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Purpose: Chronic diseases affecting the inner ear and the retina cause severe impairments to our communication systems.
In more than half of the cases, Usher syndrome (USH) is the origin of these double defects. Patients with USH type 11
(USH2) have retinitis pigmentosa (RP) that develops during puberty, moderate to severe hearing impairment with
downsloping pure-tone audiogram, and normal vestibular function. Four loci and three genes are known for USH2. In this
study, we proposed to localize the gene responsible for USH2 in a consanguineous family of Tunisian origin.

Methods: Affected members underwent detailed ocular and audiologic characterization. One Tunisian family with USH2
and 45 healthy controls unrelated to the family were recruited. Two affected and six unaffected family members attended
our study. DNA samples of eight family members were genotyped with polymorphic markers. Two-point and multipoint
LOD scores were calculated using Genehunter software v2.1. Sequencing was used to investigate candidate genes.
Results: Haplotype analysis showed no significant linkage to any known USH gene or locus. A genome-wide screen,
using microsatellite markers, was performed, allowing the identification of three homozygous regions in chromosomes
2, 4, and 15. We further confirmed and refined these three regions using microsatellite and single-nucleotide
polymorphisms. With recessive mode of inheritance, the highest multipoint LOD score of 1.765 was identified for the
candidate regions on chromosomes 4 and 15. The chromosome 15 locus is large (55 Mb), underscoring the limited number
of meioses in the consanguineous pedigree. Moreover, the linked, homozygous chromosome 15q alleles, unlike those of
the chromosome 2 and 4 loci, are infrequent in the local population. Thus, the data strongly suggest that the novel locus
for USH2 is likely to reside on 15q.

Conclusions: Our data provide a basis for the localization and the identification of a novel gene implicated in USH2,

most likely localized on 15q.

Usher syndrome (USH) is an autosomal recessive
disorders characterized by sensorineural hearing impairment
(HI), retinitis pigmentosa (RP), and variable vestibular
dysfunction [1]. It is clinically and genetically heterogeneous,
and it is categorized into three clinical subtypes. USH type 1
(USH1) is the most severe form. Patients with USH1 suffer
from vestibular dysfunction, delayed motor development,
congenital sensorineural HI, and RP starting in early
childhood. RP is due to photoreceptor degeneration, which
occurs from the periphery of the retina to the macula. Night
blindness is the first symptom of RP followed by narrowing
of the visual field [2]. Those with USH type II (USH2) have
moderate to severe congenital sloping HI, normal vestibular
function and a late onset of RP. USH type III (USH3) is
characterized by variable RP and vestibular dysfunction
combined with progressive HI. There are 11 known loci
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(USH1B-USH1G, USH2A-USH2D, and USH3), and for nine
of them, the corresponding genes have been identified:
USHIB/MYO74, USHIC/USHIC, USHID/CDH?23,
USHIF/PCDH15, USH1G/SANS, USH2A/USH2A, USH2C/
VLGRI, USH2D/WHRN, and USH3A/USH3A4 (Usher
homepage). Mutations in USH2 genes can also manifest as
atypical USH [3], as nonsyndromic recessive HI [4], or as
nonsyndromic recessive RP [5].

