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Abstract
Melamine diamine 1 is able to displace CB[5] from the CB[10]•CB[5] complex resulting in CB[10]
•12 and precipitated CB[5]•1. We were able to isolate free CB[10] by treatment of CB[10]•1 with
acetic anhydride followed by washing with MeOH, DMSO, and water. The spacious cavity of CB
[10] is able to complex large guests including a cationic calix[4]arene derivative in its 1,3-alternate
form (CB[10]•1,3-alt-3). The addition of adamantane carboxylic acid (4) to CB[10]•3 triggers a
conformational change during the formation of termolecular complex CB[10]•cone-3•4.

In 1981, Mock disclosed the structure of cucurbit[6]uril (CB[6]) and subsequently delineated
its outstanding binding properties toward ammonium ions in a series of elegant papers.1 Nearly
20 years later, the groups of Kim and Day reported the preparation and isolation of the CB[n]
homologues CB[5], CB[7], CB[8] and CB[10] as its CB[10]•CB[5] inclusion complex.2 With
their enhanced cavity size, the new members of the CB[n] family3 display a range of novel
properties and applications including gas encapsulation, polarizability enhancement, and
supramolecular dendrimer chemistry.4 Most notable, however, is the ability of CB[8] to
simultaneously bind two aromatic guests which function as molecular machines in response
to external stimuli.3b,5 In this paper we report the isolation of free CB[10] and disclose its
unusual recognition properties. These results suggest that CB[10] will rival CB[8] for use as
an advanced component for molecular machines and biomimetic systems.3,6

We isolated CB[10]•CB[5] in good quantities using a modification of the procedure reported
by Day.2b,2c After much experimentation we discovered that treating a solution of CB[10]
•CB[5] (Figure 1a) with a five equivalents of 1 results in the precipitation of the (CB[5]•1)n
exclusion complex and the formation of the CB[10]•12 inclusion complex (Figure 1b). 1H
NMR and x-ray crystallography indicates that 1 adopts a U-shape6 within the cavity of CB
[10] (Figure 2); the two equivalents of 1 are arranged in a head-to-tail manner which results in
a single set of resonances for Hb and Hc within CB[10]•12. The second equivalent of 1 is
relatively weakly bound to CB[10] and can be removed by washing with MeOH to yield CB
[10]•1 (Figure 1c). Once again, 1 adopts a U-shape within the CB[10]•1 complex; in this
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instance the top and bottom of CB[10] are differentiated and two sets of resonances are
observed for Hb and Hc. Free CB[10] was obtained by heating CB[10]•1 in Ac2O followed by
washing with (CH3)2SO, MeOH, and H2O (Figure 1d). CB[10] is quite stable in acidic solution
(>1 month in 20% D2O/DCl at room temperature) which enabled our investigations of its
molecular recognition properties.

CB[10] is insoluble in D2O (< 50 µM) but its inclusion complexes often are nicely soluble
which allows their characterization by NMR. Alternatively, CB[10] can be dissolved in 20%
DCl / D2O for binding studies. An initial screen of many guests revealed that CB[10] – with
its cavity volume of ≈ 870 Å3 – undergoes complexation with several chemically and
biologically important substances (e.g. dyes, fluorophores, pharmaceuticals, and peptides)
although some of these complexes occur as insoluble precipitates (Supporting Information).
A soluble, kinetically stable complex was obtained with the more sizable and cationic guest
(R)-2 which gave exclusively the termolecular complex CB[10]•(R)-22. Interestingly, when
racemic (±)-2 was used, the racemic mixture of homochiral complexes (CB[10]•(R)-22 and CB
[10]•(S)-22) was preferred relative to the heterochiral meso- complex (CB[10]•(R)-2•(S)-2) by
a factor of three (Supporting Information). In combination, these results suggest that CB[10]
may find application in drug delivery, for peptide sensing, and even to modulate the behavior
of catalysts based on binaphthalene derived ligands.

Given the vast size of the CB[10] cavity we envisioned the encapsulation of smaller host
molecules like cyclodextrins, calixarenes, or even CB[6] that would merge the advantageous
features of these host families. In the event, only cationic calix[4]arene derivative 3 formed a
soluble stable complex (CB[10]•3 Figure 3a). Based on the number and multiplicity of
resonances observed for CB[10]•3, we conclude that 3 adopts a mixture of the D2d-symmetric
1,3-alternate conformation and a rapidly equilibrating mixture of cone, 1,2-alternate and partial
cone conformers within the CB[10] host. Intrigued by the possibility of using allosteric effects
to control the conformation of the macromolecular complex7 we studied the binding of small
molecule guests to CB[10]•3. We found that substituted adamantanes (4 – 8) – which do not
bind to 3 alone – induce a dramatic change in the conformer distribution during the formation
of CB[10]•cone-3•adamantane complexes (Figure 3b).8 Scheme 1 shows an MMFF minimized
model of the CB[10]•cone-3•4 complex.9 One of the hallmarks of biological allostery is the
reversible response of the system to activator concentration. For this purpose we added
stoichiometric amounts of CB[7] which sequesters 4 as its CB[7]•4 complex3b,6d and resets
the system to its original CB[10]•3 state (Figure 3c).

Just like the smaller CB[n] homologs, CB[10] retains the ability to bind a variety of chemically
and biologically important cationic substances within its cavity. We have further demonstrated
that CB[10] readily forms termolecular complexes (e.g. CB[10]•22 and CB[10]•cone-3•4); the
vast cavity volume of CB[10] (≈ 870 Å3) suggests the potential formation of even higher
molecularity complexes. The termolecular complexes already display a range of intriguing
behavior including chiral recognition and efficient allosteric control of macromolecular
geometry in response to a small molecule (e.g. 4). Overall, these results suggest that CB[10]
will find broad application as an advanced component of molecular machines and biomimetic
systems.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
1H NMR spectra (400 MHz, D2O, 298 K) for: a) CB[10]•CB[5], b) CB[10]•12, c) CB[10]•1,
d) CB[10] (20% D2O/DCl).
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Figure 2.
Cross-eyed stereoview of the structure of CB[10]•12 in the crystal. Solvating water has been
removed for clarity.
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Figure 3.
1H NMR spectra recorded (400 MHz, D2O / DCl, RT) for: a) CB[10]•3 (1,3-alt and dynamic
equilibrium beween cone, 1,2-alt and partial cone), b) CB[10]•cone-3•4 with excess 4 (0.8
equiv.), and c) CB[10]•3 and CB[7]•4. Subscripts: 1,3 = 1,3-alt-3; dyn = dynamic equilibrium
of 3.
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Scheme 1.
Allosteric control of the conformations of CB[10]•3 (MMFF minimized) with 4 (purple) and
CB[7].
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