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Abstract
We use mathematically rigorous definitions of epidemiological concepts in order to derive a
sequential combinatorial model of disease outbreak decomposition. We define the idea of a
population specific ‘disease signature’ and use this in order to decompose and further understand
outbreaks as incidents of spatial and temporal spread of disease exposure both in, and across,
populations. This allows us to differentiate between different disease spread scenarios with a level
of sensitivity that previous models were unable to provide. This perspective leads us to propose a
new practical definition for ‘outbreak’. In addition, we are able to use this model to understand,
estimate, and, in some cases, correct for, the likely instances of reporting error inherent in disease
surveillance.

We demonstrate our model first with a hypothetical outbreak scenario and then in an analysis of
suspected outbreaks of waterborne diseases in Massachusetts (MA) in 1995.
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1. Introduction
Mathematical models have long been recognized as useful epidemiological tools. They provide
a foundation for quantitative predictions, allow for rigorous testing of hypotheses, and
necessitate clear definitions of concepts and parameters. The complicated and diverse array of
infectious diseases lead to the generation of generalized models that need to be tailored by the
use of carefully generated parameters to provide direct insight into the mechanisms of
transmission of a particular pathogen, the rate of infection and likelihood of widespread
outbreak given certain circumstances, all of which have direct applications for health care
management and disease control. Traditionally, these tailored parameters have been mass
action transfer terms governing the respective likelihoods of an individual transitioning from
susceptible to infected to recovered over time (SIR models, cf. [1]). In cases involving complex
circumstances such as multiple distinct populations or repeated, isolated exposures, these
models can become complicated, the determination of appropriate mass action terms for each
separate population can be difficult [2] and, in some cases, the use of mass action terms
themselves can be inappropriate for the focus of the investigation [3]. Additionally, while these

*Corresponding author. Address: Department of Public Health and Family Medicine, Tufts University School of Medicine, 136 Harrison
Avenue, Boston, MA 02111, USA. Tel.: +1 781 710 5025; fax: +1 617 627 4017.
E-mail address: feferman@math.princeton.edu (N.H. Fefferman).

NIH Public Access
Author Manuscript
Math Biosci. Author manuscript; available in PMC 2008 September 16.

Published in final edited form as:
Math Biosci. 2006 August ; 202(2): 269–287. doi:10.1016/j.mbs.2006.03.012.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mass action transfer terms are mathematically meaningful, they are clinically difficult to
measure, creating a disparity between mathematical elegance and usefulness.

By focusing our models on a narrower set of pathogens, those where the link between exposure
and infection is clearly defined (as opposed to diseases where there can be multiple and
confounding factors), we are able to use the timing of disease incidence and different etiologies
specific to the different affected subpopulations to fully understand the dynamics of disease
outbreaks. We here propose a method of sequential combinatorial decomposition to accomplish
this narrower focus, allowing us to incorporate an understanding of the different temporal
distributions governing the transition from susceptible to infected to recovered associated with
each population. This method embodies a compromise between the complexity of individual
behavior and the broad-brush assumption of mass action, population averages, and is based on
a set of clinically measurable parameters. Our system of choice for this study will be waterborne
illness due to the clearly defined direct link between exposure and infection. While we have
chosen this system for study here, this method may be applied to any system so long as that
link is unambiguously understood. All implications of our model are meant to be representative
only of this type of system, though the theory may be generalized to others.

Unlike most SIR models that focus solely or primarily on secondary (human-to-human)
transmission, we emphasize primary transmission for waterborne illnesses (i.e. an infection
from an environmental contaminant/external point source). This is an important aspect because
many waterborne diseases have this sort of external transmission that at least sparks an
outbreak. We here present a set of rigorous definitions and operational rules that lead to a
natural characterization of disease spread. This provides an outbreak signature decomposition
model through heterogeneous populations. Additionally, our model will provide a natural,
practical, mathematical definition of an ‘outbreak’. We will present our method by analyzing
both data from a simulated scenario and actual data from the suspected cryptosporidiosis and
giardiasis outbreaks in Massachusetts, USA during 1995 [4].

2. Motivation and rationale
In contrast to other diseases, the waterborne illnesses giardiasis and cryptosporidiosis are
prototypical emerging diseases. Both are caused by microscopic parasites in the intestine and
are passed in the stool of those infected, contaminating soil, food, or water. Cryptospordiosis
has both a small inoculum for humans [5,6] and a large animal reservoir [7]. Both
cryptosporidiosis and giardiasis have high rates of exposure once contamination is present in
a population, and high rates of infection given exposure. Large proportions of those infected
with either disease remain asymptomatic [8]. Those who do exhibit symptoms are likely among
specific subpopulations, such as children, elderly, pregnant women, or those who are in some
way immunocompromised [9]. However, even in these populations, reporting is often poor.
Together, these factors explain relatively few endemic cases detectable by the existing
surveillance systems. The need for better surveillance for cryptosporidiosis was made clear
during the 1993 outbreak in Milwaukee, which made 403,000 people ill. Only 12 ill people
out of a sample of 250,000 people contacted by the CDC were reported to have had
cryptosporidiosis via the in-place surveillance system (1 out of ∼20,000 people) [10]. Similar
arguments make the same need clear for giardiasis.

