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ABSTRACT

In many studies of auditory-evoked responses to low-
intensity sounds, the response amplitude appears to
increase roughly linearly with the sound level in
decibels (dB), corresponding to a logarithmic inten-
sity dependence. But the auditory system is assumed
to be linear in the low-intensity limit. The goal of this
study was to resolve the seeming contradiction. Based
on assumptions about the rate-intensity functions of
single auditory-nerve fibers and the pattern of cochle-
ar excitation caused by a tone, a model for the gross
response of the population of auditory nerve fibers
was developed. In accordance with signal detection
theory, the model denies the existence of a threshold.
This implies that regarding the detection of a
significant stimulus-related effect, a reduction in
sound intensity can always be compensated for by
increasing the measurement time, at least in theory.
The model suggests that the gross response is
proportional to intensity when the latter is low (range
I), and a linear function of sound level at higher
intensities (range III). For intensities in between, it is
concluded that noisy experimental data may provide
seemingly irrefutable evidence of a linear depen-
dence on sound pressure (range II). In view of the
small response amplitudes that are to be expected for
intensity range I, direct observation of the predicted
proportionality with intensity will generally be a
challenging task for an experimenter. Although the
model was developed for the auditory nerve, the basic
conclusions are probably valid for higher levels of the
auditory system, too, and might help to improve
models for loudness at threshold.
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INTRODUCTION

Many aspects of hearing may be described in terms of
logarithmic scales. The logarithm of loudness, for
example, is over a wide range an approximately linear
function of the sound level in decibels (dB), which is
a logarithmic measure. Corresponding relationships
were found in physiological studies. The logarithm of
the auditory-nerve spike count, for instance, seems to
increase almost linearly with sound level, over a range
of roughly 60 dB (Relkin and Doucet 1997). Such laws
cannot be extrapolated to low intensities, though. So
the loudness at threshold would be grossly overesti-
mated this way (Buus et al. 1998). As far as auditory-
evoked responses near threshold are concerned,
several studies suggest that it is the response ampli-
tude itself, not its logarithm, which increases roughly
linearly with sound level. In the case of the compound
action potential (CAP) of the auditory nerve, such an
increase can be found between threshold and 40–
60 dB above threshold (see e.g., Fig. 2a of Eggermont
and Odenthal 1974; Fig. 9 of Versnel et al. 1992). The
range appears to shrink when moving up the auditory
pathway; the upper limits observed in brainstem audi-
tory-evoked potentials (Elberling and Don 1987) and
auditory-evoked fields of cortical origin (Lütkenhöner
and Klein 2007) were 30–40 and 15 dB, respectively.

A linear relationship between response amplitude
and sound level in dB may appear natural at
threshold, but in fact it is not. The point is the
logarithmic nature of the dB scale. A linear increase
with sound level implies a logarithmic increase with
sound pressure, and such a nonlinear behavior does
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not appear plausible at threshold. Instead, we would
expect that the response amplitude is a linear
function of an elementary physical quantity such as
sound pressure or intensity. Such a relationship was
indeed found in auditory-nerve fibers. Yates et al.
(1990) showed, in guinea pig, that the stimulus-driven
component of the firing rate is, at low levels,
proportional to intensity. Earlier data by Geisler et
al. (1985) support that view, as demonstrated by Yates
(1990). Consistent observations were made by Eatock
et al. (1991) in a nonmammallian cochlea.

The apparent discrepancy between the auditory
nerve as a whole and its individual fibers is astonish-
ing. This article clears up the seeming contradiction.
The model that will be presented is, in the low-
intensity limit, linear with respect to intensity. As
intensity increases, it becomes linear with respect to
sound level. Although the model was developed for
the gross firing rate of the auditory nerve, it is also
applicable to the CAP, which may be modeled as a
convolution of the gross firing rate with a unit
response (Goldstein and Kiang 1958; Kiang et al.
1976; Antoli-Candela and Kiang 1978). For the sake of
simplicity, we will not always distinguish between gross
firing rate and CAP, but use the unspecific term
“response” for a stimulus-driven effect. Some basic
conclusions are presumably valid for higher levels of
the auditory system, too. The results might also help
to improve models for loudness at threshold.

THE MODEL

Rate-intensity function of auditory-nerve fiber

The discharge rate of an auditory nerve fiber may be
described as the sum of a spontaneous rate r0 and a
stimulus-driven rate rD (Sachs 1969). Only the latter is
to be considered in this study because spontaneous
background activity does not contribute to an audito-
ry evoked response. In the model proposed by Sachs
and Abbas (1974), the driven rate rD is related to the
amplitude of the basilar membrane displacement, d,
by an equation of the form rD ¼ rmd�= �þ d�ð Þ, where
rm is the maximum driven rate (difference between
saturation rate and spontaneous rate). To understand
the meaning of the parameter θ, it is useful to
substitute � ¼ #� and to rewrite the equation as
rD ¼ rm= 1þ #=dð Þ�ð Þ. The new parameter ϑ evidently
represents the basilar membrane displacement that
results in the stimulus-driven discharge rate rm/2. At
sufficiently low intensities, d may be assumed to be
proportional to sound pressure P. Thus, an appropri-
ate normalization of sound pressure finally yields

rD ¼ rm= 1þ P��ð Þ ð1Þ
For the parameter κ, the value 1.77 was derived.

The model was largely confirmed by Yates et al.
(1990): Their data were in excellent agreement with
the assumption κ=2, but inconsistent with the as-
sumption κ=1. Other values of κ were not considered
in that study. Thus, it cannot be excluded that an
algorithmic parameter optimization would have
resulted in a slight deviation from the integer 2, as
proposed by Sachs and Abbas (1974). Nevertheless,
there is a strong theoretical argument against the view
that κ is a parameter that may be arbitrarily optimized
by a curve-fitting algorithm. It appears plausible to
assume that the low-intensity approximation of Eq. 1,
rD � rmP�, represents the leading term of a series
expansion of rd with respect to sound pressure P, and
this expectation requires κ to be an integer. Direct
evidence was obtained by Eatock et al. (1991),
although for nonmammallian auditory neurons (alli-
gator lizard). In contrast to Yates et al. (1990), they
determined the parameter κ without limiting their
consideration to integer values. The distribution of
exponents showed a distinct maximum around κ = 2
and most of the variability in the estimated exponents
could be attributed to inherent noise in the data. The
assumption κ = 2 represents one of the basic postu-
lates of the present modeling study. For the sake of
completeness, it shall be added that, for a specific
subset of fibers (tectorial fibers), Eatock et al. (1991)
obtained a distribution with a pronounced maximum
around κ = 3.

Sachs and Abbas (1974) defined a normalized rate
as rD/rm. For the model of Eq. 1, with κ=2, the
normalized rate may be expressed as a function of the
normalized stimulus intensity, I = P 2, as

f0 Ið Þ ¼ 1
1þ 1=I

: ð2Þ

Figure 1 shows two alternative representations of this
function (solid curves): on the right, the intensity
scale is linear, whereas on the left it is logarithmic.
More precisely, the left panel of Figure 1 shows f0 as a
function of sound level in dB, defined as L = 10
log10(I). Corresponding points in the two panels are
connected by dotted lines. The intensity scale is
normalized such that I = 1 (0 dB) corresponds to
f0 = 1/2. The curve on the left has its steepest slope in
that point, and it is antisymmetric with respect to that
point: f0 goes to zero with decreasing level in the same
way as it goes to one with increasing level. The
antisymmetry is a consequence of the relationship

f0 Ið Þ þ f0 1=Ið Þ ¼ 1: ð3Þ

With ~f0 Lð Þ ¼ f0 10L=10
� �� 1=2, this relationship may

be rewritten as ~f0 Lð Þ ¼ �~f0 �Lð Þ. The singular status of
the 0-dB point is not so obvious in the plot on the
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right. The solid curve in that plot emphasizes another
feature instead: at very low intensities, the normalized
firing rate is basically identical with the normalized
intensity, i.e. f0(I)≈I. This linear approximation of the
function f0 is shown as a dashed curve, in both panels
of Figure 1.