METHODS
Family and clinical data: In this study, we investigated a
Tunisian family with USH2. This family originates from
centre of Tunisia. Two affected (1 male and 1 female aged 28
and 18 years, respectively) and six healthy family members
(2 males and 4 females aged 21-61 years) attended our study.
We also recruited 45 controls (22 males and 23 females aged
26-72 years) from different regions of Tunisia. Written
informed consent was obtained from both parents, in
accordance with the ethics committee of the University
Hospital of Sfax. The pedigree was obtained upon interviews
with parents (Figure 1). Clinical history and physical
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Figure 1. Pedigree, haplotype and statistical data for a Tunisian family segregating Usher type 2 syndrome. A-C: In pedigree, the square
symbol indicates male, the circle symbol denotes female and black symbols represent affected individuals. Haplotypes for polymorphic markers
in three candidate regions on Chromosome 2, 4, and 15 are shown. The disease-linked haplotype is indicated by black bar for markers listed
while other haplotypes in gray and white. The critical linkage interval of each candidate region was indicated by box on haplotypes. Analysis
of these markers allowed us to refine the boundary of the critical linkage intervals to 14.7 Mb, 25.5 Mb, and 55 Mb respectively. Among
interesting candidate genes on chromosome 2 and 15 region two CERKL and MYOIE were selected for mutation screening. D-F: Multipoint
lod scores for markers on three candidate regions on Chromosome 2, 4, and 15. Lod scores for the different markers studied were computed
using Genehunter software. Maximum lod score of 1.765 was identified for the candidate regions on chromosome 4 between D4S2989 and
D4S402 and chromosome 15 between D15S978 and D15S1036. A maximum lod score of 1.51 was found on chromosome 2 between rs155100

and rs1157595. The following abbreviation was used: Mega base (Mb).

examinations of family members ruled out the implication of
environmental factors in the etiology of HI and RP. Eight
family members were subjected to audiologic examination,
which consisted of otoscopic exploration and pure-tone
audiometry. Testing of the vestibular system was performed
by electron stagmography. Ocular examinations included
fundus ophthalmoscopy, visual field examination, and
Ganzfeld-electroretinogram (ERG). Blood samples were
collected from eight family members. Genomic DNA was

extracted from whole blood following a standard phenol-
chloroform method.

Microsatellite genotyping and homozygosity mapping: For
each gene and locus responsible for USH (Usher homepage)
at least three microsatellite markers were selected on the basis
of their map position (UCSC Genome Browser) and
heterozygosity coefficient (HE; minimal HE of 0.7).
Fluorescent dye-labeled microsatellite markers were
genotyped for all the participating family members.
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TABLE 1. PRIMER PAIRS USED TO SEQUENCE CODING EXONS OF CERKL.

