh and first octiles of the distribution of X0(1). Three
scenarios were considered, chosen with the hazards of Tables 1 and 2 in mind:

• Association: Here R1 = R0 = 0.2, β3 = 0, and ΔP(x) is free of x.
• Causation: Here R0 = 1, R1 = 0.2, β2 = 0, and ΔP(x) depends on x.
• Both: Here R0 = 0.33, R1 = 0.11, βk < 0, k = 0, 1, and ΔP(x) depends on x.

For each simulated data set maximum likelihood using LBC, LB, and LC was used to estimate
β. We also constructed a probit likelihood based on observing X0(1) exactly in everyone.
Estimates based on this likelihood correspond to an unattainable benchmark.

The first set of simulations used 10,000 replications and varied by 0.25, 0.5, 0.75, 1. We do
not evaluate ρ= 0 as the model using BIV alone is unidentifiable. Replications were not tallied
when convergence was not attained, which was very rare except for BIV alone with ρ= 0.25
when the estimates did not converge 2–3% of the time.

Figure 3 provides the sample variance for the four estimates of β, divided by the sample variance
when X0(1) is used, as a function of ρ under the Association and Causation scenarios. Relative
behavior of the different estimates is similar under the Both scenario and hence not reported.
For the estimates using CPV (C) alone or the benchmark (X), the sampling variability is free
of ρ. The sample variance with CPV alone is from nearly 10 times to almost 25 times larger
than with the benchmark. The performance of BIV (B) alone depends profoundly on ρ with
ρ= 0.25 exhibiting extremely large sample variances for the Association scenario, and variances
similar to CPV alone for the Causation scenario. For ρ > 0.5, BIV and CPV + BIV have similar
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variance ratios. We see that for large ρ CPV is unnecessary and for small ρ BIV performs
poorly. As ρ = 0.25, both CPV and BIV are helpful.

Our second set of simulations evaluates power and is given in Table 4 with n = 1000 or 2500,
ρ = 0.25 or 0.50, for the three scenarios Association, Causation, and Both. For the Wald tests,
a nonparametric bootstrap standard error was calculated using the sample variance of 100
bootstrap resamples for each simulated trial. Resamples where convergence was not attained
were thrown out, which was rare except for BIV alone with ρ = 0.25. As before, BIV alone
with ρ = 0.25 had problems with convergence and these were exacerbated in the bootstrap
resamples.

We begin by evaluating the Wald test. First, the benchmark has extremely high power, except
for β3 under scenario B with n = 1000. For CPV + BIV, power is generally good to excellent
for all scenarios with n = 2500. For n = 1000, power is degraded, especially with ρ = 0.25. For
BIV alone, power is similar to CPV + BIV for ρ = 0.50 and much worse for ρ = 0.25. Generally,
power for CPV alone is much worse than for BIV alone with ρ = 0.50 and moderately better
with ρ = 0.25. The power of the t-tests is usually similar to CPV alone and close to at least 0.50
for scenarios A and C with n = 2500.

We also did a few limited simulations to address specific issues. In practice, one might want
to perform CPV on a fraction of the placebo uninfecteds. For scenario A, we compared the
estimates using CPV alone, where XC was obtained in everyone to where it was obtained in
1/2, 1/4, or 1/10 of the placebo uninfecteds. The sampling variance for either β ̂2 or β ̂3 was about
60%, 300%, and 1000% larger than when XC was obtained in everyone, respectively. Second,
we evaluated the procedures when the moments were set to their true values and not estimated.
The sampling variance for CPV alone and for BIV alone was nearly halved when true values
were used instead of estimated values. For CPV + BIV, the sampling variability was only
modestly reduced. For larger trials, for example, n = 8000 with low event rates, the performance
of CPV and BIV relative to BIV + CPV might be better than shown in Figure 3 and Table 4
as the estimated moments of X0(1), W0 would be more reliable. It also suggests that one might
want to consider use of a full likelihood. For example, for CPV alone uses

where φ(x; μ, σ2) is the normal density and f0(xiC|Yi = 0; μx, ) is the density for uninfecteds,
derived under (1) and a Gaussian model for X0(1).

In summary, the new designs can be efficient and powerful even with n = 1000 if ρ > 0.5. If
ρ is modest, a larger sample size is required to achieve strong power as CPV is necessary. If
ρ is large enough, CPV may be unnecessary, while if ρ is too small, BIV alone may be useless.
With n = 2500 we have excellent power for scenarios A and C with ρ = 0.5 using BIV alone
and good to excellent power with the BIV + CPV combination with ρ = 0.25. Even with CPV
alone, power is greater than 50% for these two scenarios. This configuration is not unlike
VAX004 suggesting augmented designs could have helped inform the debate about these two
hypotheses. It is clear that the performance of the designs depends dramatically on specific
scenarios. In practice, careful analysis of performance would be required to settle on a specific
augmented design.

