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Abstract
Background: Over the past decade, many investigators have used sophisticated time series tools
for the analysis of genomic sequences. Specifically, the correlation of the nucleotide chain has been
studied by examining the properties of the power spectrum. The main limitation of the power
spectrum is that it is restricted to stationary time series. However, it has been observed over the
past decade that genomic sequences exhibit non-stationary statistical behavior. Standard statistical
tests have been used to verify that the genomic sequences are indeed not stationary. More recent
analysis of genomic data has relied on time-varying power spectral methods to capture the
statistical characteristics of genomic sequences. Techniques such as the evolutionary spectrum and
evolutionary periodogram have been successful in extracting the time-varying correlation
structure. The main difficulty in using time-varying spectral methods is that they are extremely
unstable. Large deviations in the correlation structure results from very minor perturbations in the
genomic data and experimental procedure. A fundamental new approach is needed in order to
provide a stable platform for the non-stationary statistical analysis of genomic sequences.

Results: In this paper, we propose to model non-stationary genomic sequences by a time-
dependent autoregressive moving average (TD-ARMA) process. The model is based on a classical
ARMA process whose coefficients are allowed to vary with time. A series expansion of the time-
varying coefficients is used to form a generalized Yule-Walker-type system of equations. A
recursive least-squares algorithm is subsequently used to estimate the time-dependent coefficients
of the model. The non-stationary parameters estimated are used as a basis for statistical inference
and biophysical interpretation of genomic data. In particular, we rely on the TD-ARMA model of
genomic sequences to investigate the statistical properties and differentiate between coding and
non-coding regions in the nucleotide chain. Specifically, we define a quantitative measure of
randomness to assess how far a process deviates from white noise. Our simulation results on
various gene sequences show that both the coding and non-coding regions are non-random.
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However, coding sequences are "whiter" than non-coding sequences as attested by a higher index
of randomness.

Conclusion: We demonstrate that the proposed TD-ARMA model can be used to provide a
stable time series tool for the analysis of non-stationary genomic sequences. The estimated time-
varying coefficients are used to define an index of randomness, in order to assess the statistical
correlations in coding and non-coding DNA sequences. It turns out that the statistical differences
between coding and non-coding sequences are more subtle than previously thought using
stationary analysis tools: Both coding and non-coding sequences exhibit statistical correlations,
with the coding regions being "whiter" than the non-coding regions. These results corroborate the
evolutionary periodogram analysis of genomic sequences and revoke the stationary analysis'
conclusion that coding DNA behaves like random sequences.

Background
Understanding the statistical properties of genomic
sequences helps recreate the dynamical processes that led
to the current DNA structure, and determine gene-related
diseases like cancer and Alzheimer disease. For instance,
based on the view that non-coding DNA exhibits long-
range correlations [1-6], Li [7] proposed an expansion-
modification model of gene evolution. The model incor-
porates the two basic features of DNA evolution: (i)
sequence elongation due to gene duplication and (ii)
mutations. It can be shown that the limiting sequence cre-
ated by this dynamical process exhibits a long-range cor-
relation structure, as attested by a 1/fα spectrum, where the
exponent α is a function of the probability of mutation.
To understand the relationship between the DNA correla-
tion structure and possible gene abberations, Dodin et al.
[8] designed a simple correlation function intended to vis-
ualize the regular patterns encountered in DNA
sequences. This function is used to revisit the intriguing
question of triplet repeats with the aim of providing a vis-
ual estimate of the propensity of genes to be highly
expressed and/or to lead to possible aberrant structures
formed upon strand slippage.

Statistical analysis of genomic sequences has, however,
relied, for a long time, on signal processing techniques for
stationary signals (correlation and power spectrum)
[2,4,9,10], and statistical tools for slowly-varying trends
within stationary signals (Detrended Fluctuation Analysis
or DFA) [1,5,6]. Stationarity can be argued as a valid
assumption for time-series of short duration. However,
such an assumption rapidly loses its credibility in the
enormous databases maintained by various genome
projects. Standard statistical tests (e.g., Priestley's test for
stationarity) have been used to verify that genomic
sequences are not stationary and the nature of their non-
stationarity varies and is often more complex than a sim-
ple trend [11,12]. Subsequently, more recent analysis of
genomic data [1] has relied on time-varying power spec-
tral methods (the evolutionary spectrum and periodog-
ram) to capture the statistical characteristics of genomic

sequences [11,12]. The main difficulty in using time-vary-
ing spectral methods is that they are extremely unstable
and very noisy. Typically, the power spectrum and the
evolutionary spectrum are averaged over time in order to
obtain smooth and less jittery curves. Moreover, as was
pointed out in [13], the evolutionary spectrum is
restricted to the class of oscillatory processes. A stochastic
process, X(t), is oscillatory if it has a representation of the
form

X(t) = ∫ A(t, λ)e2iπλt dZ(λ), (1)

Where Z(λ) is an orthogonal increment process, and the
evolutionary power spectrum of the process is defined by
P (t, λ) = |A(t, λ)|2. This definition of the evolutionary
power spectrum has the following disadvantages [13]:

(i) It is not uniquely defined for a given non-stationary
process.