Gross response of the population of auditory-nerve
fibers: integration over cochlear location

The magnitude of the basilar membrane (BM)
displacement caused by a pure tone has a distinct
maximum at a particular location, called the charac-
teristic place, and sharply decreases with increasing
distance from that location. Figure 2A shows data
from guinea pig (read from Fig. 1D of Russell and
Nilsen 1997). The curves illustrate for four sound
levels how BM displacement varies with distance from
apex. In Figure 2B, the BM displacement at the
characteristic place is normalized to one, but other-
wise the curves are the same. As a first approximation,
the logarithm of BM displacement decreases as a
linear function of distance from characteristic place
(dashed lines). This view is in good qualitative
agreement with excitation patterns derived from
other experimental data (e.g., Allen and Fahey 1993;
de Boer and Nuttall 2000). For the moment, we
disregard the fact that the decrease seems to be
intensity dependent, to some extent. Moreover, we
also ignore that, with increasing sound level, the
maximum BM displacement becomes more and more
affected by a compressive nonlinearity (Fig. 2C). Later

in this article, we will see how these shortcomings of
the model can be overcome or at least alleviated. In
the low-intensity limit, they may be expected to be
negligible anyway.

In the simple model of Figure 3, the vertical scale
in the upper left represents the cochlear location, x.
The origin of the coordinate system corresponds to
the characteristic place; the units are arbitrary. The
auditory neurons are assumed to have a normalized
firing rate according to Eq. 2, as in the previous
subsection. However, the normalized intensity now
depends on the cochlear location, according to the
equation

Ix xð Þ ¼ I �10� xj j; ð4Þ
where I is the normalized intensity at the character-
istic place. The corresponding level (bottom scale) is
Lx xð Þ ¼ L � 10 � xj j, where L is the level at the
characteristic place. Here we assume, for the sake of
simplicity, that the intensity (level) decreases symmet-
rically with increasing distance from the characteristic
place, but this special assumption is irrelevant for the
results (proven in Appendix A). The upper panels in
Figure 3 show three different excitation patterns (the
dots represent 21 locations, equidistantly distributed
over the cochlea). The levels at x=0 are −20 dB (left),
0 dB (middle), and 20 dB (right). The bottom panels
show the corresponding normalized firing rates; the
curve shows the function f0. Neurons near the
characteristic place (x=0) show marginal excitation
in the example on the left, whereas they are almost
fully excited in the example on the right. In the

FIG. 1. Normalized firing rate of an auditory-nerve fiber (according
to Yates et al. 1990). The intensity scale is logarithmic on the left
(level in dB) and linear on the right. The firing rate is half the

maximum rate at a normalized intensity of one (0 dB). The solid
curve has a linear low-intensity approximation (dashed curve).
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middle panel, the normalized firing rate at the
characteristic place corresponds to half the maximal
rate, whereas neurons near the ends of the cochlea
model (x = ±4) are basically unexcited.

In the example on the right of Figure 3, the
normalized rates exhibit a kind of symmetry, which
means that neurons may be paired such that the sum
of their normalized rates is 1. Thus, the mean

normalized rate of all neurons is around 0.5 in this
example. The apparent symmetry of the normalized
firing rates is a consequence of Eq. 3. The symmetry is
not perfect in the present example because the
neurons at x=±4 are associated with a single neuron
at x=0. Thus, the mean normalized firing rate (0.477
for N=21 neurons) slightly deviates from the analyti-
cal solution calculated using Eq. 20 of the Appendix,
which is log10(101/1.01)/4=0.5. However, this imper-
fection of the numerical model becomes negligible as
the number of neurons increases.

Mean normalized rates were also calculated for the
other two examples in the figure. The results were
displayed as filled gray circles in Figure 4, showing the
mean normalized rate as a function of the level (on the
left) and the normalized intensity (on the right) at x=0
(inset with magnified scales). More numerical results,
based on 1,000 neurons rather than the 21 neurons
considered in Figure 3, are represented by black dots.
The solid curve shows an approximation of the
analytical solution derived in Appendix A (Eq. 20):

f1 Ið Þ � log10 1þ Ið Þ=ν ð5Þ

The parameter ν in the denominator, having the
value 4 in the present example, corresponds to
log10(I/I*), where I* is the intensity at the ends of
the cochlea model (x=±4 in the example of Fig. 3).
The factor 1/ν in Eq. 5 accounts for the fact that the
percentage of basically unexcited neurons increases
with decreasing I*. At higher intensities, f1 is roughly
proportional to sound level: the dotted line in the left
panel of Figure 4 shows the approximation f1(I )=
log10(I )/ν. At low intensities, f1 is proportional to I: the
dashed line in the right panel of Figure 4 shows the
linear approximation f1(I )=I/(ν·ln(10)). Both approx-
imations are displayed also in the respective other panel,
as a dashed curve (low-intensity approximation) or a
dotted curve (high-intensity approximation).

Accounting for variations in the threshold
of single neurons

So far we assumed that all neurons have the same
sensitivity. However, there is ample evidence that
auditory neurons of the same characteristic frequency
exhibit significant differences. This feature will now
be accounted for. A consideration of near-threshold
intensities can be confined to neurons with high
spontaneous rates, which exhibit the highest sensitiv-
ity (Liberman 1978; Ohlemiller et al. 1991). The
thresholds of these neurons vary within a range of
roughly 20 dB (Liberman 1978; Geisler et al. 1985;
Shofner and Sachs 1986; Relkin and Pelli 1987;
Schmiedt 1989; Winter et al. 1990; Ohlemiller et al.

FIG. 2. A BM displacement as a function of distance from apex
(guinea pig data, read from Fig. 1d of Russell and Nilsen 1997). B Same
curves as in A, but normalized. The logarithm of BM displacement
decreases approximately linearly to both sides of the maximum
(dashed lines). C Level dependence of maximum BM displacement.
The solid curve represents an empirical fit to the data. BM displace-
ment is assumed to be proportional to sound pressure at low levels
(dotted line).
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1991; Robertson and Wilson 1991; Jackson and Relkin
1998; Heinz et al. 2005).

The intensity scale in the previous subsection was
defined in such a way that, at 0 dB (I=1), a neuron at
the characteristic place fired at half its maximum
driven rate (rm/2). In principle, this reference intensity
could bemeasured for a given neuron. The result of such
a hypothetical experiment, in which the intensity would
be determined on a scale of the external world rather
than the neuron, shall be denoted as Iref. A modified
version of Eq. 5, now defined in terms of this new

intensity scale, can be obtained by substituting I/Iref for
I, and neural populations with different sensitivities may
be simulated by varying Iref. For the following consid-
erations it is convenient to normalize the intensity scale
in such a way that the population of the most sensitive
neurons is characterized by Iref=1. Thus, I=1 (0 dB)
henceforth corresponds to the intensity at which the
most sensitive neuron at the characteristic place fires at
half its maximum driven rate.

The above ideas are illustrated in Figure 5. Let us
first consider the panel on the left, where the abscissa

FIG. 3. From cochlear excitation to firing rate. The upper panels
show three cochlear excitation patterns (cochlear location, in
arbitrary units, indicated by the vertical scale on the left). The
normalized intensity (corresponding level represented by scale at the

bottom) has a maximum at location zero, corresponding to −20 dB
(left example), 0 dB (middle), and 20 dB (right example). The
associated normalized firing rates can be looked up using the
normalized rate-intensity function of Figure 1 (bottom panels).

FIG. 4. Mean normalized firing rate of all fibers in the auditory nerve.
The intensity scale is logarithmic on the left (level in dB) and linear on the
right; the inset shows a magnified view of low intensities. The analytical
solution given in Eq. 5 is represented by a solid curve; approximations

for low and high intensities are shown as a dashed and a dotted curve,
respectively. The mean rates for the three coarse examples of Figure 3
(with only 21 neurons) are shown as filled gray circles; the black dots
were obtained for a refined numerical model with 1,000 neurons.
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represents the sound level. The leftmost curve,
corresponding to Iref=1, is identical with the solid
curve in the left panel of Figure 4; the associated high
intensity approximation is again shown as a dotted
line. Increasing Iref, thus decreasing the sensitivity of
the neuron, shifts the curve to the right. In the
present example, log10(Iref) is assumed to be uniform-
ly distributed between 0 and μ=2, which corresponds
to the 20-dB range of threshold variation observed in
neurophysiological experiments. Eleven values of Iref
are considered in Figure 5, each represented by a
solid curve. Averaging these curves, and many inter-
mediate curves that are not displayed in the figure (for
details see caption), results in the fat dashed curve; the
basically congruent solid curve represents the exact
analytic solution derived in Appendix A (Eq. 28). For
higher intensities (roughly above 20 dB), this exact
solution may be approximated as

f2 Ið Þ � 1
�

log10 Ið Þ � �

2

� �
ð6Þ

(dotted line). Thus, the high-intensity approximation is
the same as in the previous subsection (where all
neurons had the same sensitivity), except for a horizon-
tal shift by 10 dB (corresponding to log10(I )=μ/2).