We note that a correlation of close to 0.5 may be a realistic aspiration. In the VAX004 trial,
the vaccine consisted of two strains of viral gp-120, which is a sequence of 120 amino acids
that comprise the outer envelope of the virus. The two strains were denoted MN and GNE8.
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Two nonoverlapping regions of the envelope, prone to mutations, are called the V2 and V3
loops. The amino acid sequences for the V2 loop and the V3 loop of the gp120 are completely
different and thus the immune response induced by these two different loops should behave
like responses to irrelevant vaccinations. Correlations between these loops were 0.42 and 0.44,
respectively, for the MN and GNE8 strains. Correlations across strains were 0.34 and 0.48
(Figure 3 of Gilbert et al., 2005).

5. Elaborations
The methods of this article can help decide whether an improved vaccine is worth evaluating
in a phase III trial. Suppose that after tinkering with the old vaccine, a new version was created,
which shifted the distribution of the immune response to the right by Δ. So in an obvious
notation, we have X0(1)old with moments μx and , while X0(1)new has moments μx + Δ and

. We assume that a person with response x under the old vaccine is infected with probability

under the new vaccine. Note that Δ is missing from β2 as only β3 reflects the causative effect
of immune response. Overall, we calculate the expected event rate with the new vaccine

Based on the data from the trial of the old vaccine, one can estimate θ 0 and  and then
estimate the sample size required for a phase III trial of the new vaccine with improved immune
response Δ. Or one might conclude that  is too modest to proceed.

Closeout placebo vaccination requires time constancy of immune response. One way to
examine this assumption would be to close out some fraction of the placebo uninfecteds
midway through the trial, vaccinate them, and obtain their immune response, say XC/2. Equality
of the distributions of XC/2 and XC supports time constancy of immune response provided the
effect of X0(1) on Y does not vary with time. To formalize this, let YC/2, YC be the infection
indicators over half the trial and the entire trial, respectively. If

(6)

then

is consistent with time constancy of immune response on an individual level. Note that if (6)
does not hold, there is no point in examining .

Testing  need not be very costly. Simple power calculations show that for a 8800 person
trial with 90% power to detect a 10% versus 8% difference in infection rates, removing 10%
of placebo uninfecteds halfway through would retain at least 88% power. Additionally,
comparing XC/2 in 440 “halfway” placebo uninfecteds to XC in say the 3520 final placebo
uninfecteds would give 97% power to detect a standardized difference (mean difference over
standard deviation) of 0.20.
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Another way to examine time constancy of immune response is to see whether the relationships
between W0, X0(1) and W0, XC are the same in the two arms. But this also requires assumptions.
For example, if the following probit model holds

(7)

then

is consistent with time constancy of immune response. Note that  can be tested using data
readily available from a CPV trial and does not require a partial closeout halfway through the
trial.

Model (1) assumes that there is no effect of W0 on infection risk once X0(1) is in the model.
One can specify generalizations to (1) that include W0 as an additional main effect, or even
allow for interaction with treatment,

(8)

and likelihood construction for this model would parallel construction based on (1). It is perhaps
surprising that even for our setting, where X0(1) is missing in the placebo group, this model
with two interactions can be estimated provided CPV is performed. If CPV is not done, (8) is
identifiable provided, for example, β5 = 0. With CPV one could test whether β5 and/or β3 were
0. However, such tests would likely have poor power, as trials are powered for a treatment
main effect and estimating two interactions may be difficult.

In principle, W0 could be any baseline variable correlated with X0(1) and a baseline irrelevant
vaccination need not be performed. Presumably, however, W0 based on BIV should have a
much stronger relationship with X0(1) than a variable such as race, gender, or age. An additional
issue with nonimmunologically based W0 is the perhaps greater concern that β3 and or β5 in
(8) might not be zero. It is important to realize that if (8) holds with (β3, β5) ≠ (0, 0) then
inference derived from fitting (the incorrect) model (1) would be misleading.

