

H Public Access

Author Manuscript

J Am Chem Soc. Author manuscript; available in PMC 2008 September 16.

Published in final edited form as:

J Am Chem Soc. 2005 December 7; 127(48): 16798–16799. doi:10.1021/ja056287n.

Cucurbit[10]uril

Simin Liu, **Peter Y. Zavalij**, and **Lyle Isaacs***

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742

Abstract

Melamine diamine **1** is able to displace CB[5] from the CB[10]•CB[5] complex resulting in CB[10] •**1**2 and precipitated CB[5]•**1**. We were able to isolate free CB[10] by treatment of CB[10]•**1** with acetic anhydride followed by washing with MeOH, DMSO, and water. The spacious cavity of CB [10] is able to complex large guests including a cationic calix[4]arene derivative in its 1,3-alternate form (CB[10]•1,3-*alt*-**3**). The addition of adamantane carboxylic acid (**4**) to CB[10]•**3** triggers a conformational change during the formation of termolecular complex CB[10]•*cone*-**3**•**4**.

> In 1981, Mock disclosed the structure of cucurbit $[6]$ uril (CB $[6]$) and subsequently delineated its outstanding binding properties toward ammonium ions in a series of elegant papers.1 Nearly 20 years later, the groups of Kim and Day reported the preparation and isolation of the CB[n] homologues CB[5], CB[7], CB[8] and CB[10] as its CB[10] \cdot CB[5] inclusion complex.² With their enhanced cavity size, the new members of the CB[n] family³ display a range of novel properties and applications including gas encapsulation, polarizability enhancement, and supramolecular dendrimer chemistry.⁴ Most notable, however, is the ability of CB[8] to simultaneously bind two aromatic guests which function as molecular machines in response to external stimuli.^{3b,5} In this paper we report the isolation of free CB[10] and disclose its unusual recognition properties. These results suggest that CB[10] will rival CB[8] for use as an advanced component for molecular machines and biomimetic systems.^{3,6}

We isolated CB[10]•CB[5] in good quantities using a modification of the procedure reported by Day.^{2b,2c} After much experimentation we discovered that treating a solution of CB[10] •CB[5] (Figure 1a) with a five equivalents of 1 results in the precipitation of the $(CB[5] \cdot 1)$ _n exclusion complex and the formation of the CB[10] \cdot **1**₂ inclusion complex (Figure 1b). ¹H NMR and x-ray crystallography indicates that **1** adopts a U-shape⁶ within the cavity of CB [10] (Figure 2); the two equivalents of **1** are arranged in a head-to-tail manner which results in a single set of resonances for H_b and H_c within CB[10] $\cdot \mathbf{1}_2$. The second equivalent of **1** is relatively weakly bound to CB[10] and can be removed by washing with MeOH to yield CB [10]•**1** (Figure 1c). Once again, **1** adopts a U-shape within the CB[10]•**1** complex; in this

E-mail: LIsaacs@umd.edu.

instance the top and bottom of CB[10] are differentiated and two sets of resonances are observed for H_b and H_c . Free CB[10] was obtained by heating CB[10] \cdot 1 in Ac₂O followed by washing with (CH_3) ₂SO, MeOH, and H₂O (Figure 1d). CB[10] is quite stable in acidic solution $(>1$ month in 20% D₂O/DCl at room temperature) which enabled our investigations of its molecular recognition properties.