(ii) The estimation procedure for the evolutionary spec-
trum depends greatly on the nature of theamplitude func-
tion A(t, λ), which is not known a priori.

(iii) An increase in the number of observations does not
provide added information on the local behavior of the
evolutionary spectrum, and thus does not improve esti-
mation accuracy.

We propose to model non-stationary genomic sequences
by a time-dependent autoregressive moving average (TD-
ARMA) process. Cramer [14] showed that a non-station-
ary process still possesses a Wold decomposition in terms
of its innovation and its generating system. However, the
linear system generating the non-stationary signal, x(t),
when driven by the innovation, w(t), is no longer shift-
invariant; the parameters of the impulse response, hu, of
this system are time-dependent so that
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The existence of a time-varying ARMA representation of
this process is ensured by two theorems due, independ-
ently, to Grenier [15] and Huang and Aggarwal [16]. The
uniqueness of the TD-ARMA representation is obtained
by constraining the ARMA model to be invertible, but this
leads to conditions on the time-varying impulse response
{hu(t)} and its inverse (namely to be absolutely sum-
mable at any time t), which cannot be easily expressed in
terms of the time-dependent coefficients of the ARMA
model. In this paper, we estimate the time-dependent
coefficients of the general TD-ARMA model using mean-
squares, least-squares and recursive least-squares algo-
rithms. The mean-squares estimation leads to generalized
Yule-Walker type equations [15]. Once the non-stationary
parameters are estimated (as time series), we use them to
provide a basis for statistical inference by defining an
index of randomness, which quantitatively assesses how
close the non-stationary signal is to white noise. Our sim-
ulation results on various gene sequences show that (i)
both the coding and non-coding segments of a gene are
not random, and (ii) the coding segments are "closer" to
random sequences than non-coding segments. Our results
support the view that both coding and non-coding
sequences are not random [11,12,9,17-20], and revokes
the stationary study that maintains that non-coding DNA
sustains long-range correlations whereas coding DNA
behaves like random sequences [1-3,5,6,10].

Methods
Numerical representation of genomic sequences
Converting the DNA sequence into a digital signal offers
the opportunity to apply powerful signal processing
methods for the handling and analysis of genomic infor-
mation. This is, however, not an easy task as the analysis
results might depend on the chosen map. Various numer-
ical mappings have been adopted in the literature. To cite

few, Peng et al. [1] construct a one-dimensional map of
nucleotide sequences onto a walk, u(i), which they termed
"DNA walk". The DNA walk is defined by the rule that the
walker steps up (u(i) = +1) if a pyrimidine resides at posi-
tion i, and steps down (u(i) = -1) otherwise. Voss [9] rep-
resents a DNA sequence by four binary indicator
sequences, which indicate the locations of the four
nucleotides A, T, C and G. Berthelsen et al. [21] proposed
a two-dimensional representation of DNA sequences,
characterized by a Hausdorff dimension (also called frac-
tal dimension) that is invariant under (i) complementa-
rity, (ii) reflection symmetry, (iii) compatibility and (iv)
substitution symmetry of AT and C↔G. The correspond-
ing embedding assignment is given by A = (-1; 0), T = (1;
0), C = (0; -1) and G = (0; 1). In this paper, since we are
interested in time-dependent ARMA modeling of one-
dimensional non-stationary genomic sequences, we
adopt the widely used "DNA walk" map proposed by
Peng et al [1]. The DNA walk provides a nice graphical
representation for each gene. For instance, Figure 1 shows
the structure of the Human gene 276 located in chromo-
some 1, and its DNA walk is displayed in Fig. 2.