We made a simplifying assumption that there were no infections in either group until X0(1)
was measured. If infections do occur over the interval [0, m] we can still obtain consistent
estimates of the parameters provided we derive a likelihood under more assumptions. We
illustrate one way. Consider a BIV design. Because the likelihoods in Section 2 factor L(β) =
Lv(β0 + β1, β2 + β3)Lp(β0, β2) we can estimate β0, β2 using Lp ( ), given consistent estimates of
θ = (μx, μz, , , ρ) (recall that Lp depends implicitly on θ). For the vaccine group, let V(m)
be the set of vaccinees who become infected over the interval [0, m] and V(R) be the rest of
the vaccinees. Then under assumption (6) applied over [0, m], the likelihood for the vaccine
group is proportional to

where φ is the bivariate normal density function.
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6. Final Comments
While this article has focused on immune response to an HIV vaccine, it is clear that the
methods would apply to any vaccine trial. Chan et al. (2003) describe the role of immune
response in vaccine development and point out the difficulty of establishing immune response
as a surrogate for protection or disease burden as immune response is only measured in the
vaccine group. The designs of this article allow one to use the principal surrogacy approach of
Frangakis and Rubin (2002).

This article has focused on evaluating the effect of immune response on preventing infections.
Current thinking on HIV vaccines is that they may have their major effect on post-infection
outcomes, such as the viral load setpoint, the steady-state amount of virus in the bloodstream
shortly after infection. The approach of this article could also be applied to post-infection
endpoints, though this is necessarily more assumption dependent as the infected groups are not
balanced by virtue of randomization (see Gilbert et al., 2003; Hudgens, Hoering, and Self,
2003).

The simulations show the profound dependence of these methods on ρ. Fortunately, ρ can be
estimated well before closeout. However, even if ρ is large, there is some benefit in obtaining
some CPV data as they provide a check of the imputation-based W0 alone. Additionally, if it
turns out to be an unanticipated immune response to the HIV vaccine, say X0(1)u is strongly
associated with infections and W0 is independent of X0(1)u, a BIV-alone design would have
been a mistake. CPV offers protection against this possibility. Finally, a simple t-test based on
CPV data alone is appealing for its simplicity and transparency. Of course, CPV requires the
strong assumption of time constancy of immune response.

In practice, several vaccinations over several months may be necessary during which time
infections might accrue and the immune responses might wax and wane in conjunction with
the vaccinations so thought is required to choose a precise time to measure X0(1). Another
approach would be to develop methods that explicitly model the time-varying nature of X0(1)
and use time to infection as the outcome rather than a binary indicator of infection.

Implementation of these designs could be done in an incremental fashion. Initially, small
studies could be conducted to establish the extent of correlation between W0 and X0(1), which
irrelevant vaccine was most useful, and whether time constancy of immune response were
plausible. If promising, an adaptive augmented phase III design could then be initiated.
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Figure 1.
Made-up scatterplot illustrating imputation of the immune response to an HIV vaccine (X0) in
the placebo group based on the observed immune response to a rabies vaccine (W0) for a single
patient. The bivariate distribution between X0, W0 is observed in the vaccine group.
Randomization assures that this distribution and regression line also apply to the placebo group.
While X0 cannot be observed in the placebo group, W0 can and provides the basis for
imputation. A very high correlation between X0, W0 is used to illustrate the concept.
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Figure 2.
Schematic representation of augmented designs. Circles and lowercase letters denote
inoculations, immuneresponse is denoted by capital letters. Under a traditional design, patients
are vaccinated either with HIV vaccine (h) or placebo (p) and immune response to the HIV
vaccine (X = X0) is measured shortly thereafter in the vaccine group. Under BIV, both groups
are vaccinated against rabies (r) and the immune response to rabies vaccine (W = W0) is
measured prior to randomization. Under CPV, placebo patients who are uninfected at the end
of the trial receive HIV vaccine at close-out and their immune response is measured then (X =
XC).
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Figure 3.
Sample variance of estimates of β divided by the sample variance when the X0(1) is used.
Estimates denoted by B, C, 2, and X correspond to designs using BIV alone, CPV alone, BIV
+ CPV, and the impossible benchmark where X0(1) is known in everyone, respectively. For
BIV alone when ρ = 0.25 the relative sample variance is enormous and off the chart for the
Association scenario. One can extrapolate the behavior of the designs using CPV alone and
the benchmark ρ= 0 as their behavior is free of ρ. Each symbol is based on 10,000 simulated
trials.
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Table 1
The relative hazard of infection, based on a Cox model, as a function of antibody response to the HIV vaccine, which
is only measured in the vaccine group. It seems the vaccine-induced antibodies are doing their job.

Quartile of antibody response following HIV vaccination

Group Weak Modest Good Best

Vaccine 1.00 0.35* 0.28* 0.22*

*
p < 0.05.
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