Cryptosporidiosis has a low mortality rate and confers only a partial immunity with a 3–6
month turnover [8]. This allows for repeated outbreaks in the same population over a 1 yr cycle,
given sufficient time lag between them. (The mortality rate for giardiasis is also low, but
nothing is known about its potential to generate partial or long-term immunity.) Outbreaks can
be synchronized over time, leading to a seasonal pattern that could be tied to environmental
contamination of water supplies, which may be dependent on such factors as rainfall and
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temperature. These properties make studying ‘endemic levels’ of either giardiasis or
cryptosporidiosis in water supplies [4], and therefore in any population served by them,
difficult. As a result, many models of waterborne pathogens examine the phenomenon of
disease ‘outbreak’, rather than ‘normal endemic levels’ [11]. Since separation between the two
is arbitrary and artificial, a model that attempts to describe or predict the manifestation of
disease as a natural process must treat exposure and infection in the same way, regardless of
whether or not the numbers of infected constitute an ‘outbreak’.

Transmission of either pathogen can occur via two distinct pathways: primary transmission,
which involves environmental contamination (such as a contaminated well, recreational water,
or drinking water treatment facility), and secondary transmission, which involves direct
transfer of the pathogen from host to host [12]. The relative contribution of each method of
transmission to the overall levels of exposure can drastically affect the behavior of the pathogen
in a population [13].

The distinction between the two processes: endemic and epidemic, presents us with another
problem. The CDC sanctioned definition of a waterborne outbreak begins as “an outbreak can
generally be defined as a sudden increase in the incidence of disease in a defined area over a
specific time” [14]. This is not particularly rigorous, leaving us faced with the problem of how
to define an outbreak mathematically. With no recognized standard, the boundary between
‘outbreak’ and ‘non-outbreak’ blurs and an ‘outbreak-specific’ model may, unintentionally,
be applied to spikes in endemic fluctuation. Traditionally, SIR models define outbreaks at the
point where the reproductive value, R0, is greater than one. However, while this does provide
a theoretical distinction, it may not provide a useful metric. For example, suppose a single
person contracts a waterborne illness while traveling, then returns home and successfully
transmits the pathogen to the five other people in their immediate family only. Although the
pathogen has now infected a total of only six people, the R0 is such that technically at that point
in time, an outbreak has occurred. While the theoretical threshold has been exceeded, the
knowledge of that excess does not advance a practical understanding of whether or not a greater
population is at risk. This concept can be further refined by broadening the idea of R0 to apply
to ‘major’ (R0 ≥ 1) and ‘minor’ (R0 < 1) outbreaks, rather than as a Boolean test of whether or
not an outbreak has occurred (cf. [15]). However, again, for each of these definitions relying
on R0 to accurately represent the condition of the spread of disease, they are applied
retrospectively, by themselves providing no practical information about the threat of future
spread. Instead of a purely theoretical definition, we propose an equally rigorous definition in
conjunction with a method for estimating and precisely characterizing disease outbreaks, and
the population specific parameters involved. Ultimately, we can then provide the ability to
predict both the endemic and epidemic fluctuations of disease incidence.

3. Outbreak signature as a composite of component disease signatures
In the interest of providing a more practical metric, every outbreak can be described as a series
of separate events in time and space [4,16]. Each has a set of characteristics that may distinguish
it from others, even of the same pathogenic source: duration of the outbreak, magnitude, the
overall shape, etc. Together, these traits create an outbreak signature which mathematical
models may be used to reproduce or even predict [17,18]. By using the specific properties of
the disease (transmission rates, manifestation, etc.) as parameters to generate a ‘disease
signature’ comprised of a portfolio of attributes (specific to demographic sub-population), we
can think of both endemic levels and, more importantly, outbreaks as a composition of disease
signature curves. Similarly, we can construct a model which fits the signature of an outbreak
and can yield better understanding of the circumstances which led to it in the first place
including how the particular disease signature, host population, and environment affected its
spread.
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By considering the outbreak signature as a composite of component disease signatures, derived
by incorporating spatial and temporal spread into the model itself, we are able to better interpret
and trust the parameters that yield the best fit of our model to an outbreak signature curve.
Traditional models use average transition probabilities of becoming infected and then
recovering, and are not intended to isolate the separate, population-specific distinctions. For
example, suppose a traditional Susceptible-Infected-Recovered model [1] of any infectious
disease. Suppose the reporting population consists of two etiologically distinct sub-
populations, X and Y, exposed to a pathogen at the same time. If the majority sub-population,
X, is less susceptible to the disease than the minority sub-population, Y, and they are then
arbitrarily aggregated (X + Y), then by treating the outbreak signature as a single curve, then
the overall transmission rate may be artificially lowered and the incubation time artificially
lengthened. With some prior understanding of the etiology of the disease, we may know how
to correct for this in our interpretation of the SIR model, but it does not change the use of
averages in the model itself, requiring the definition of an entirely different subpopulation,
complete with its own set of mass action transfer values (e.g. [19-22]).