Time-dependent ARMA model
Grenier [22] showed that a discrete non-stationary signal,
{x [n]}, can be represented by finite-order time-varying
ARMA processes of the form

where N is the length of the sequence x [n], ai [n] and bi [n]

are the time-dependent model parameters, p and q are the
model orders and w [n] is a white noise process. Observe
that the coefficients ai [n] and bi [n] appear with an argu-

ment n - i depending on i. This is purely arbitrary since any
time origin can be chosen, without restraining the gener-
ality of the model. We assume that the time-dependent
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Gene StructureFigure 1
Gene Structure. Gene structure of the Human gene 276 located in chromosome 1: The boxes correspond to the exons 
(coding regions), and the lines between them represent the introns (non-coding regions). The total length of the gene is N = 
8208 bases, including 1536 coding bases and 6672 non-coding bases.
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coefficients ai [n] and bi [n] can be expressed as linear com-

binations of some basis functions ,

The advantage of the basis parametrization is clear from
the fact that the identification of the time-dependent coef-
ficients ai [n] and bi [n] reduces to the identification of the

constant coefficients  and , and there-

fore the linear non-stationary problem reduces to a linear

time-invariant problem. The basis functions 

do not have to be limited to the standard choices of Leg-
endre, Fourier, or the prolate spheroidal basis but can also
take advantage of any prior information, such as the pres-
ence of a jump in the coefficients at a known instant [22].

Estimation of the time-dependent ARMA coefficients

From Eqs. (4) and (5), the unknown parameters of the
TD-ARMA model are the weights of the linear combina-

tions defining each time-varying parameter. The linearity
is the key to the algorithms proposed in this paper. We
will derive mean-squares, least-squares and recursive
least-squares solutions to estimate the time-dependent

coefficients  and .

Mean-squares estimation
Define the process

and define the vector

X [n] = [f0[n]x[n], �, fm [n]x[n]]t, (7)

where the symbol t stands for the transpose of a vector or
a matrix. It is possible to derive for this process orthogo-
nality conditions similar to the stationary ARMA model
conditions [23]. Observe that the process v [n], defined in
Eq. (6), is orthogonal to [w[n - q - 1], w [n - q - 2], �];
hence, it is orthogonal to x [n - q - i] for all i > 0, and
orthogonal to X [n - q - i] for all i > 0 [22]. This orthogo-
nality condition leads to a generalized Yule-Walker equa-
tion [22]
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DNA WalkFigure 2
DNA Walk. DNA walk of the Human gene 276.
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Although the process x [n] is non-stationary, the stationar-
ity and ergodicity of the process w [n], together with the
linearity of the model, allow us to replace in Eq. (8) the
expectation by a summation. However, although consist-
ent, the above estimator is often considered a poor one
[22].

Least-squares estimation
Equations (4) and (5) can be written in vector format as
follows

ai [n] = ft [n] ci, and bi [n] = ft [n] di,

where

Define

ut [n] = x [n] ft [n], and vt [n] = w [n] ft [n].

Then, we have

Using this vector notation, Eq. (3) can be written as

x [n] + ut [n - 1] c1 + � + ut [n - p] cp = 
w [n] + vt [n - 1] d1 + � + vt [n - q] dq (9)

Or equivalently

x [n] + φt [n] θ = w [n], (10)

where φt [n] is the row vector

φt [n] = [ut [n - 1], �, ut [n -p], - vt [n - 1], �, vt [n -q]],

and

θ = [c1, �,cp, d1, �, dq]t.

Observe that the vector θ contains all the unknowns of the
TD-ARMA model. Writing Eq. (10) for n = 0, 1, �, N - 1
leads to

x = Φ θ + w, (11)

where

The least-squares solution of Eq. (11) is given by

θ = (Φt Φ)-1 Φt x (12)

To overcome the computational complexity associated
with the least-squares estimation (involving in particular
the inversion of a square (m + 1)(p + q) × (m + 1)(p + q)
matrix), we opted for a recursive least-squares estimation
as follows.

Recursive least-squares estimation
The recursive least squares algorithm is summarized as
[24]

The initial conditions can be chosen arbitrarily.

Index of randomness
Over the past decade, there has been a flow of conflicting
papers about the long-range power-law correlations
detected in eukaryotic DNA [1-3,5,6,9-12,17-20]. The
controversy is generated by conflicting views that either
advocate that non-coding DNA sustains long-range corre-
lations whereas coding DNA behaves like random
sequences [1,10,2,3,5,6], or maintains that both coding
and non-coding DNA exhibit long-range power-law corre-
lations [11,12,9,17-20]. Based on the analysis of the time-
dependent power spectrum of genomic sequences, Bouay-
naya and Schonfeld [11,12] showed that the statistical dif-
ferences between coding and non-coding sequences are
more subtle than previously concluded using stationary
analysis tools. In fact they found that both coding and
non-coding sequences are non-random. However, coding
sequences are "whiter" than non-coding sequences.