In the right panel of Figure 5, the same functions
are displayed with a linear intensity scale. The
situation at very low intensities is best understood by

considering the magnified detail shown in the inset.
Here, all curves are basically straight lines through the
origin, and the exact analytical solution (solid curve
congruent with the fat dashed curve) may be linearly
approximated as

f2 Ið Þ � I

��� ln 10ð Þ2 : ð7Þ

Thus, apart from scaling issues, accounting for the
threshold variability of the auditory neurons has no
effect on the low-intensity approximation of the mean
firing rate.

In conclusion, the mean rate f2 is roughly a linear
function of I for IGG1 and a linear function of log10(I ),
i.e. a linear function of level, for I991. In between,
there is a transition range centered at I=1 (0 dB). An
approximation derived in Appendix B (Eq. 43) shows
that f2 is roughly a parabolic function of log10(I ) in
that range. This approximation is represented by the
thin dashed curve in Figure 5. Except for the vicinity of
the 0-dB point, this approximation severely fails,
especially towards very low intensities.

A glimpse at higher intensities

Although the emphasis of this article is on low
intensities, it appears appropriate to briefly consider
higher intensities as well. First, it is worthwhile to get

FIG. 5. Averaging the mean normalized firing rates over nerve-fiber
populations with different sensitivities. The intensity scale is loga-
rithmic on the left (level in dB) and linear on the right; the inset
shows a magnified view of low intensities. The leftmost curve in the
left panel and the upper curve in the right panel are identical with the
respective curves in Figure 4. Now, these curves are assumed to
represent the most sensitive population of nerve fibers. Curves for
less sensitive populations may be obtained by shifting, in the left

panel, the curve for the most sensitive population to the right. In the
present example, shifts between 2 and 20 dB were performed in
steps of 2 dB. The fat dashed curve shows the mean rate of all
populations (shifts in steps of 0.05 dB in this numerical calculation);
the basically congruent solid curve represents the exact analytical
solution according to Eq. 28. The thin dashed curve represents an
approximation for intensities around 0 dB (Eq. 43). For other
intensities, this approximation makes unrealistic predictions.
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to know the model predictions for higher intensities,
at least qualitatively. Second, and more important, it is
essential to understand the limitations of the formulas
presented above; disregarding these limitations could
result in serious misunderstandings.

Figure 6A corresponds to the left-hand side of
Figure 5, but the range of levels is extended, and the
curves are not clipped anymore at a mean normalized
firing rate of 0.5. Another, less obvious difference is
that the numerical calculations are based on Eq. 20
rather than on the approximation given in Eq. 5. This
means that a finite cochlea was considered rather
than an infinite one. The analytical solution for an
infinite cochlea (Eq. 28) is represented by a thick
solid curve. Below 30 dB (vertical gray line), this curve
is basically congruent with the numerical solution for
a finite cochlea (fat dashed curve). This means that
the infinite-cochlea approximation is absolutely justi-
fied at low intensities. Between 30 and 40 dB,
however, the curves begin to diverge. While the
analytical solution for an infinite cochlea continuous
to grow, approximately as a linear function of level,
the numerical solution for a finite cochlea saturates.
In the high-intensity limit, all neurons of the finite
cochlea are fully excited so that the mean normalized
firing rate is one.

Figure 6B is analogous to Figure 6A, but the
parameter ν was increased from 4 to 6. This means
that the difference in sensitivity between the charac-
teristic location and the ends of the cochlea model
amounts to 60 dB rather than 40 dB. The mean firing
rate increases more slowly now so that the dynamic
range is wider.

ALTERNATIVE VIEWS OF THE MODEL

Up to this point, all considerations were based on
specific assumptions about the model. Given the
assumptions, the formulas derived allow quantitative
predictions about hypothetical experiments. However,
the model was intended to be used the other way
around: to qualitatively explain available observations.
For that purpose, it is useful to reconsider various
aspects of the model in somewhat different ways.

Nonlinearities compared

The mean firing rate near threshold is a linear
function of stimulus intensity, in all stages of the
model development. With increasing intensity, howev-
er, the various versions of rate-intensity functions show
fundamental differences. To illustrate these differ-
ences, the functions were normalized in such a way
that their low-intensity approximations became iden-
tical (normalized rate equal to normalized intensity).
Figure 7 shows the result. The vertical axis is labeled
“normalized response amplitude” now, to make clear
that the normalization in this figure is generally not
consistent with the normalization in the previous
figures. As in Figures 4 and 5, the intensity scale is
logarithmic in the left panel (level in dB) and linear
in the right panel, where the inset again provides a
magnified view of the lowest intensities. The rate-
intensity function of a single nerve fiber (Eq. 2) is
shown as a thin solid curve. A renormalization was not
required in this case so that the curve is exactly the
same as in Figure 1. A linear approximation (dashed
curve) is appropriate only at the lowest intensities (see
inset). At a normalized level of 10 dB, the response is
almost fully saturated. Quite different is the situation
for the auditory nerve as a whole. The gray curve
(derived from Eq. 5) corresponds to the assumption
that all fibers have the same sensitivity (homogeneous
auditory-nerve model), whereas the thick black curve
(derived from Eq. 28) corresponds to the assumption
that the sensitivities of the fibers are homogeneously
distributed over a 20-dB range (inhomogeneous
auditory-nerve model); the dash-dotted curve repre-
sents the low-intensity approximation (Eq. 29). In
either model, the high intensity approximation (dot-
ted line) increases linearly with sound level. Com-

FIG. 6. A As left panel of Figure 5, but for a finite rather than an
infinite cochlea. The fat dashed curve shows again the numerically
calculated mean normalized rate of all neural populations. At lower
sound levels, this curve basically coincides with the analytical
solution for an infinite cochlea (thick solid curve). The latter does not
saturate at high levels, though. B By choosing different parameters,
the mean normalized rate can be made to increase more slowly,
resulting in a wider dynamic range.
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pared to the rate-intensity function of a single fiber,
the approximately linear range is somewhat extended
(see inset), and, most important, the dynamic range
appears unlimited. But remember that it is actually
not (shown in Fig. 6).

An experimenter’s perspective

In the “INTRODUCTION”, studies were mentioned
where the amplitude of auditory evoked responses at
low intensities linearly increased with sound level.
This is exactly the kind of amplitude increase
predicted by our auditory-nerve models for higher
intensities (dotted lines in the left panel of Fig. 7).
Thus, intensities that may appear low for an experi-
menter are not necessarily low in the context of our
models. An experimenter who wishes to interpret own
data in terms of these models has to match the
intensity scales. A pragmatic solution would be to
extrapolate the linear level dependences towards the
threshold (here corresponding to zero amplitude)
and to define this level as 0 dB. For the homogeneous
auditory-nerve model (gray curve in Fig. 7), a
redefinition of the intensity scale is not required,
because the threshold extrapolated from the high-
intensity approximation is exactly 0 dB. For the
inhomogeneous model (thick solid curve in Fig. 7),
the extrapolated threshold is 10 dB, and the level
scale has to be shifted by this amount. A comparison
between data and model also requires a common

amplitude scale. This problem may be solved by an
appropriate amplitude normalization; for example,
the amplitude found 10 dB above the extrapolated
threshold may be normalized to one. The gray and
the thick black curve in Figure 8 were obtained by
applying such transformations to the respective curves
in Figure 7. The curves share the same high-intensity
approximation now (dotted line); the 10-dB value of
this approximation was normalized to one. The
differences that can be observed at lower intensities
are surprisingly small. For example, the sound levels
where the amplitude is just 10% of the value at 10 dB
differ by less than 3 dB (−5.9 vs −8.6 dB). The low-
intensity approximations (dashed curves), being line-
ar with respect to intensity, noticeably deviate from
the exact functions even at such low levels.