Exon Forward sequence Reverse sequence PCR size (bp)
1 GTGCTGGACTGGGTCAGG CAAAAGCTCGTGGGTGTAGG 490
2 CCCCAGTGTCTGTTGTTCCT TCAAGGAAACTGGGCTGATT 356
3 TGTGTCATTTTAAAGGGAAAGAAA TTCCCAAGTTTGCATTAAGGA 295
4 TTTGCCAGAACAAGTTAAAAAGTG TGAACAAGATAGAGCCAAAGTAA 273
5 CCCATTGGTTAACTTGTCTGTG CACATCAGTCCAACACTTTAGCA 295
6 GGTACATGTGAGCAGTTATGCAC TAGTGGGGATGCCAGAAGTC 399
7 AAAAGCAAATGTTAGTTTGAACACA AGAGACAAAGAACCTGCCTTTT 249
8,9 GCTCTCTTATGTTTGCTGTTTTGA TCTGATCAATTGTTTGTCAGAATG 461
10,11 GCGCGCGTTATCTGTTTTAT CAGTTAATTGGATACCCTGGAAA 352
12 CATGGTGATTTATCTATCTTGTCCA CAATTCTTGCAGCATCTTTTTC 299
13 CTCAAAGCTATTAAAATGTCAGCA AACCAACTGCCTGCTTTGAT 400
14 TATTTGGCATTGGCATTGTG GGTTTAAAGCATGGCCACAT 222
TABLE 2. PRIMER PAIRS USED TO SEQUENCE CODING EXONS OF MYOIE.
Exon Forward sequence Reverse sequence PCR size (bp)
1 TACGGTTTCCCTGAGGAGTG CGCGTCCACCTTCTCCAC 588
2 TCTGCACTGCTCTTTCTGCT AACTCCTGCCTTAGCCTTCC 395
3 TTGTGAATTCTTGATAACATCTGG TCAAGAAAAACCATGTCTGCAT 248
4 TAGTGCACGATTCGTTTCCA CCTGCTTGCTACTCAGACACA 355
5 GTTTTGTGTGATGGGGGAGA CCAGTGTCTTTTCTGTGGAAGA 271
6 GGCCCCTCACCTTAATGC TATGTGAAAGGCTCCCATTT 299
7 AGGATGCAGGAGTGACTTCG GAAAGAGGCGGACATTTCA 320
8 TGTGACTGCACAACCCAATC TGCCACAGAGGACATGTAGA 440
9 CCCGTGATTGTGCCTTCTAT CGCACCCAGCCTACTAGTTT 396
10,11 GTCCTCTGTTTCCTGCAAGC TTGTTTTTGCATTGCCTAGA 292
12 AAGGAGTTCACTGCCATGCT GCCACAATGGCATATGGTTT 684
13 TGTTCCTTTCCTGTTACCTCTT TCAGAGTTGTCACTTTGCCTGT 359
14 GCCATGACAGCTTTGGTTTT AGGAACACACCACCACACC 299
15 CCCTTCACCCCATCCTCTA CAGGGGTGCAGTTCCTTACT 243
16 TGCTTAACGAGCAAATTGTCA AAGACATGTGCGGACAACTG 349
17 TCCCTACAGCTTGGAACTGG GTACGCTTGAAGTGGGTGAA 286
18 TTCGAACGCTGGTAAACAGA CAACATTGATGGCATGAAGC 398
19,20 TCCCGTGTGTGTCATTGTCT AACGAACACATTCTGATTTGG 708
21 CCTCCGAAAGTACTGGGATT TCCTCCTGGCTGTTTGGAAC 304
22 TCATTGTTGTTGGTTTTGTTTG GCGATCAAGACCCCTTTTTA 366
23 CCCTGCTCCTGGTGTAGATT GTGCACATGTTTGCAGCATT 374
24 TCCACCTGAGAGCTGGAATC TCCAGATTTAGTGGTCCCAGA 250
25 TTCAAATGCGGAAATTGAGAC ATGATGGAGATGGAGCTTGC 383
26 AAGGATGGAGCTGGATTTGA AGCAATGTGACTGCATGCTC 347

Furthermore, a genome-wide scan was performed using 400
fluorescent dye-labeled microsatellite markers with an
average spacing of approximately 10 ¢cM (Prism Linkage
Mapping Set, Applied Biosystems, Foster City, CA). We used
the True Allele PCR Premix (Applied Biosystems) for PCR
reactions according to the manufacturer’s instructions.
Fluorescently labeled alleles were analyzed on an ABI Prism
3100-Avant automated DNA  sequencer (Applied
Biosystems).

We used homozygosity mapping to identify autozygous
regions in the two affected children. Two-point and multipoint
LOD scores were calculated with Genehunter software V2.1
version, using 100% penetrance, four alleles with equal allele
frequencies, and no phenocopies.

Mutation analysis and single nucleotide polymorphism
genotyping: Direct sequencing of candidate genes was
performed using primers in the intronic regions (Table 1 and
Table 2). Amplified products were directly sequenced using
an ABI 3100-Avant automated DNA sequencer and Big Dye
Terminator Sequencing V3.1 Kit (Applied Biosystems).

We also analyzed by direct sequencing three single
nucleotide polymorphism (SNP) markers (rs155100,
rs1157595, and rs1002207; dbSNP) spanning the ceramide
kinase-like gene (CERKL) to check their cosegregation with
the disease before proceeding to mutation screening. Primers
and conditions were previously described [6].