E

X n q

X n q p

X n X n pt t t

[ ]

[ ]

[ [ ] [ ] ]

− −

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
1

1 θ −−
− −

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⋅
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

E

X n q

X n q p

x n

[ ]

[ ]

[ ]

1

(8)

f c di i[ ]

[ ]

[ ]

, ,
,

,

,

n

f n

f n

c

c

d

m

i

i m

i

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
0 0 0

ddi m,

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a n i x n i n i

b n i w n i n i

i
t

i
t

[ ] [ ] [ ]

[ ] [ ] [ ]

− − = −

− − = −

  

  

u c

v d

i

i

Φ =
−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
φ

φ

t

t N

x

x N

w[ ]

[ ]

,

[ ]

[ ]

,

[ ]0

1

0

1

0

x w

w N[ ]

.

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥1

[̂ ] [̂ ] [ ] { [ ] [ ] [̂ ]}θ θ φ θn n L n x n n nt= − + + −1 1 (13)

L n
P n n
t n P n n

[ ]
[ ] [ ]

[ ] [ ] [ ]
= − −

+ −

1

1 1

 

  

φ

φ φ
(14)

P n P n
P n n t n P n

t n P n n
[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
= − − − −

+ −
1

1 1

1 1

   

  

φ φ

φ φ
(15)
Page 5 of 9
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 9):S14 http://www.biomedcentral.com/1471-2105/9/S9/S14
We propose to qualitatively assess the degree of random-
ness of both coding and non-coding sequences using the
time-dependent ARMA coefficients ai [n] and bi [n]. Con-
sider the system function, H (z), of a stationary ARMA
model (whose coefficients ai and bi are constant, i.e., inde-
pendent of time). We know that

where  (resp. ) are the zeros (resp. poles) of

the system function. From the fact that a stationary white
noise process has a at spectrum, we observe that the closer
(in L2 distance) the zeros and poles are, the flatter is the

spectrum of the process. Following the same reasoning
locally for non-stationary processes, we define the curve of
randomness, CR [n], of the non-stationary process x [n] by

where the minimum is taken over all pairs (rk [n], pk [n]).
Observe that the case p <q is obtained from the p > q case
by interchanging the roles of rk and pk, and the indices p
and q. The curve of randomness defined in Eq. (17) is a
measure of how close the zeros and the poles of the sys-
tem function are, and therefore, is a measure of how flat
the system function is, and how close is the process from
a white noise. The index of randomness, IR(p, q), of a TD-
ARMA(p, q), is then defined as the average of the curve of
randomness, i.e.,

In particular, the index of randomness of a TD-
ARMA(1,1) (x [n] + a[n - 1]x[n - 1] = w[n] + b[n]w[n - 1])
is given by

Observe that the index of randomness of a white noise
process is equal to zero. We say that the sequence x1 [n]
with index of randomness IR1 is more random than the
sequence x2 [n] with index of randomness IR2 if the index
of randomness of the former is lower than the index of
randomness of the latter, i.e., IR1 <IR2.