In view of the fact that the differences between
homogeneous and inhomogeneous model largely disap-
pear after applying appropriate normalizations, it seems
that themuch simpler homogeneousmodel will generally
be sufficient for qualitative considerations. Accordingly,
the exact sensitivity distribution of the inhomogeneous
model is probably of secondary importance. This view is,
of course, untenable at higher intensities, were neurons
with low spontaneous rates are to be accounted for.

Higher threshold, faster growth

The growth of the mean firing rate with increasing
intensity depends on the sharpness of the cochlear

FIG. 7. Comparison of normalized response amplitudes. The
intensity scale is logarithmic on the left (level in dB) and linear on
the right; the inset shows a magnified view of low intensities. The
normalized rate-intensity function of a single neuron is represented
by a thin solid curve; the homogeneous auditory-nerve model (all
fibers having the same sensitivity) is represented by a thick gray
curve, the inhomogeneous auditory-nerve model (sensitivity distrib-

uted over a 20-dB range) is represented by a thick black curve. All
these curves were normalized so that, in the low-intensity limit,
response amplitude and normalized intensity are identical (dashed
curve). The left panel also shows the high-intensity approximations
for the two auditory-nerve models (dotted lines). In addition, the
approximation given in Eq. 29 is shown as a dash-dotted curve.
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excitation pattern. This dependence is expressed by
the factor 1/ν in Eqs. 5, 6, and 7. The factor has
interesting implications, which are illustrated in
Figure 9. The figure is organized in the same way as
Figures 4 and 5, with a logarithmic intensity scale on
the left (level in dB), a linear intensity scale on the
right, and a magnified view of the low-intensity limit in
the inset. The thick solid curve corresponds to the
situation considered in Figure 4. Thus, it represents a
cochlear excitation pattern characterized by ν=4. The
thin solid curve was derived from the thick solid curve
by a 10-dB reduction in sensitivity (the curve in the
left panel is shifted by this amount to the right). In
terms of the reference intensity introduced in the
context of Figure 5, the two curves correspond to Iref=
1 and Iref=10, respectively. The dashed curve finally
represents a modification of the latter condition,
where the sharpness of the cochlear excitation
pattern is slightly reduced (ν=3). High-intensity

approximations to the three curves (not accounting
for the saturation that results from the assumption of
a finite cochlea; cf. Fig. 6) are represented by the
dotted lines in the left panel.

Independent of the definition of threshold, the
threshold difference between the conditions repre-
sented by the thick and the thin solid curve in Figure 9
can be said to be exactly 10 dB, corresponding to the
horizontal shift in the left panel. The situation is less
clear for the dashed curve. An experimenter who
would extrapolate a threshold from firing rates
showing a roughly linear dependence on sound level
(see previous subsection) would find the same thresh-
old as for the thin solid curve (the corresponding
dotted curves intersect at 10 dB). By contrast, if
threshold would be defined as a specific minimum
amplitude, the dashed curve would always be associ-
ated with the lower threshold. For example, threshold
could be defined as the intensity corresponding to a
mean normalized firing rate of 0.01 (maximum rate
considered in the inset). The threshold intensities for
the three conditions would be 0.096, 0.72, and 0.96
(indicated by the dotted vertical lines in the inset),
which corresponds to −10.2, −1.5, and −0.2 dB,
respectively. Thus, with that definition of threshold,
there would be a threshold difference of 1.3 dB between
dashed curve and thin solid curve. Despite this minor
dependence on criteria, it appears reasonable to say that
the dashed curve corresponds to a roughly 10-dB higher
threshold than the thick solid curve.

With increasing intensity, the dashed curve
approaches the thick solid curve, and both curves
converge to the asymptotic value 1. This exemplifies
that, regarding the mean firing rate, an enhanced
threshold can be fully compensated for by a reduced
sharpness of cochlear excitation, since the latter
causes a faster growth. In the infinite-cochlea model,
the difference in threshold is even overcompensated
at high intensities, as indicated by the fact that the
respective high-intensity approximations (dotted lines
in the left panel) intersect at 40 dB.

Pseudo-linearity with respect to sound pressure

Figure 8 suggests that it may be a challenge for an
experimenter to directly observe response amplitudes
which linearly increase with intensity. According to our
model, this would require studying intensities far below
the range where the amplitude increases approximately
linearly with sound level. In a real experiment, the
responses at such low intensities might be so small that
they are buried under the noise floor. An interesting
situation would arise if the smallest response that can be
detected has the amplitude 0.1 (in the scale of Fig. 8).
According to our inhomogeneous auditory-nerve
model (thick black curve), an experimenter would

FIG. 8. The two auditory-nerve models from an experimenter’s
point of view. At higher intensities, the response amplitude of either
model increases linearly with sound level. A similar increase was
observed in physiological studies. Thus, a data transformation based
on this shared feature may help to compare data and model. Such a
transformation is illustrated here for the two auditory-nerve models.
The respective curves in the left panel of Figure 7 were transformed
in such a way that they got the same high-intensity approximation
(dotted line), with normalized response amplitudes of zero and one
at 0 and 10 dB, respectively. Thus, 0 dB may be interpreted now as
the threshold extrapolated from observations at higher intensities. By
applying a corresponding transformation to real data, an experi-
menter may get an idea of the intensity range where a roughly
proportional relationship between response amplitude and intensity
(dashed curves) is to be expected. Such proportionality may be
expected below −10 dB for the inhomogeneous auditory nerve
model (black curve) and below −5 dB for the homogeneous auditory-
nerve model (gray curve).
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notice that an intensity increase by approximately
20 dB is required to augment a just detectable response
by a factor of 10 (a corresponding observation was
reported by Eggermont and Odenthal 1974). Such a
finding is consistent with the idea that the response
amplitude is proportional to sound pressure. So it
would be natural to study the effect more systematically
by plotting all the measured response amplitudes vs
sound pressure. The prediction of our model, shown as
a solid curve in Figure 10, is really amazing. The curve
is over a wide range close to the dashed line, which
represents the tangent to the curve at a normalized
intensity of −10 dB (see Eq. 44 in Appendix B). With
noisy data, an experimenter would undoubtedly arrive
at the conclusion that the response amplitude near
threshold increases linearly with sound pressure, up to
a level that is roughly 15 dB above the level
corresponding to a normalized amplitude of 0.1 (in
this consideration representing the just detectable
response). For the sake of comparison, the figure also
shows the high-intensity approximation of Figure 8
(dotted curve).

A careful experimenter would perform more
sensitive experiments now, to get data at lower
intensities. The inset of Figure 10 shows the results
that are to be expected. Down to a normalized sound
pressure of 0.2 (−14 dB), yielding a response with a
normalized amplitude of 0.034, the small deviation
from the conjectured linear relationship would prob-
ably go unnoticed. Only a minor detail might arouse

suspicion: a linear extrapolation of high-quality data
would predict the disappearance of the response at a
normalized sound pressure corresponding to about
−18 dB (see context of Eq. 44 in Appendix B; but note
that the intensity scale in Figure 10 is shifted by
10 dB). This would mean that there is a sensory
threshold. However, such an inference would be
inconsistent with signal detection theory, a theory
that denies the existence of a sensory threshold (Swets
1961). To conclusively disprove the idea of a linear
relationship between response amplitude and sound
pressure, it would be necessary to repeat the experi-
ment at even lower intensities. This would finally show
that the response does not abruptly disappear at a
sensory threshold, but smoothly fades away.

From auditory nerve to higher levels
of the auditory system

Although our model was developed for the auditory
nerve, some basic conclusions are probably valid for
higher levels of the auditory system, too. This
supposition is not only supported by experimental
data, as will be elaborated in the “DISCUSSION”
section, but also by theoretical arguments. In what
follows, we will consider ultralow intensities. As
ultralow we denote an intensity that is far below the
detection threshold of the subject so that stimuli are
detected basically at chance level. Nevertheless, in
accordance with signal detection theory (Swets 1961),

FIG. 9. Higher threshold associated with faster growth (example).
The intensity scale is logarithmic on the left (level in dB) and linear
on the right; the inset shows a magnified view of low intensities. The
thick solid curve corresponds to the solid curve in Figure 4 (3=4).
The thin solid curve is identical, except that the sensitivity is reduced

by 10 dB. The dashed curve demonstrates that such a reduction in
sensitivity can be compensated for, at higher intensities, by a faster
growth of the mean firing rate (dashed curve). The faster growth was
achieved by assuming 3=3. A reduction of the parameter v
corresponds to a loss in sharpness of the cochlear excitation pattern.
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we assume that ultralow stimuli cause a response in
the auditory pathway. Whether such a response can be
observed in a physiological experiment depends on
the experimental effort; the required measurement
time might be virtually infinite.