RESULTS
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Family and clinical data: The pedigree in Figure 1 displays a
consanguineous Tunisian family segregating USH based on
clinical history and audiometric and ophthalmologic tests.
Audiometric test showed a moderate sloping bilateral
sensorineural HI in USH patients (Figure 2). Severity of HI
was similar in patients BT188 and BT189. Parents reported
that HI was first noted in BT 188 when the child was six years
old, but observed it in BT 189, when the older sibling was ten
years old. For patient BT189 two audiograms were made at
four-year intervals with no change in the profile (Figure 2).
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Figure 2. Serial audiograms of two affected members (BT188 and
BT189) shown for the right (R) and left (L) ears separately. Pure tone
air-conduction threshold (y-axis) is expressed in decibels (dB). The
blue one represents the audiogram from 18-year-old BT188. Both
the red and the green represent the audiograms for the patient BT 189.
The red audiogram was made when he was 24 whereas the second
was made at the age of 28. BT 188 was not available for audiometric
test at the beginning of the study. Audiometric test showed a
moderate sloping bilateral sensorineural HI in these two usher
patients. The green and the red audiograms for the patient BT189
showed that there is no progression of hearing loss at an interval of
four years.

© 2008 Molecular Vision

The father (60 years) had high frequency HI caused by
bilateral presbycusis. No vestibular dysfunction was detected
in both patients (BT 188 and BT 189) using the caloric test, nor
was there any history of a delay in the age of walking. Patient
BT189 reported having night blindness problem beginning at
the age of 13 years. Fundus examination at in BT188 at age
14 and in BTI189 at age 24 detected severe retinal
degeneration. Visual fields (Goldmann targets 111/4e) were
significantly reduced to 5° concentric field and temporal
island fields in BT189 for both eyes and 5° and 10°
respectively in left and right eye in BT188. In BT189 and
BT188, the nasal and temporal fields were not preserved, and
only central field was maintained (Figure 3). The Ganzfeld-
ERG recorded in BT189 showed an almost normal response
flash visual-evoked potential in both eyes and a significant
bilateral global retinal degeneration. Only cone flicker
responses of less than 15% of the normal mean were

Figure 3. Visual field test results obtained on the right (RE) and the
left eye (LE) of the two patients BT188 and BT189. A: Result of
measuring the visual fields on BT189 at 28 years of age. B: Result
of measuring the visual fields on BT188 at the age of 18 years. A
series of random lights of different intensities are flashed in the
peripheral field of vision of both patients. When they perceive the
computer-generated light suddenly appearing in their field of view
they press a button to indicate their responses, then we see this spot
(Dot see). If the patient is unable to see the light in an appropriate
portion of his field of view, then we see on the computer a spot (Dot
don’t see) indicating vision loss. Visual field loss was more severe
in the older brother BT189. But in both patients, the nasal and
temporal fields were not preserved, and only the central field was
maintained.
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Figure 4. Ganzfeld-Electroretinogram of the right and left eyes of the
patient BT189. The following abbreviations were used: Left eye
(LE), right eye (RE), electroretinogram (ERG), visual-evoked
potentials (VEP), positive peak (P1 and P2), negative peak (N1 and
N2). The ERG and the VEP tests the function of the visual pathway
from the retina (ERG) to the occipital cortex (VEP). These tests were
conducted by placing a standard ERG device attached to the skin on
2 mm above the orbit. VEPs were recorded simultaneously from
electrode attached to the occipital scalp 2 mm above the region on
the midsaggital plane. An electrode placed on the fore head provided
a ground. The results can be directly related to the part of a visual
field that might be defective. This is based on the anatomical
relationship of the retinal images and the visual field. After dark
adaptation for 30 min, the doctor will place anesthetic drops in the
patient's eye and place a contact lens on the surface of the eye. Once
the contact lens is in place, a series of blue, red and white lights will
be shown to the patient. The VEP is an evoked electrophysiological
potential that can be extracted, using signal averaging, from the
electroencephalographic activity recorded at the scalp. Both ERG
and VEP were differentially amplified band pass filtred (0,1,30 Hz),
recorded over 300 ms epochs, and signal average. 2 trials were given.
The visual evoked potential to flash stimulation consists of a series
of negative and positive waves. The earliest detectable response has
a peak latency of approximately 30ms post-stimulus. For the flash
VEP, the most robust components are the N2 and P2 peaks.
Measurements of P2 amplitude should be made from the positive P2
peak at around 207.3 ms. The ERG recorded in BT189 showed an
absence of responses. While the VEP showed a normal responses in
both eyes. These traces confirm the evidence of a significant bilateral
global retinal degeneration. Only cone flicker responses of less than
15% of the normal mean were recordable under photopic conditions
while all other responses were below noise level, a typical finding
for patients with retinitis pigmentosa.