By interpreting the same scenario using the idea of disease signatures, it may quickly become
obvious that the outbreak must have acted on two distinct populations. We are then able to use
simple combinatorial methods in order to explore which different combinations of sub-curves
may have occurred either together, or in sequence, in order to have generated the outbreak
signature observed. This allows us a more detailed understanding of both spatial and temporal
spread scenarios than is possible by more traditional methods (although it is important to note
that spatial complexity can itself be thought of as isolated subpopulations, i.e. if population
X is spatially separated from population Y, then the probability of transmission from an infected
individual in population X to one in Y is smaller than internal transmission probabilities within
each population itself). While each outbreak signature is by no means the result of only one
possible combination of component sub-curves, we are able to construct a set of plausible,
realistic scenarios from which our signature might have sprung.

4. Modeling strategy
4.1. Basic model formulation

The parameter and variable notation in traditional SIR models lend themselves naturally to
mathematical formulation of epidemiological processes, however, these formulations are not
always of equal facility in clinical practice or public health surveillance (either for discussion
or for practical measurement). Fundamentally, all studies of disease spread rely on composites
of underlying etiological and population-specific parameters. In order to foster greater facility
in communication among the disciplines, and to make explicit the connections between the
standard mathematical formulations and the standard rates measured as part of public health
surveillance practice, we formulate our model using the most basic units of etiology and
demography. More complex concepts can then be expressed as composites of these units. In
fact, many of the familiar parameters from SIR models can be directly computed using these
building blocks. We therefore define the following:

• E(X, T) = Probability of being exposed in a given population X at time T.
• I = Probability of becoming infected from exposure.
• S(T) = Probability that, having been infected at time 0, symptoms manifest T days

later. (Note: This is a distribution function, which does not need to sum to 1 if not all
those infected develop symptoms; this incorporates any latent period and therefore
provides a theoretical equivalent to the ‘Exposed’ class in the traditional SEIR
models.)

• XT = The size of the population possibly exposed to infection on day T.
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Together, these parameters comprise what we will call the disease signature, NT, for a particular
disease. Assume there is contamination in the population (hence the possibility of exposure)
for only one day T0. Then in a naïve population with an initial population size of XT0 , the
fundamental curve is the number of newly sick on day T defined by NT = XT0 (E(XT0, T0) * I
* S (T − T0)).

We then consider any outbreak signature as a composite of many disease signature curves.
Multiple days of contamination in a population, even from the same source, are considered as
different curves, with different T0 values. We can then iteratively define XT0+n = XT0 −
XT0+n−1 (E(xT0+n−1, T0 + n− 1) * I). (It is important to note that, if different populations are
exposed on ferent days, the disease signature curves will not overlap, due to the definition of
XT0.) Then the composition of those curves yields the following expression, CT, describing the
outbreak signature as:

Both I and S(T) can depend on the demographic distribution of the population and will directly
affect the shape of the disease signature. If the demography of the population is known, further
decomposing NT into NT,Y = XT0,Y (E(XT0,T0) * IY * SY (T − T0)) for Y = each demographic
group (e.g. elderly), provides a more accurate set of curves which, together, make up the disease
signature. This yields

Now suppose we want to incorporate re-infection into the fundamental curve, we may either
change I on average for each member of the population XT, or, we may split up XT into two
sub-populations:

Sub-population 1:  = The size of the population who have either never been infected before
day T or have been infected most recently long enough before day T that their possibility of
having a decreased susceptibility on day T is near 0.

Sub-population 2:  = The size of the population who have been infected recently enough
before day T to have a decreased probability of infection from current exposure. (Note that this
decrease in the probability of infection is assumed to be uniform over the entire population.)