Stimulation at an ultralow intensity may be as-
sumed to cause an almost infinitesimal perturbation
of the spontaneous activity in the auditory nerve.
Under such circumstances, a single stimulus does not
provide significant information that could be pro-
cessed at higher levels of the auditory pathway.
Nevertheless, a perturbation of the spontaneous
activity at the level of the auditory nerve presumably
perturbs the firing statistics at higher levels so that the
linear intensity dependence proposed for the auditory
nerve finally reaches the cortex. Thus, the low-
intensity approximation of our model is probably
applicable to all levels of the auditory pathway. As it
would be unreasonable to assume a sharp border
between ultralow and low intensities, we may expect
that the model predictions are valid, to some extent,
also above the subject’s threshold of hearing. The
upper limit of that range of validity probably de-
creases when moving up the auditory pathway, owing
to additional nonlinearities that come into play.

Comparison with the loudness function
of Zwislocki (1965)

Model predictions that are valid for physiological
responses in auditory cortex might be approximately
valid also for the psychophysical correlate of stimulus

intensity, loudness. Here we show that the loudness
function proposed by Zwislocki (1965) is, at low
intensities, strikingly similar to our model. In a normal-
ized form, Zwislocki’s function may be written as

fZ Ið Þ ¼ 1
m

1þ Ið Þm � 1ð Þ; ð8Þ

where fz(I) may be interpreted as a normalized
loudness [the formula can be derived e.g. from Eq. 2
of Buus and Florentine (2002) by an appropriate
normalization of both the intensity and the loudness
scale]. For the parameter m, Zwislocki (1965) deter-
mined the value 0.27. In the limit of very low
intensities, normalized loudness and normalized in-
tensity I are identical. Thus, in this respect the
function fz completely agrees with the functions f0, f1,
and f2 that were considered above.

A plot of the normalized loudness fz is shown as a
thick dashed curve in Figure 11. The figure was
derived from the right panel of Figure 7. Thus, the
gray curve shows again the normalized response
amplitude for the homogeneous auditory-nerve mod-
el (function f1), whereas the thick black curve
corresponds to the inhomogeneous auditory-nerve
model (function f2). The curve of fz runs roughly in
the middle between these two curves (inset shows
magnified view of low intensities). The functions f1
and f2 may be considered as special cases of a function
fn, where n is a parameter (see Eq. 30 in Appendix A).
By adjusting n, an almost perfect match between fn
and fZ can be achieved as shown by the thin solid
curve in Figure 11 (calculated for n=1.55).

FIG. 10. Pseudo-linearity with respect to sound pressure. In
contrast to Figure 8, the normalized response amplitude of the
inhomogeneous auditory-nerve model (solid curve; high-intensity
approximation represented by dotted curve) is shown as a function of
normalized sound pressure. The corresponding dB value may be
looked up in the upper scale. Up to a normalized sound pressure of

about 2.5 (8 dB), the curve is close to the dashed line, which
represents the tangent at a normalized level of −10 dB. Thus, noisy
data may easily be misinterpreted as showing a linear dependence of
the response amplitude on sound pressure. Extrapolation of this
linear law would yield a threshold of about −18 dB (see magnified
view in the inset).
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POSSIBLE PROBLEMS, LIMITATIONS,
AND WORKAROUNDS

To allow analytical evaluations, simplifying assump-
tions about the spike generation process had to be
made. Specifically, we assumed that the spike gener-
ation is driven by a “force” that is proportional to
intensity, defined as sound pressure squared. The
assumption appears adequate for sound intensities
near the threshold of hearing, but becomes more and
more problematic with increasing intensity. This
section introduces minor modifications to the model,
particularly a redefinition of intensity, to extend its
scope. Another point deserving attention is that, in
psychophysical studies, longer stimuli are associated
with lower thresholds.

Intensity dependence of cochlear excitation
pattern

Equation (4) and the more general Eq. 14 in
Appendix A are based on the supposition that the
BM displacement is proportional to sound pressure
and that its logarithm decreases as a linear function of

distance from characteristic place. Moreover, we
postulated that the cochlear excitation pattern is
independent of stimulus intensity, except for scaling
issues. Figure 2 showed that these assumptions are not
strictly valid.

Two different effects of stimulus intensity on the
cochlear excitation pattern were distinguished in
Figure 2. The first effect is illustrated in Figure 2C
and may be described as a compression of the
maximum BM displacement. The solid curve shows
an empirical fit to the data. To understand this curve,
it is useful to first consider its approximation for low
intensities (dotted line). According to this approxi-
mation, maximum BM displacement d (in nanome-
ter) and sound level L (in dB SPL) are related by the
equation

dlinear Lð Þ ¼ 10 L�L0ð Þ=20: ð9Þ
The parameter L0=16 dB specifies the level at which
the approximation has the value 1 nm. The equation
simply means that the maximum BM displacement is
proportional to sound pressure, as to be assumed for
very low sound levels (see e.g., Robles and Ruggero
2001). But except for the lowest levels, the data
displayed in Figure 2C clearly deviate from this law
and roughly follow the solid curve, which represents
the function

d Lð Þ ¼ d0 ln 1þ dlinear Lð Þ=d0ð Þ; ð10Þ

with d0=4 nm. The equation describes a smooth
transition between linear and logarithmic growth,
and it is similar to Eq. 5, although the context is
different. A compressive nonlinearity as in Eq. 10 can
easily be accounted for by slightly modifying our
model. Instead of defining the normalized intensity I
as the square of normalized sound pressure, we define
it as the square of BM displacement (suitably normal-
ized). With this redefinition of I, there is no need to
change any of our equations. A second effect of
stimulus intensity on cochlear excitation is that
normalized excitation patterns for different intensities
are not necessarily congruent (Fig. 2B). Our model is
easily improved also in that respect, because we may
assume that the parameter ν in Eqs. 5, 6, and 7
depends on intensity, as specified in Eq. 23 of
Appendix A.

A remaining question is to what extent deviations
from the assumed linear relationship between loga-
rithm of BM displacement and distance from charac-
teristic location might interfere with our model
predictions. This question is investigated in Figure 12.
The upper thin curve in Figure 12A is basically
identical with the 50-dB curve in Figure 2A. The dB
scale was normalized so that the maximum BM
displacement corresponds to 20 dB. An intensity

FIG. 11. Comparison between normalized response amplitude and
loudness. As in the right panel of Figure 7, the normalized response
amplitudes of the homogeneous and the inhomogeneous auditory-
nerve model are shown as a thick gray and a thick black curve,
respectively (inset providing magnified view of low intensities).
Roughly in the middle between these two curves, the thick dashed
curve is found, which represents a normalized version of Zwislocki’s
(1965) loudness function. A similar function (thin black curve) is
obtained by assuming that a real auditory nerve behaves like a
hybrid of the above two model variants.
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dependence of cochlear excitation was simulated by
vertically shifting this curve in steps of 5 dB. Alterna-
tively, we could have taken all the curves in Figure 2A;
but a comparison with our analytical model would
have been severely hampered by the fact that the
cochlear region for which data points are available
shrinks with decreasing sound level. The thick curves
in Figure 12A show linear approximations to the thin
curves (focusing on locations close to the character-
istic place) and represent the model that will be

considered in our analytical evaluations. Dotted
vertical lines mark the boundaries of the cochlear
region accounted for (corresponding to the cochlear
locations x− and x+ in Eq. 19 of Appendix A).

Using Eq. 2 and equating the dB scale of
Figure 12A with that of Figure 1, BM displacement
was transformed into normalized firing rate. The
results are presented in Figure 12B. The figure
suggests that deviations from the linear law proposed
in the model are irrelevant at low intensities, but have
a significant effect at higher intensities (deviations
between thin and thick curves are found especially
towards the apex).