© 2008 Molecular Vision

recordable under photopic conditions while all other
responses were below noise level (BT189), a typical finding
for patients with RP (Figure 4). Nystagmus was noted in
patient BT 188 since her first examination at age 14 years. No
other abnormalities were observed in these two patients.
Taken together, the clinical signs observed in affected subjects
indicate a form of USH2.

Genome-wide screening and homozygosity mapping: To
localize the causative gene, we performed linkage analysis
using polymorphic microsatellite markers bordering all
described USH loci and genes. The USH phenotype
segregating in the family was not found to be linked to the
published USH loci. Table 3 shows statistical evidence for
exclusion of USH?2 genes. Therefore, a genome-wide screen
using microsatellite markers was performed. Linkage was
found with four markers D2S117 (2q32.3), D4S402 (4q26),
D15S978 (15g21.1), and D15S117 (15q22.1). Additional
markers were genotyped in all three regions to define the
critical intervals. The homozygous region in chromosome 2
was delimited by two informative markers rs1002207 and
D2S311; the chromosome 4 region was bordered by D4S1572
and D4S2938; and the chromosome 15 region stretched from
D15S1039 to D15S120 (Figure 1). Analysis of these markers
allowed us to refine the boundary of the critical linkage
intervals respectively to 16 Mb, 25.5 Mb, and 55 Mb. In the
CHI15 region, six polymorphic microsatellite markers were
found to be noninformative in the family (Figure 1).
Investigation of the polymorphism of these repeats in the
Tunisian population was performed in 40 wunrelated
individuals from different areas. Our results demonstrated that
these microsatellites display a high degree of genetic
polymorphism in the general Tunisian population.
Microsatellite marker heterozygosity values were estimated
using HET software version 1.8 and are as follows: 0.61 for
D15S993, 0.89 for D15S153, 0.84 for D15S131, 0.86 for
D15S205, 0.85 for D15S127 and 0.83 for D15S130. To rule
out chromosome 15 aberrations, we performed G banded
karyotype analysis on Phytohemagglutinin (PHA)-stimulated
blood culture using standard procedures. Chromosome
analysis of patient BT 189 showed normal karyotype (data not
shown).

We genotyped markers located in the three candidate
regions in 40 healthy unrelated Tunisian individuals for more
accurate estimation of allele frequencies and to determine the
best candidate region. In the first region, we analyzed four
markers (D2S148, D2S384, D2S364, and D2S117). In the
first region, homozygous alleles were predominantly present
in the population and the allele frequencies were 0.35
(D2S148), 0.125 (D2S384), 0.311 (D2S364), and 0.203
(D2S117). For the second region, three markers were
analyzed and the frequencies of linked alleles were as follows:
0.025 for D4S2989, 0.122 for D4S402, and 0.125 for
D4S2975. In contrast, the homozygous alleles of the
chromosome 15 region were not frequent in controls. Allele
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TABLE 3. Two POINT LOD SCORES CALCULATED FOR MICROSATELLITES BORDERING ALL DESCRIBED USH2 GENE REGIONS.