Here, again, this model has been tailored to fit only a very narrow spectrum of waterborne
pathogens for which there is the possibility of reinfection, making it distinct from models of
diseases generating long term or permanent immunity (e.g., cholera). This type of iterative
methodology has been introduced earlier (e.g. [23]); and we have here specifically tailored the
formulation of the model to diseases favoring routes of primary transmission. It is also
important to note that the traditionally defined standard epidemiological transmission rate can
be seen as a combination of these terms we introduced [24].

We also need the additional definition:
• I(T) = Probability of becoming infected from exposure, given previous infection T

days ago.
• • T* = Last day of most recent prior infection.

We may then write the more complicated fundamental curve
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to incorporate the further complexities of reinfection. Here we adapted the concept suggested
in the literature (e.g. [25]), and reformulated it specifically in order to examine primary
transmission.

Remark.  can be broken into as many time segments as needed to maintain the uniformity
of the decreased probability of infection, down to daily counts, and would then be written as

a set of .

Considering re-infection in the expression of our outbreak signature then yields:

Given this expression, if we define TMax to be the greatest T for which S(T) ≥ 0 in any
subpopulation, and if there is contamination in the population for a finite length of time, then
TMax + 1 days after the last presence of contamination in a population (taken over all
demographic subpopulations) there will be no further manifestation of infection. Therefore,
maintaining a nonzero endemic level, or any form of sustained outbreak, requires the continued
presence of a source of contamination, by either primary or secondary transmission (in the case
of secondary transmission, contagious individuals may be themselves be considered the source
of contamination). Also, as we have already noted, different subpopulations can lead to
different S(T) curves. The different shapes of these curves directly affect the outbreak signature,
since it is comprised of their composition.

From an initial set of Q sub-populations (assuming for simplicity that there is no re-infection),
the number of possible spread scenarios is Q!. If we wish to incorporate reinfection of sub-
populations over i days, the maximum becomes (Qi)!. While this is computationally large, if
we are able to make some assumptions about the relative likelihood of certain sub-populations
being exposed together (for instance, different demographies being served by the same water
supply system), then we are able to reduce the initial estimation of (Qi)!. Additionally, for each
day i of the outbreak signature reported, we are able to eliminate all combinations of sub-
population curves which significantly over or under estimate the expected number of reported
cases, not only for day i, but also for all prior days (subject to the duration of their respective
S(T) curves). This implies that the number of possible combinations for consideration is
reduced on average by (Qj) for each day j of reported data. (Note that this reduction will
frequently be smaller at the beginning of the data when less is known and larger during the
middle and end, when earlier portions of the curve have already been determined, leaving us
with only a remaining ((Q – R)(j–i))! possibilities, where R is the number of sub-populations
already contributing to day j.) In this way, we can generate a set of possible spread scenarios
over the total population represented in the reported case curve over time.

4.2. A natural definition of an outbreak
Using this idea of an outbreak signature as a composite of component fundamental curves leads
us to a natural definition of an outbreak itself, when either of the following is true: (1) The
probability of exposure increases by more than one standard deviation from the expected
average in at least one population, or (2) when the number of people open to possible exposure
to infection at a given time is more than one standard deviation from the expected average.
This definition provides a clear point, in advance of the first onset of symptoms, when
epidemiologists may agree that a non-endemic progression (or ‘major outbreak’) has begun.
While R0 provides a theoretical threshold, this new definition provides a point of recognition
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for potential threats earlier in the progress of an outbreak, possibly allowing for earlier
intervention.

Suppose that, in a given population, it is highly unlikely for a pathogen to achieve a high rate
of secondary transmission. If the probabilities of exposure and infection from a single source
of contamination are uniform, and among the population that becomes symptomatic, those
symptoms manifest according to a Poisson distribution (in other words, S(T) is Poisson
distributed), then if there is a constant level of contamination in a given water supply, we would
expect any non-zero endemic level of disease would present newly symptomatic patients
according to a periodic Poisson process. It is necessary to assume low rates of secondary
transmission in order to eliminate the possibility that spikes in the curve are being produced,
not by any Poisson process of becoming infected and symptomatic in the population, but instead
are the manifestation of infection having entered a subpopulation with an inherently higher
rate of secondary transmission.

It may be possible to distinguish between the two probabilistically by examining the
distribution of new cases in close proximity to the local maxima of the peaks. If those local
areas themselves show a shape that decomposes into the disease signature curve for
subpopulations with high secondary transmission (such as elderly in nursing homes, or children
in day-care), then there is reasonable support to believe that a uniform probability has
introduced infection into such a population and thereby produced the peak in the endemic
fluctuation. However, by our new definition of an outbreak, we notice that, in either of these
cases, though there are a greater number of newly symptomatic cases, we have clearly remained
in the realm of standard endemic fluctuation.