Figure 12C shows the mean normalized firing rate
as a function of maximum BM displacement (in dB).
The thin curve was derived, by numerical integration,
from the thin curves in Figure 12B (and many
corresponding curves that are not displayed). The
thick curve represents the model; numerical integra-
tion and analytical evaluation using Eq. 19 of
Appendix A yielded congruent results. The good
agreement between thin and thick curve suggests that
minor deviations from the proposed linear relation-
ship between the logarithm of BM displacement and
distance from characteristic place are tolerable. To
prevent misunderstandings it shall be mentioned that
the apparent saturation at higher intensities, which
appears to be inconsistent with Figure 4, is a
consequence of the boundaries of the cochlear region
considered (same effect as in Figs. 6 and 9).

Adaptation

Equation 2, one of the cornerstones of our model, is
based on experiments by Yates et al. (1990), who
determined firing rates by counting the number of
discharges during the presentation of a 100-ms tone
burst. The saturation described by Eq. 2 essentially
results from short-term adaptation, which has a time
constant of about 40 ms (Smith 1977). But adaptation
also has components with faster and longer time
constants so that the question arises as to how
appropriate our model is for stimulus durations other
than 100 ms. Because significant adaptation effects
are not to be expected near the threshold of hearing,
this question is not relevant for very low intensities.
However, it gains importance as intensity increases.

At high intensities, the onset response of auditory
neurons is considerably affected by rapid adaptation
(Westerman and Smith 1984; Yates et al. 1985) and
neural refractoriness (Lütkenhöner and Smith 1986).
But only a brief period of time is concerned so that we
may expect that these factors had only a relatively
small effect on the spikes counted by Yates et al.
(1990) within a 100-ms time window. The situation
would be quite different for stimulus durations of the

FIG. 12. Simulation showing that the model is robust against minor
deviations from the assumed linear relationship between logarithm of
BM displacement and distance from characteristic location. A The
thin curves correspond to the 50-dB curve in Figure 2A, except for
horizontal shifts (in steps of 5 dB). The curves simulate data that
deviate from an exact linear law. The thick lines show linear
approximations to the thin curves, and they represent the model.
The boundaries of the cochlear region accounted for are marked by
dotted vertical lines. B The curves of A were transformed into
normalized firing rates. C Mean normalized firing rate as a function
of maximum BM displacement in dB. The thick curve represents the
model; the thin curve the simulated data. The two curves show an
excellent agreement, at least qualitatively.
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order of a few milliseconds, corresponding to the time
constant of rapid adaptation. This is not necessarily a
major problem for our model, because it is conceiv-
able that the issue can be solved by a suitable
renormalization of the intensity scale. But since a
definite answer cannot be given at this point, it
appears appropriate to sound a note of caution: For
stimuli that are much shorter than 100 ms, the validity
range of our model might be restricted to relatively
low intensities.

In the case of long and very long stimulus
durations, long-term adaptation with a time constant
of a few seconds and very-long-term adaptation with a
time constant of the order of a minute is observed
(Javel 1996). A corresponding phenomenon was
found at the cortical level in humans (Lammertmann
and Lütkenhöner 2001). Adaptation components with
long-time constants can easily be accounted for by our
model, even though the model is static by nature. We
simply have to assume that the reference intensity
being used for normalizing the intensity scale is a
slowly varying function of time which mimics the time
course of long-term adaptation. A time-dependent
normalized intensity would cause a synchronous
change in mean firing rate.

Temporal integration or not

The perception of short stimuli requires higher
stimulus intensities than the perception of longer
stimuli. This phenomenon is generally called tempo-
ral integration. Meddis (2006b) pointed out that the
term is unfortunate and that it represents an example
of how the name of a putative mechanism is used to
indicate a phenomenon that it might (or might not)
explain. The statement was made in reply to Krishna’s
(2006) criticism of a recent computer model of the
auditory periphery (Meddis 2006a), in which the
auditory-nerve first-spike latency data of Heil and
Neubauer (2001) were simulated. Krishna (2002;
2006) showed that integration over long-time scales
is not necessary to model such experimental data,
because they may be explained by stochasticity in the
synaptic events leading up to spike generation in the
auditory-nerve fibers. Put simply, Krishna’s view
means that a near-threshold stimulus of steady
intensity establishes a low probability of a neural
event, and the longer the stimulus, the greater is the
chance that the event will occur before the end of the
stimulus (Meddis 2006b).

The alternative view of “temporal integration”
suggested by Krishna (2002, 2006) fits neatly into the
theory developed in the present study. So far, our
model does not comprise an element related to
temporal integration, and Krishna’s results suggest
that this is not a shortcoming. Supposed that future

research should give reason to modify that view, there
is an easy solution for our model. Instead of defining
intensity as sound pressure squared or BM displace-
ment squared, it could be defined, for example, as
inner-hair-cell receptor potential squared.

DISCUSSION

Implications regarding auditory-evoked responses

According to the model presented in this article, an
experimenter studying auditory evoked responses at
low intensities may observe three types of relationship
between response amplitude and stimulus intensity.
The amplitude may linearly increase with (I) intensity
or (II) with sound pressure or (III) with the logarithm
of either of these two quantities (which is mathemat-
ically equivalent, except for a factor of two). If the
data are noisy, as typical for low intensities, it may be
difficult to decide which of the three relationships is
the most adequate one, and appearances may be
deceiving. Figure 10, for example, demonstrates by
means of simulated data that an experiment may
provide seemingly irrefutable evidence of a linear
relationship between response amplitude and sound
pressure, even though such a conclusion would be
contradictory to the assumptions underlying the
model.

The implications of the model are best understood
by first looking at very low intensities. A threshold
does not exist in the model, in full agreement with
signal detection theory (Swets 1961). This means that
even the softest sound is predicted to elicit a minute
response. A different question is whether the response
would be above the noise floor in a given physiolog-
ical experiment or whether a listener participating in
a detection experiment would perform better than
chance. This is the point where threshold comes into
play. Only sounds with an intensity exceeding a
certain level, the threshold, will elicit a response that
fulfills predefined criteria of significance (specific to
each experiment). For very low intensities, intensity
and response amplitude are proportional. The nor-
malized intensity scales of this study do not allow
specifying in absolute terms what “very low” actually
means for a real experiment. Nevertheless, it appears
safe to say (cf. the considerations in the context of
Fig. 8) that detecting proportionality between stimu-
lus intensity and response amplitude will generally be
a challenging task for an experimenter, at least in
noninvasive experiments such as the recording of
auditory evoked potentials from the surface of the
human scalp.

In Figure 8, the deviation between exact model
prediction (thick black curve, representing the more
realistic version of our model, i.e. the inhomogeneous
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auditory nerve) and linear approximation (associated
dashed curve) rapidly increases for normalized inten-
sities greater than about −12 dB, which may therefore
be considered as the approximate upper limit of the
intensity range showing a more or less proportional
relationship between intensity and response ampli-
tude (range I). According to Figure 10, there is an
overlapping range with an apparently linear relation-
ship between sound pressure and response amplitude
(range II), which roughly extends from −15 to 8 dB
(consider the upper scale in Fig. 10). The upper limit
of that range comes close to the lower limit of the
subsequent range (III), where the response amplitude
increases basically linearly with sound level. In
Figure 10 (cf. upper scale), the transition between
ranges II and III occurs roughly between 5 and 15 dB.
In that range, the exact solution (solid curve) drifts
apart from the dashed line and approaches the dotted
curve. The latter represents a linear increase with
respect to sound level, i.e. a logarithmic increase with
respect to intensity. In the formulas derived, this
logarithmic increase continues unlimited. However,
this is merely a consequence of a simplification in our
analytical considerations, which focused on low inten-
sities: we assumed an infinite cochlea. This simplifica-
tion is clearly not applicable at high intensities, and
Figure 6 demonstrates that a more realistic model
definitely shows saturation.

The model gives a simple explanation why physio-
logical experiments at low sound levels (Eggermont
and Odenthal 1974; Elberling and Don 1987; Versnel
et al. 1992; Lütkenhöner and Klein 2007; Lütkenhöner
et al. 2007) showed a response amplitude that linearly
increased with level. Besides that, the model predicts
that proving the proposed linear dependence on
sound intensity will require studying levels that are
clearly lower than commonly considered. Unless
meaningful data can be recorded at sufficiently low
levels, an experiment may falsely suggest a linear
dependence on sound pressure. First evidence of the
correctness of these prediction was recently obtained
in a study of wave V of the brainstem auditory evoked
potential (Lütkenhöner et al. 2007). The results of
that study turned out to be qualitatively consistent
with Figure 10. Comparisons between data and model
should be done with care, though. All our model
predictions were made under the assumption that the
response is not affected by additional saturating
nonlinearities, and this assumption becomes problem-
atic with increasing intensity, especially at higher
levels of the auditory system. Additional nonlinearities
would inevitably affect a threshold extrapolation from
observations at higher intensities, making a transfor-
mation of the intensity scale such as in Figure 8 a
delicate procedure. Additional nonlinearities may also
explain why the upper limit of intensity range III

appears to shrink when moving up the auditory
pathway (cf. “INTRODUCTION”).