CB[10] is insoluble in D₂O ($<$ 50 μ M) but its inclusion complexes often are nicely soluble which allows their characterization by NMR. Alternatively, CB[10] can be dissolved in 20% $DCl / D₂O$ for binding studies. An initial screen of many guests revealed that $CB[10]$ – with its cavity volume of $\approx 870 \text{ Å}^3$ – undergoes complexation with several chemically and biologically important substances (e.g. dyes, fluorophores, pharmaceuticals, and peptides) although some of these complexes occur as insoluble precipitates (Supporting Information). A soluble, kinetically stable complex was obtained with the more sizable and cationic guest (*R*)-**2** which gave exclusively the termolecular complex CB[10]•(*R*)-**2**2. Interestingly, when racemic (\pm) -2 was used, the racemic mixture of homochiral complexes (CB[10] \cdot (*R*)-2₂ and CB [10]•(*S*)-**2**2) was preferred relative to the heterochiral *meso-* complex (CB[10]•(*R*)-**2**•(*S*)-2) by a factor of three (Supporting Information). In combination, these results suggest that CB[10] may find application in drug delivery, for peptide sensing, and even to modulate the behavior of catalysts based on binaphthalene derived ligands.

Given the vast size of the CB[10] cavity we envisioned the encapsulation of smaller host molecules like cyclodextrins, calixarenes, or even CB[6] that would merge the advantageous features of these host families. In the event, only cationic calix[4]arene derivative **3** formed a soluble stable complex (CB[10]•**3** Figure 3a). Based on the number and multiplicity of resonances observed for CB[10]•**3**, we conclude that **3** adopts a mixture of the D_{2d} -symmetric 1,3-alternate conformation and a rapidly equilibrating mixture of cone, 1,2-alternate and partial cone conformers within the CB[10] host. Intrigued by the possibility of using allosteric effects to control the conformation of the macromolecular complex⁷ we studied the binding of small molecule guests to CB[10]•3. We found that substituted adamantanes $(4-8)$ – which do not bind to **3** alone – induce a dramatic change in the conformer distribution during the formation of CB[10]•*cone*-**3**•adamantane complexes (Figure 3b).8Scheme 1 shows an MMFF minimized model of the CB[10]•*cone*-**3**•**4** complex.9 One of the hallmarks of biological allostery is the reversible response of the system to activator concentration. For this purpose we added stoichiometric amounts of CB[7] which sequesters **4** as its CB[7]•**4** complex3b,6d and resets the system to its original CB[10]•**3** state (Figure 3c).

Just like the smaller CB[n] homologs, CB[10] retains the ability to bind a variety of chemically and biologically important cationic substances within its cavity. We have further demonstrated that CB[10] readily forms termolecular complexes (e.g. CB[10]•**2**2 and CB[10]•*cone*-**3**•**4**); the vast cavity volume of CB[10] (\approx 870 Å³) suggests the potential formation of even higher molecularity complexes. The termolecular complexes already display a range of intriguing behavior including chiral recognition and efficient allosteric control of macromolecular geometry in response to a small molecule (e.g. **4**). Overall, these results suggest that CB[10] will find broad application as an advanced component of molecular machines and biomimetic systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

We thank the National Institutes of Health (GM61854) and the University of Maryland for financial support.

J Am Chem Soc. Author manuscript; available in PMC 2008 September 16.