4.3. Combinatorial decomposition
When using these methods to decompose actual data, it is first necessary to smooth the curve
representing the daily number of newly reported cases, especially because weekends can result
in artificial zeros. For our smoothing algorithm, if Hi = the actual number of reported cases on

a given day i, we chose yi in order to minimize the following expression:  over
a ten day window. The value was computed using a non-linear gradient search method in MS
Excel Solver. The initial j values were chosen at random for each iteration and the computation
was allowed to run until the number of i's for which |Hi – yi| < 100 was greater than 85%.

This method was applied first to a simulated scenario (see Table 1 for all parameter values)
and secondly to actual reported case incidence curves from three cities in Massachusetts in
1995 (see Table 2 for parameter values associated with this data). (For a detailed discussion
of the suspected outbreak of cryptosporidiosis in Worcester, see [26]).

The decomposition of the hypothetical scenario using assumed parameter values from Table
1 yielded the following: A single reporting agency has assembled the daily counts of disease
cases from three distinct cities with population sizes of 135 000, 90 000 and 73 000, respectively
(see Fig. 1). In this scenario, the geographic decomposition shows that the towns were initially
exposed on different days and at varying levels of exposure. By examining both the rates in
each city and the counts, we are able to see the relative impact of the disease on each sub-
population and the contribution of each sub-population towards the total (see Fig. 2(a) and (b)).
Further decomposition of the geographic curves into their demographic component curves
again reveals a more exact transmission and temporal spread (see Fig. 3(a) and (b)).

The decomposition of actual reported data from a suspected outbreak of the two waterborne
diseases cryptosporidiosis and giardiasis in Boston, Worcester, and Lowell, Massachusetts
during 1995, using parameter values listed in Table 2, yielded Figs. 4-8. The original data
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involved too many zeros to yield a clear decomposition (perhaps in part due to the severe drop
in reporting on weekends, causing artificial drops in reported numbers for two out of every
five days), it was therefore necessary to smooth the curves for both cryptosporidiosis and
giardiasis before decomposition (see Fig. 4(a) and (b), respectively). After smoothing the
curves, we obtained the graphs shown in Fig. 5(a) and (b). The geographic decomposition of
these data sets show single plausible scenarios of the possible different levels of exposure, over
time, in the different cities, to the different diseases, which, given reporting error, could have
produced the data (see Fig. 6(a) and (b)).

Again, now, we may decompose the case curve for each city by demographic sub-population.
Fig. 7(a), (b), 8(a) and (b) demonstrate this for Boston and Worcester, respectively.

5. Discussion
This method of combinatorial modeling allows for a careful understanding of the spread of
disease through heterogeneous populations, incorporating spatial and temporal complexity.
Existing models look at an outbreak as a single curve. In reality, few outbreaks, no matter how
they are defined, are isolated enough to be the result of one instance of pathogen contamination
into a single, uniform population. This implies that most outbreaks are, in fact, composites of
multiple curves, each describing the behavior of one instance of contamination into a single
sub-population. We propose that the outbreak signature is therefore comprised of these
component curves, overlaid at various times and over various sub-populations. Models that
treat the outbreak signature as a single curve, do not ignore this complexity, but incorporate it
into the parameters of the model, making it opaque to investigation while ours brings it to the
focus of discussion.

For reasons already mentioned in the Introduction, waterborne diseases provide an appropriate
system for the demonstration of our approach. However, our modeling methods are in no way
specific to any one type of infectious disease. Any disease with a clear and direct link between
exposure and infection, leading to reported, symptomatic cases can be decomposed using the
same techniques. In fact, some of the most useful applications may well lie in diseases with a
more complicated etiology since the differences in their expression in different sub-populations
may be more pronounced. This could narrow the number of possible spread scenarios more
rapidly than was possible with our waterborne examples.

Another benefit of examining sub-population signature curves, rather than the entire outbreak
signature, stems from the high levels of inaccuracy in case reporting for any surveillance based
model [27]. If a disease is rare or difficult to diagnose, it can be expected that in the early stages
of an outbreak there will be significant under-reporting. Later, after the medical community
has been alerted to the possibility of an outbreak, surveillance sensitivity can be expected to
increase and may even lead to some false positive reporting. There can also be sub-population
specific reporting biases. (It is probably wise for models based solely on reported data to use
one well-understood sub-population as a ‘sentinel population’.) Each of these sources of
reporting error can lead to inaccurate outbreak estimations and complicate every aspect of
outbreak understanding. Studying the effect that these reporting-based corrections have on the
observed data can add to our understanding of the actual, rather than the reported, shape of the
outbreak curve: the ideal curve. By incorporating estimates of the different potential reporting
biases/errors for each different sub-population at a given time into our model, we are able to
(at least partially) correct for these sorts of surveillance issues.