Reference to psychophysics

The amplitudes of physiological responses and the
psychophysical quantity “loudness” have in common
that they tend to grow with increasing intensity. While
it would be naïve to expect a simple relationship over
the full intensity range, there might be at least a
qualitative correspondence at low intensities, and
physiological experiments at very low intensities could
help to resolve controversies about loudness percep-
tion at threshold (Buus and Florentine 2002; Moore
2004).

Figure 11 shows that the normalized loudness
function fZ, derived from Zwislocki (1965) is, at low
intensities, basically an intermediate variant of our
normalized rate functions f1 and f2. Either function
represents a specific assumption about the sensitivity
distribution of the auditory-nerve fibers. In the first
case, all fibers have the same sensitivity, whereas in the
second case the sensitivity is uniformly distributed
over a 20-dB range. Both assumptions are, of course,
artificial, and a more realistic model might have
properties that are in between the two cases. As there
is insufficient information about the true sensitivity
distribution of the auditory neurons, it may be useful to
consider the functions f1 and f2 as special cases of a
generalized function fn, and to regard n as an
adjustable parameter (cf. Appendix B). With n=1.55,
fn would indeed agree almost perfectly with Zwislocki’s
model (Figure 11).

Thus, all in all it appears that our basic conclusions
regarding low intensities do not only apply to
physiological responses, but also to the psychophysical
quantity loudness. A careful consideration of low
intensities might therefore be a good starting point
for relating loudness models to physiology. If this
supposition is correct, Figure 9 might help to under-
stand recent psychophysical results presented by
Mauermann et al. (2004). They carefully studied the
fine structure of individual hearing thresholds and
showed that a tone that lays within a threshold
minimum exhibits a slower growth of loudness than
a tone at a threshold maximum. The fine structure of
equal loudness contours consequently flattened out at
levels around 30–40 dB SPL. Figure 9 suggests that
the observed differences in growth of loudness might
be related to the sharpness of the cochlear excitation
pattern. According to this view, a threshold minimum
is associated with a sharper cochlear excitation
pattern than a threshold maximum.

Loudness recruitment in hearing impaired subjects
could be explained in basically the same way. Howev-
er, such an explanation would be contradictory to
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experimental results that were recently presented by
Heinz et al. (2005). Their data suggest that loudness
recruitment cannot be accounted for based on
summed auditory-nerve response firing rates and
may depend on neural mechanism involved in the
central representation of intensity, aspects that are
clearly beyond the scope of the present study.

APPENDIX A: A HIERARCHY
OF POLYLOGARITHMS

The polylogarithm of order n is the function

Lin zð Þ ¼
X1
k¼1

zk

kn
ð11Þ

(Weisstein 2005). An amazing feature of the following
analyses is that the three main modeling steps in this
article lead to polylogarithms of order 0, 1, and 2.

Polylogarithm of order 0

An alternative definition of the polylogarithm of order
0 is

Li0 zð Þ ¼ z= 1� zð Þ ð12Þ

(Weisstein 2005). Thus, the equation for the normal-
ized firing rate of a single neuron (Eq. 2) may be
rewritten as

f0 Ið Þ ¼ �Li0 �Ið Þ: ð13Þ

Polylogarithm of order 1

The cochlear excitation patterns shown in Figure 3
are described by the function Ix(x) specified in Eq. 4;
they are symmetric with regard to the characteristic
place. Here, we consider the more general function

Ix xð Þ ¼ I �10�� xð Þ: ð14Þ
with

� xð Þ ¼ �þx for x � 0;
� xð Þ ¼ ���x for x G 0:

ð15Þ

The parameters α+ and α− are assumed to have a
value greater than zero. For α+=α−, the excitation
pattern is symmetric with regard to the characteristic
place, otherwise it is asymmetric. With these defini-
tions, the stimulus-driven discharge rate of a neuron
at cochlear location x is

r x; Ið Þ ¼ rmf0 Ix xð Þð Þ; ð16Þ
where rm is the maximum rate, as in Eq. 1. We further
assume that the number of neurons between the
cochlear locations x and x+Δx is ρ(x)Δx, where ρ(x) is

denoted as the neuron density. Then, the gross firing
rate of all neurons between cochlear locations 0 and
x+90 is

Rþ Ið Þ ¼ rm

Zxþ
0

� xð Þ�f0 Ix xð Þð Þ dx: ð17Þ

If the neuron density ρ is assumed to be constant, the
integral in Eq. 17 is easily evaluated, yielding

Rþ Ið Þ ¼ rm�
�þ

log10
1þ I

1þ 10��þxþI

� �
: ð18Þ

A corresponding equation is obtained for the gross
firing rate of all neurons between cochlear locations
x−G0 and 0. Thus, the general equation for the mean
normalized firing rate of all neurons between cochle-
ar locations x− and x+ is

f1;general Ið Þ

¼ 1
xþ � x�ð Þ �x�f1 I ;���x�ð Þ þ xþf1 I ; �þxþð Þð Þ;

ð19Þ
with

f1 I ; �ð Þ ¼ 1
�
log10

1þ I
1þ 10��I

� �
: ð20Þ

Equation 19 can be simplified by defining x−=−ν/α−
and x+=ν/α+, where ν is a parameter with a value
greater than zero (ν=4 in the example considered in
Fig. 3). This means that, at both ends of the cochlear
region considered, the intensity is reduced by a factor
of 10ν as compared to the characteristic place (x=0).
With this special definition of the integration window,
Eq. 19 reduces to Eq. 20.

Note that the parameters α+ and α− do not appear in
Eq. 20. This means, in particular, that regarding the
mean normalized rate it is irrelevant whether the
cochlear excitation pattern is symmetric or asymmetric
with regard to the characteristic place. For 10−νIGG1
(mostly fulfilled for the conditions considered in this
study) the exact solution (Eq. 20) may be replaced by
the approximation given in Eq. 5. Apart from scaling
issues, this corresponds to a transition from a finite to an
infinite cochlea. An alternative definition of the
polylogarithm of order 1 is

Li1 zð Þ ¼ � ln 1� zð Þ: ð21Þ
(Weisstein 2005). Thus, Eq. 5 may be rewritten as

f1 Ið Þ � �Li1 �Ið Þ
� ln 10ð Þ : ð22Þ

The model can be extended by allowing the
parameters α+ and α− to depend on intensity. The
above considerations remain valid up to Eq. 19, but
defining x+ and x− in terms of these parameters is not
useful anymore, because the integration window
would become intensity dependent. Thus, for simu-
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lations with the extended model it is normally
necessary to use the general Eq. 19. A convenient
approximation for low intensities is again Eq. 5, but
the parameter ν depends on intensity now:

1
� Ið Þ ¼

1
xþ � x�

1
�þ Ið Þ þ

1
�� Ið Þ

� �
ð23Þ

Polylogarithm of order 2 (dilogarithm)

As explained in the two paragraphs preceding Eq. 6, we
substitute now I/Iref for I and simulate neural popula-
tions with different sensitivities by varying Iref. We further
assume that log10(Iref) is uniformly distributed between
0 and μ90 (μ=2 in the example presented in Fig. 5).
Then, the mean normalized rate of all neurons is

f2 Ið Þ ¼ 1
�

Z�

0

f1 I =10uð Þdu: ð24Þ

The function f1 is assumed to be given by Eq. 5, for
the sake of simplicity. Equation 24 may be rewritten in
that case as

f2 Ið Þ ¼ 1
��

Z�

0

log10 1þ I =10uð Þ du: ð25Þ

By substituting z=I/10u we obtain

f2 Ið Þ ¼ 1

�� ln 10ð Þ2
Z I

I �10��

ln 1þ zð Þ
z

dz: ð26Þ

An alternative definition of the polylogarithm of
order 2, also called dilogarithm, is

Li2 zð Þ ¼
Z 0

z

ln 1� tð Þ
t

dt ð27Þ

(Weisstein 2006). Thus, Eq. 26 may be rewritten as

f2 Ið Þ ¼ � Li2 �Ið Þ � Li2 �I �10��ð Þ
�� ln 10ð Þ2 : ð28Þ

The last term in the numerator is negligible at low
intensities, yielding the approximation

f2 Ið Þ � � Li2 �Ið Þ
�� ln 10ð Þ2 : ð29Þ

For sufficiently low intensities, the linear approxima-
tion given in Eq. 7 follows immediately from the series
expansion (Eq. 11).