References

- 1. (a) Freeman WA, Mock WL, Shih N-Y. J. Am. Chem. Soc 1981;103:7367–7368. (b) Mock WL. Top. Curr. Chem 1995;175:1–24.
- 2. (a) Kim J, Jung IS, Kim S-Y, Lee E, Kang J-K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc 2000;122:540–541. (b) Day AI, Arnold AP, Blanch RJ, Snushall B. J. Org. Chem 2001;66:8094–8100. [PubMed: 11722210] (c) Day AI, Blanch RJ, Arnold AP, Lorenzo S, Lewis GR, Dance I. Angew. Chem. Int. Ed 2002;41:275–277.
- 3. (a) Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed 2005;44:4844–4870. (b) Lee JW, Samal S, Selvapalam N, Kim H-J, Kim K. Acc. Chem. Res 2003;36:621–630. [PubMed: 12924959]
- 4. (a) Miyahara Y, Abe K, Inazu T. Angew. Chem. Int. Ed 2002;41:3020–3023. (b) Kellersberger KA, Anderson JD, Ward SM, Krakowiak KE, Dearden DV. J. Am. Chem. Soc 2001;123:11316–11317. [PubMed: 11697985] (c) Marquez C, Nau WM. Angew. Chem. Int. Ed 2001;40:4387–4390. (d) Moon K, Grindstaff J, Sobransingh D, Kaifer AE. Angew. Chem. Int. Ed 2004;43:5496–5499.
- 5. (a) Jeon WS, Kim E, Ko YH, Hwang I, Lee JW, Kim S-Y, Kim HJ, Kim K. Angew. Chem. Int. Ed 2005;44:87–91. (b) Ko YH, Kim K, Kang J-K, Chun H, Lee JW, Sakamoto S, Yamaguchi K, Fettinger JC, Kim K. J. Am. Chem. Soc 2004;126:1932–1933. [PubMed: 14971915] (c) Jeon WS, Ziganshina AY, Lee JW, Ko YH, Kang JK, Lee C, Kim K. Angew. Chem. Int. Ed 2003;42:4097–4100. (d) Jeon YJ, Bharadwaj PK, Choi SW, Lee JW, Kim K. Angew. Chem. Int. Ed 2002;41:4474–4476.
- 6. (a) Lee H-K, Park KM, Jeon YJ, Kim D, Oh DH, Kim HS, Park CK, Kim K. J. Am. Chem. Soc 2005;127:5006–5007. [PubMed: 15810820] (b) Jeon YJ, Kim H, Jon S, Selvapalam N, Oh DH, Seo I, Park C-S, Jung SR, Koh D-S, Kim K. J. Am. Chem. Soc 2004;126:15944–15945. [PubMed: 15584711] (c) Braha O, Webb J, Gu L-Q, Kim K, Bayley H. ChemPhysChem 2005;6:889–892. [PubMed: 15884071] (d) Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L. J. Am. Chem. Soc 2005;127ASAP
- 7. Castellano RK, Rudkevich DM, Rebek J Jr. J. Am. Chem. Soc 1996;118:10002–10003.
- 8. Addition of 1 equiv. **4** to a solution of CB[10] \cdot **3** (500 μ M) results in \approx 90% formation of CB[10] \cdot *cone*-**3**•**4** reflecting the strong binding of **4** to CB[10] •**3**. A larger number of equivalents of $5 - 8$ are required to complete the conformation change presumably because of weaker binding interactions of tetracationic CB[10] •**3** with these cationic guests.
- 9. The ¹H NMR spectrum of CB[10]• $cone$ -**3•4** does not show doubling of the H_g and H_j resonances as expected for the geometry shown in Scheme 1. We attribute this result to a dynamic process in which **4** reorients its CO2H group between the two portals rapidly on the chemical shift timescale. The bulkier adamantanes **7** and **8** display two sets of resonances as expected.

Figure 1.

¹H NMR spectra (400 MHz, D₂O, 298 K) for: a) CB[10]•CB[5], b) CB[10]•**1**₂, c) CB[10]•**1**, d) CB[10] (20% D₂O/DCl).

Figure 2.

Cross-eyed stereoview of the structure of CB[10]•**1**2 in the crystal. Solvating water has been removed for clarity.

J Am Chem Soc. Author manuscript; available in PMC 2008 September 16.

Figure 3.

7

6

 \Box

¹H NMR spectra recorded (400 MHz, D2O / DCl, RT) for: a) CB[10]•**3** (1,3-*alt* and dynamic equilibrium beween cone, 1,2-*alt* and partial cone), b) CB[10]•*cone*-**3**•**4** with excess **4** (0.8 equiv.), and c) CB[10]•**3** and CB[7]•**4**. Subscripts: 1,3 = 1,3-*alt*-**3**; dyn = dynamic equilibrium of **3**.

3

4

 $\overline{2}$

0 ppm

1

Scheme 1.

Allosteric control of the conformations of CB[10]•**3** (MMFF minimized) with **4** (purple) and CB[7].