With all of the parameters involved in epidemiological modeling, estimations are only as
appropriate as reported data and educated intuition together allow. With more and more refined
definitions of each sub-population, the likelihood increases that estimations of exposure,
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susceptibility and symptom manifestation over time, as well as those of reporting bias/error,
will closely reflect actual levels. It is also true that, the greater the number of sub-population
signature curves possible, the greater the number of possible spatial/temporal scenarios. A
trade-off exists between fine tuning the component sub-curves and ‘losing sight of the forest
because of the trees’. It is likely that some outbreaks will be most clearly analyzed using sub-
populations which are grouped spatially, demographically, or in some other way which lends
itself to the mechanism of transmission for the disease in question.

In many cases, estimates of parameters required may have never been studied or reported. In
these instances, it may be possible to decompose previously reported outbreak curves using
whatever parameters are known in order to educate estimations of those which remain unknown
(as was done for a number of our own estimated parameters, see Table 2). It is likely that, here
also, there will always be a trade-off between accuracy and efficiency. It may prove an
interesting direction for future study to examine the sensitivity of the sequential combinatorial
method of modeling disease outbreaks to variation in the rates used to generate the component
sub-curve signatures.

Another potential direction for application of this method involves the understanding of the
timing of outbreaks in the framework of endemic levels and seasonal patterns of exposure and
susceptibility in a population. We hope to explore the possibility of seasonal outbreaks as an
artifact of partial immunity, subsequent to a large outbreak, in a given population. By using
the disease signatures, we hope to project endemic fluctuations throughout a population as
Poisson processes, possibly producing stable cycles of “outbreaks”.

By forming alternative mathematical definitions of epidemiological concepts from a pragmatic
perspective and decomposing reported data using these definitions, we are able to understand
the progression of an outbreak both through and across populations in a way that other modeling
methods do not allow. More comprehensive understanding of the nature of outbreaks can lead
to a greater efficacy of surveillance systems that, in turn, can lead to the building of more
accurate predictive models. This cycle may eventually lead us to a level of understanding which
allows us to propose more effective intervention, or even prevention, systems.

Acknowledgments
We would like to thank the NIH for supporting this research with grant R01 HD038327-04 (N.H.F.), AI03015 (E.N.N.,
N.H.F.), Dr. J.K. Griffiths, and Dr. J.M. Reed for their thoughtful advice, J. Jagai for help with data abstraction in
preparation of the manuscript, Dr. A. DeMaria for providing us with reported case incidence data, and the support of
an NSF travel grant to The International Environmetrics Society 2003 annual conference where the contents of this
paper, in part, were originally presented.

References
1. Anderson RM, May RM. Population biology of infectious diseases: Part I. Nature 1979;280:361.

[PubMed: 460412]
2. Heesterbeek, JAP.; Roberts, MG. Mathematical models for microparasites of wildlife. In: Grenfell,

BT.; Dobson, AP., editors. Ecology of Infectious Diseases in Natural Populations. Cambridge
University; Cambridge: 1995.

3. Eubank S, Guclu H, Kumar VSA, Marathe M, Srinivasan A, Toroczkai Z, Wang N. Controlling
epidemics in realistic urban social networks. Nature 2004;429:180. [PubMed: 15141212]

4. Naumova EN, Chen JT, Griffiths JK, Matyas BT, Estes-Smargiassi SA, Morris RD. Use of passive
surveillance data to study temporal and spatial variation in the incidence of giardiasis and
cryptosporidiosis. Public Health Rep 2000;115(5):436. [PubMed: 11236016]

5. DuPont HL, Chappell CL, Sterling CR, Okhuysen PC, Rose JB, Jakubowski W. The infectivity of
Cryptosporidium parvum in healthy volunteers. N. Engl. J. Med 1995;332(13):855. [PubMed:
7870140]

Fefferman and Naumova Page 9

Math Biosci. Author manuscript; available in PMC 2008 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6. Steiner TS, Thielman NM, Guerrant RL. Protozoal agents: what are the dangers for the public water
supply? Annu. Rev. Med 1997;48:329. [PubMed: 9046966]

7. Tzipori S, Ward H. Cryptosporidiosis: biology, pathogenesis and disease. Microbes Infect 2002;4(10):
1047. [PubMed: 12191655]

8. Griffiths JK. Human cryptosporidiosis: epidemiology, transmission, clinical disease, treatment, and
diagnosis. Adv. Parasitol 1998;40:37. [PubMed: 9554070]

9. Majowicz SE, Michel P, Aramini JJ, McEwen SA, Wilson JB. Descriptive analysis of endemic
cryptosporidiosis cases reported in Ontario, 1996–1997. Can. J. Public Health Rev 2001;92(1):62.