A more general model

So far, we assumed that the parameter n in the series
expansion (Eq. 11) is an integer. However, from a
mathematical point of view, n may be any complex

number. Thus, by generalizing Eqs. 13, 22, and 29, we
define a function fn(I) as

fn Ið Þ ¼ �Lin �Ið Þ: ð30Þ
For the sake of simplicity, we abstained from intro-

ducing a proportionality factor in this equation. In the
low-intensity limit, the equation may be approximated
as fn(I)=I (see series expansion (Eq. 11)). Thus, the
quantity fn(I) may be interpreted as a normalized
response amplitude (in the same sense as the normal-
ized functions plotted in Fig. 7).

In the context of Figure 11, n is assumed to be a real
number between 1 and 2. It is also shown that, at low
intensities, fn(I) is similar to the normalized loudness
fZ(I) as defined in Eq. 8. The latter has the series
expansion

fZ Ið Þ � I � 1� m
2

I 2 þ 1� mð Þ 2� mð Þ
6

I 3 þ ���: ð31Þ
For n ¼ 1� log2 1� mð Þ, the first two terms of the

series expansion (Eq. 31) are identical with the first
two terms of the series expansion of fn (calculated
using Eq. 11). With m=0.27, as suggested by Zwislocki
(1965), we obtain n≈1.454. With this choice of n, the
functions fn(I) and fZ(I) basically agree also regarding
the I3 term (the coefficients are 0.202 and 0.210,
respectively). To obtain a better approximation at
somewhat higher intensities, the thin solid curve in
Figure 11 was calculated with n=1.55.

APPENDIX B: FORMULAS FOR NUMERICAL
CALCULATIONS, FURTHER APPROXIMATIONS

Functional equations for the dilogarithm

A numerical evaluation of the dilogarithm Li2(z) using
the series expansion (Eq. 11) becomes inefficient as ∣z∣
approaches 1, and for ∣z∣91 the formula is not
applicable. This problem can be overcome by using
functional relationships that can be found in the
Handbook of Mathematical Functions by Abramowitz
and Stegun (1965) for the function f (z)=Li2(1−z). The
function is called dilogarithm in the handbook, but this
nomenclature is evidently inconsistent with the present
article, where the term dilogarithm is used for Li2(z),
in accord with Weisstein (2006). The handbook
equations 27.7.3, 27.7.5, and 27.7.6 may be rewritten as

Li2 zð Þ þ Li2 1� zð Þ ¼ �2

6
� ln z ln 1� zð Þ; ð32Þ

Li2 1� zð Þ þ Li2 1� 1=zð Þ ¼ � 1
2

ln zð Þ2; ð33Þ

Li2 �zð Þ � Li2 1� zð Þ þ 1
2
Li2 1� z2
� �

¼ � �2

12
� ln z ln 1þ zð Þ: ð34Þ
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The first two relationships are valid for 0≤z≤1, the
last one for −1≤z≤1. In Eq. 33 we substitute now z′=
1−1/z and obtain a functional relationship for z′.
Omitting the primes, this relationship may be rewritten
as

Li2 zð Þ ¼ �Li2
�z
1� z

� �
� 1

2
ln 1� zð Þð Þ2; ð35Þ

which is valid for z≤0. For −1≤z≤0, the Li2 term on
the right of Eq. 35 can be efficiently evaluated using
the series expansion (Eq. 11) because of 0≤−z/(1−z)
≤1/2. For zG−1, the relationship (Eq. 32) may be
used to speed up the calculations. First, the substitu-
tion z′=1-1/z is applied to Eq. 32. Combing the result
with Eq. 35 then yields

Li2 zð Þ ¼ Li2
1

1� z

� �
� ln 1� zð Þ ln �zffiffiffiffiffiffiffiffiffiffiffi

1� z
p

� �
� �2

6
:

ð36Þ

Various approximations

Equation 36 is not only valuable for an efficient
numerical calculation, it also allows to derive high-
intensity approximations for Eqs. 28 and 29. With
increasing −z (in the auditory-nerve model corres-
ponding to an increasing intensity I), 1/(1−z) goes to
zero, and the Li2 term on the right-hand side of Eq. 36
becomes negligible (cf. series expansion (Eq. 11)).
Straightforward manipulations of the remaining terms
finally yield the high-intensity approximation

Li2 zð Þ � � 1
2

ln �zð Þð Þ2 � �2

6
: ð37Þ

Thus, Eq. 29 may be approximated as

f2 Ið Þ � 1
��

1
2

log10 Ið Þ2 þ �2

6� ln 10ð Þ2
 !

: ð38Þ

For Eq. 28, straightforward manipulations yield the
high-intensity approximation given in Eq. 6.

An approximation for I≈1 can be derived from Eq. 34.
For z≈1, the second and the third term on the left-
hand side of that equation are close to zero and can be
efficiently evaluated using the series expansion (Eq. 11).
Using the identity

ln 1þ zð Þ ¼ ln 2ð Þ þ ln 1� 1� z
2

� �
; ð39Þ

Eq. 34 may be rewritten as

Li2 �zð Þ ¼ � �2

12
� ln 2 ln z

þ Li2 1� zð Þ � 1
2
Li2 1� z2
� �� ln z ln 1� 1� z

2

� �� �
:

ð40Þ

A series expansion (around z=1) of the terms in the
bracket yields

Li2 �zð Þ ¼ � �2

12
� ln 2 ln z � 1

4
z � 1ð Þ2

þ 5
24

z � 1ð Þ3 � 1
6

z � 1ð Þ4

þ O z � 1ð Þ5
� �

: ð41Þ

The basis for the following empirical step is that
(z−1)2 is the first term of the series expansion of
(ln z)2. By subtracting on the left hand side of Eq. 41
the term (ln z)2/4 while simultaneously adding the
corresponding series expansion around z=1, we get
the formula

Li2 �zð Þ ¼ � �2

12
� ln 2 ln z � 1

4
ln zð Þ2

� 1
24

z � 1ð Þ3 þ 1
16

z � 1ð Þ4

þ O z � 1ð Þ5
� �

: ð42Þ

The magnitude of higher-order terms is significantly
reduced by this means so that, after omitting these
terms, Eq. 42 provides a better approximation than
Eq. 41. With Eq. 42, Eq. 29 becomes

f2 Ið Þ � 1
��

�2
�
12

ln 10ð Þ2 þ log10 2 log10 I þ
1
4

log10 Ið Þ2
 !

:

ð43Þ
For I=1, the last two terms in the bracket are zero,
and Eq. 43 provides the exact solution.

In Figure 10, the function g2 Pð Þ ¼ f2 P 2ð Þ is consid-
ered, and the tangent at P=1 is plotted (in this
Appendix, we ignore the additional transformations
that were used in Fig. 10). The equation for the
tangent is easily derived from Eq. 43:

t2 Pð Þ � 1

�� ln 10ð Þ2
�2

12
þ 2 ln 2 P � 1ð Þ

� �
: ð44Þ

The tangent crosses the abscissa at P ¼ 1� �2
�

24 ln 2ð Þ � 0:407, corresponding to −7.8 dB.

Calculation of the polylogarithm by numerical
evaluation of the Fermi-Dirac integral

Numerical calculations using the series expansion
(Eq. 11) are only possible for ∣z∣≤1. Thus, an alternative
formula is needed for ∣z∣91. For the special case of the
dilogarithm (n=2), functional relationships were used
for that purpose (see above). A more general solution is
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to exploit the close relationship between polylogarithm
and Fermi-Dirac integral (Weisstein 2005):

�Lisþ1 �zð Þ ¼ 1
� s þ 1ð Þ

Z1
0

t s

1þ e t=z
dt ð45Þ

To obtain the thin solid curve in Figure 11, this
integral was evaluated by numerical integration.
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