Results
All genome sequences considered in this paper have been
extracted from the NIH website http://
www.ncbi.nlm.nih.gov. The algorithms were imple-
mented in MATLAB. The DNA sequences were mapped to
numerical sequences using the purine-pyrimidine DNA
walk proposed in [1]. In our simulations, the recursive
least squares algorithm was found to best estimate the
time-dependent coefficients of the TD-ARMA model. We
used the MATLAB function rarmax, which implements the
recursive least-squares algorithm for TD-ARMA models.
The choice of the orders p and q of the model were deter-
mined experimentally as follows: For each genomic
sequence, we computed 100 TD-ARMA models corre-
sponding to the orders (1, 1) up to (10, 10). The best
model was chosen to be the one that minimizes the aver-
age squared error between the actual and the fitted
sequences. Our extensive simulations on various DNA
sequences from different organisms show that most of the
sequences are best fitted with low-order TD-ARMA mod-
els, e.g., TD-ARMA(1,1), TD-ARMA(1,2) and TD-
ARMA(2,1). Figure 3 shows the DNA walk of the Human
gene 276 and its TD-ARMA(1,1) fitted sequence. Observe
that the TD-ARMA(1,1) model accurately fits this gene
sequence. The estimated time-varying coefficients a [n]
and b [n] are displayed in Fig. 4 for both the coding and
non-coding regions of this gene. Their statistical differ-
ences are not clear from the plot of the time-series coeffi-
cients. The curves of randomness of the coding and non-
coding regions are displayed in Fig. 5. Table 1 shows the
index of randomness of various gene sequences. For con-
cise representation, the column titles have been abbrevi-
ated as follows: "C. length" (resp."N.C. length") denotes
the length (in base pairs) of the coding (resp. non-coding)
segment of the gene. The total length of the gene is the
sum of the lengths of its coding and non-coding regions.
"C. (p, q)" (resp. "N.C. (p, q)") denotes the optimal TD-
ARMA parameters (p, q) for the coding (resp. non-coding)
region of the gene. Finally, "C. IR" (resp. "N.C. IR") is the
index of randomness of the coding (resp. non-coding)
segment of the gene. Observe that, in all considered genes,
the index of randomness of both the coding and non-cod-
ing segments are strictly positive, and the index of ran-
domness of the coding region is consistently lower than
the index of randomness of the non-coding region (recall
that the index of randomness of a white noise is zero).
These observations bring to bear two important conclu-
sion: (i) Both the coding and non-coding sequences are
not random, as attested by an index of randomness greater
than zero. (ii) The coding sequences are "whiter" than the
non-coding sequences. This conclusion revokes previous
work on statistical correlation of DNA sequences, which,
based on stationary time-series analysis, presumed that
coding DNA behaves like random sequences [1-3,5,6,10];
and supports the conflicting view that both coding and
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TD-ARMA coefficients estimationFigure 4
TD-ARMA coefficients estimation. Estimation of the TD-ARMA(1,1) coefficients of the Human gene 276. The TD-
ARMA(1,1) model is given by x [n] + a [n - 1] x [n - 1] = w [n] + b [n - 1] w [n - 1]. The blue and black (resp. red and green) 
curves depict the time series a[n] (resp. b[n]) for the coding and non-coding regions of the gene, respectively.

TD-ARMA modelingFigure 3
TD-ARMA modeling. TD-ARMA modeling of the Human gene 276: The blue signal is the DNA walk, and the red signal is 
the TD-ARMA(1,1) fitted signal. The TD-ARMA(1,1) model accurately fits the genomic signal.
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Curve of randomnessFigure 5
Curve of randomness. The curves of randomness of the coding and non-coding regions of the Human gene 276 are shown 
in blue and red, respectively. The index of randomness of the coding sequence is equal to 1.0603, whereas its corresponding 
value for the non-coding sequence is equal to 1.0627.
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Table 1: Index of Randomness of the Coding and Non-Coding segments of Various Gene Sequences

Gene NIH accession number C. length C. (p, q) C. IR N.C. length N.C. (p, q) N.C. IR

Ashbya gossypii (fungus) AE016815 180953 (1,1) 0.9466 674919 (1,1) 0.9860
Aspergillus fumigatus (form of fungus) CM000169 1227993 (2,1) 0.9870 1835394 (1,1) 1.0683

Candida albicans (form of yeast) AP006852 373390 (1,1) 1.0282 570789 (1,1) 1.0429
Candida albicans AP006852 373390 (1,1) 1.0282 570789 (3,1) 1.0429
fission yeast GI:157310483 753661 (1,1) 1.0402 1654671 (1,1) 1.0642

fruit fly AE002620 21399 (1,1) 1.0084 1222832 (1,2) 1.1075
fruit fly AE002725 11316 (1,1) 1.0145 659655 (1,1) 1.0320

Homo sapiens hs-gene277 NG-004750 1639 (1,1) 1.0688 6573 (1,1) 1.0808
Homo sapiens hs-gene276 NG-004750 1536 (1,1) 1.0603 6672 (1,1) 1.0627
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non-coding sequences are not random [11,12,9,17-20]. In
particular, our conclusion is in accordance with the evolu-
tionary periodogram analysis conducted in [11,12].

Conclusion
In this paper, we modelled the non-stationary genomic
sequences by a time-dependent autoregressive moving
average (TD-ARMA) model. By expressing the time-
dependent coefficients as linear combinations of para-
metric basis functions, we were able to transform a linear
non-stationary problem into a linear time-invariant prob-
lem. Subsequently, we proposed three methods to esti-
mate the time-dependent coefficients: Mean -square,
least-squares, and recursive least-squares algorithms.
Based on the estimated TD-ARMA coefficients, we defined
an index of randomness to quantify the degree of random-
ness of both coding and non-coding sequences. We found
that both coding and non-coding sequences are not ran-
dom. However, a higher index of randomness attests that
coding sequences are "whiter" than non-coding
sequences. These results corroborate the evolutionary per-
iodogram analysis of genomic sequences performed in
[11] and [12], and revoke the stationary analysis' conclu-
sion that coding DNA behaves like random sequences.
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