10. MacKenzie WR, Hoxie NJ, Proctor ME, Gradus MS, Blair KA, Peterson DE, Kazmierczak JJ, Addiss
DG, Fox KR, Rose JB, Davis JP. A massive outbreak in Milwaukee of cryptosporidium infection
transmitted through the public water supply. N. Engl. J. Med 1994;331(3):161. [PubMed: 7818640]

11. Eisenberg JN, Brookhart MA, Rice G, Brown M, Colford JM Jr. Disease transmission models for
public health decision making: analysis of epidemic and endemic conditions caused by waterborne
pathogens. Environ. Health Perspect 2002;110(8):783. [PubMed: 12153759]

12. Hunter PR, Colford JM, LeChevallier MW, Binder S, Berger PS. Waterborne diseases. Emerg. Infect.
Dis 2001;7(Suppl 3):544. [PubMed: 11485661]

13. Koopman JS, Chick SE, Simon CP, Riolo CS, Jacquez G. Stochastic effects on endemic infection
levels of disseminating versus local contacts. Math. Biosci 2002;(180):49. [PubMed: 12387916]

14. Working Group on waterborne cryptosporidiosis, cryptosporidium and water: a public health
handbook. Georgia; Atlanta: 1997.

15. Heres L, Urlings HAP, Wagenaar JA, DeJong MCM. Transmission of Salmonella between broiler
chickens fed with fermented liquid feed. Epidemiol. Infect 2003;132:107. [PubMed: 14979596]

16. Onstad DW. Temporal and spatial scales in epidemiological concepts. J. Theor. Biol 1992;158(4):
495. [PubMed: 1287368]

17. Naumova EN, MacNeill IB. Signature-forecasting and early outbreak detection system.
Environmetrics 2005;16:749. [PubMed: 18716671]

18. Naumova EN, O'Neil E, MacNeill IB. INFERNO: a system for early outbreak detection and signature
forecasting. MMWR 2005;54(Suppl):77. [PubMed: 16177697]Available from:
<http://www.cdc.gov/mmwr/preview/mmwrhtml/su5401a14.htm>

19. Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and computation of the basic reproduction
ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol 1990;28:365.
[PubMed: 2117040]

20. Roberts MG, Kao RR. The dynamics of an infectious disease in a population with birth pulses. Math.
Biosc 1998;149:23.

21. Diekmann, O.; Heesterbeek, JAP. Wiley Series in Mathematical and Computational Biology. John
Wiley & Sons; Chichester, UK: 2000. Mathematical epidemiology of infectious diseases: model
building, analysis and interpretation.

22. Fulford GR, Roberts MG, Heesterbeek JAP. The metapopulation dynamics of an infectious disease:
tuberculosis in possums. Theor. Pop. Biol 2002;61:15. [PubMed: 11895380]

23. Finkenstädt BF, Grenfell BT. Time series modelling of childhood diseases: a dynamical systems
approach. J.R. Stat. Soc. Ser. C Appl. Stat 2000;49(1):187.

24. Roberts M, Heesterbeek H. Bluff your way in epidemic models. Trends Microbiol 1993;1:343.
[PubMed: 8162424]

25. Cooke, KL.; Calef, DF.; Level, EV. Non-linear Systems and its Application. Academic; New York:
1977.

26. Elam-Evans, LD.; Kaufmann, RB.; Schantz, PM. Epi-Aid 95-86. CDC; 1996. Investigation of
cryptosporidiosis Worcester and surrounding areas.

27. Proctor ME, Blair KA, Davis JP. Surveillance data for waterborne illness detection: an assessment
following a massive waterborne outbreak of Cryptosporidium infection. Epidemiol. Infect
1998;120:43. [PubMed: 9528817]

28. Hunter, PR. Waterborne Disease: Epidemiology and Ecology. John Wiley & Sons, Public Health
Laboratory Service; Chester, UK: 1997.

Fefferman and Naumova Page 10

Math Biosci. Author manuscript; available in PMC 2008 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cdc.gov/mmwr/preview/mmwrhtml/su5401a14.htm


29. Naumova EN, Egorov AI, Morris RD, Griffiths JK. The elderly and waterborne Cryptosporidium
infection: Gastroenteritis hospitalizations before and during the 1993 Milwaukee outbreak. Emerg.
Infect. Dis 2003;9(4):418. [PubMed: 12702220]

30. MassCHIP. Massachusetts Department of Public Health; 2003. Available
from:<http://www.state.ma.us/dph/>.

Fefferman and Naumova Page 11

Math Biosci. Author manuscript; available in PMC 2008 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.state.ma.us/dph/


Fig. 1.
Combined reported cases of giardiasis in three hypothetical towns.
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Fig. 2.
(a) Number of reported cases – geographic decomposition. The counts are shown here,
illustrating each town's contribution to the total reported case count. (b) Rate of reported cases
– geographic decomposition. The rates of incidence illustrate the relative prevalence of disease
in each town.
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Fig. 3.
(a) Demographic decomposition of Town 1. The counts illustrate the contribution of each sub-
population to the total reported count for this town. (b) Rate of infection in Town 1 –
demographic decomposition. The rates illustrate the difference in prevalence of symptoms in
the different sub-populations in the same town, from the same exposure over time.
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Fig. 4.
(a) Total reported cryptosporidiosis rate per capita in MA during 1995. (b) Total reported
giardiasis rate per capita in MA during 1995.
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Fig. 5.
(a) Smoothed reported cryptosporidiosis rate per capita in MA during 1995. (b) Total reported
giardiasis rate per capita in MA during 1995.
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Fig. 6.
(a) Total rates of cryptosporidiosis in 1995 – geographic decomposition. (b) Total rates of
giardiasis in 1995 – geographic decomposition. Arrows highlight areas of the decomposition
which indicate that the best fit scenario produced by the combinatorial model suggests a
differential impact of disease at different times, in the different cities. These differences would
go unnoticed using average mass action transfer terms.
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Fig. 7.
(a) Cryptosporidiosis rates of reported cases for demographic sub-populations in Boston in
1995. Other than the slight delay in development of symptoms for adults, each sub-population
in Boston was found to be equally affected. (b) Giardiasis rates of reported cases for
demographic sub-populations in Boston in 1995. Other than the slight delay in development
of symptoms for adults, each sub-population in Boston was found to be equally affected.
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Fig. 8.
(a) Cryptospordisiosis rates in Worcester, MA, for demographic sub-populations in 1995.
Other than the slight delay in development of symptoms for adults, each sub-population in
Worcester was found to be equally affected. (b) Giardiasis rates in Worcester, MA, for
demographic sub-populations in 1995. Arrows highlight areas suggesting that the effects of
the disease on the different sub-populations of the disease were not always in constant
proportions. These differences would go unnoticed using average mass action transfer terms.

Fefferman and Naumova Page 19

Math Biosci. Author manuscript; available in PMC 2008 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fefferman and Naumova Page 20

Table 1
Hypothetical parameter values for use in simulated decomposition scenario

Parameter Estimate

Hypothetical scenario
S(T) for adults Poisson distributed around a mean of 7.5 days
S(T) for children and elderly Poisson distributed around a mean of 5.5 days
I for adults 0.7
I for children 0.9
I for elderly 0.8
E(Town 1,4) 0.02
E(Town 2,6) 0.01
E(Town 3,8) 0.03
E(X,T) for all other towns and days 0
Town 1 ratio of adults to children to elderly 71:18:11
Town 2 ratio of adults to children to elderly 61:24:15
Town 3 ratio of adults to children to elderly 67:22:11
Total population town 1 560,000.00
Total population town 2 165,000.00
Total population town 3 90,000.00

The values used are assumed for purposes of demonstration and are not related to information about any particular disease.
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Table 2
Actual values estimated for use in decomposition of suspected 1995 MA waterborne disease outbreaks

Massachusetts Cryptosporidiosis and Giardiasis, 1995
Parameter Estimate Reference

S(T) for cryptosporidiosis in adults Poisson distributed around a mean of 7.5
days

Reporteda

S(T) for cryptosporidiosis in children and elderly Poisson distributed around a mean of 5.5
days

Reported,ab

S(T) for giardiasis in adults Poisson distributed around a mean of
10.5 days

Reporteda

S(T) for giardiasis in children and elderly Poisson distributed around a mean of 8.5
days

Reported,ab

I for both diseases in adults 0.7 Assumed
I for both diseases in children 0.9 Assumed
I for both diseases in elderly 0.8 Assumed
E(X,T) for all towns and days 1 if contaminant present, 0 otherwise Assumed for

ease of
interpretation

Boston ratio of adults to children to elderly 70:20:10 Reportedc
Worcester ratio of adults to children to elderly 62:24:14 Reportedc
Lowell ratio of adults to children to elderly 62:27:11 Reportedc
Total population Boston 589,138.00 Reportedc
Total population Worcester 172,474.00 Reportedc
Total population Lowell 105,167.00 Reportedc

Note that by defining E(X,T) in this way, we incorporate secondary transmission of the disease by considering contamination to be present as a result.
These values are taken from empirical studies discussed in the previously published articles cited.

a
Ref. [28].

b
Ref. [29].

c
Ref. [30].
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