Recombination fraction (q)

Gene Marker 0 0.1 0.2 0.3 0.4
USH24 D1S425 -0 -0.423 -0.096 -0.01 0.001
D1S2827 -2.828 0.024 0.071 0.042 0.012
DIS213 2.832 0.022 0.07 0.042 0.012
VLGRI D5S428 -0 -0.165 -0.073 -0.034 -0.009
D5S618 0 -0.165 -0.073 -0.034 -0.009
D5S644 0 -0.251 0.117 -0.051 -0.013
WHRN D9S1677 0.328 0.206 0.109 0.046 0.013
D9S1776 0 -0.536 -0.193 -0.067 -0.014
D9S1682 0 -0.119 -0.039 -0.018 -0.005

Two-point LOD scores for the different markers studied were computed using Genehunter software. Close linkage to the known
USH genes on chromosomes 1, 5, and 9 was excluded with negative 2-point LOD scores.

frequencies of the polymorphic markers D155992, D15S978,
D15S117,and D15S1036 were assumed to be 0.05, 0.05, 0.1,
and 0.075, respectively. These results suggest that the disease
locus is most probably on chromosome 15. Multipoint LOD
scores were calculated for the family data using Genehunter
software. Maximum LOD scores (1.765 at 6=0) were
identified for the candidate regions on chromosome 4 between
D4S2989 and D4S2975, and chromosome 15 between
D15S978 and D15S1036. On chromosome 2, a maximum
LOD score of 1.51 was found for D2S117 microsatellite
marker.

Candidate gene screening: The evaluation of the three
homozygous regions revealed a large number of known and
hypothetical genes (UCSC Genome Browser). More than 100
candidate genes in these three regions are expressed in the
inner ear and in the retina. Although the region on
chromosome 2 was not the best candidate locus (the lower
LOD score and homozygous alleles of each linked marker are
common in Tunisian population), we chose to investigate the
CERKL gene, encoding a ceramide kinase, as candidate since
it has been described to cause nonsyndromic autosomal
recessive RP (RP26) [7]. The basis of this choice is that
mutations in USH2A are responsible for USH2 as well as
nonsyndromic recessive RP [5]. SNP (rs1157595 and
rs155100) genotyping was compatible with linkage of the
CERKL gene by cosegregation and homozygosity criteria
(Figure 1). However, BT188 and BT189 were heterozygous
for the rs1002207 (C/T), which was located at 0.8 Mb from
CERKL gene. We screened this gene for mutations. Two
affected children (BT188 and BT189) were compound
heterozygous for two novel variants (Figure 1). The first
change was a G>A (c.1073+34G>A) transition at position 34
from the donor splicing site of intron 8. The second was a c.
242A>C transversion in exon 2, which leads to p.Asp81Ala
substitution. Molecular modeling of the N-terminal region
showed that the mutation p.Asp81Ala has no structural effect
[8-13]. We detected this variant at heterozygous state in 2 out

of 45 Tunisian controls. Taken together, these results exclude
this variation to cause any functional defect on the encoded
enzyme. Therefore, the locus on chromosome 2 was reduced
to 14.7 Mb (Figure 1).

We also screened for mutations in another gene,
MYOIE, encoding an unconventional myosin and
representing a very good candidate on chromosome 15 locus.
No nucleotide variant was detected in this gene.

DISCUSSION

In this paper, we report a consanguineous family of Tunisian
origin, composed of two affected children with USH. On the
whole, the clinical signs observed in affected subjects from
this family were indicative of USH2. USH2 is characterized
by moderate to severe HI, and onset of RP in the second
decade of life. Vestibular function is not impaired in this
subtype. Subtle variations within the USH2 phenotype have
been observed in several studies. Liu et al. [4] showed that
mutations in the USH2A gene were present at homozygous
state not only in typical USH2 patients, but also in USH3-like
patients who present with late onset progressive deafness that
is occasionally associated with vestibular dysfunction. The
p-R334W mutation either causes USH2 or atypical USH
[14]. Nystagmus was also described in USH2 patients [15].
This consanguineous Tunisian family displayed no
evidence of linkage to any known USH locus. A genome-wide
genotyping was performed and revealed three homozygous
regions on chromosomes 2q31.3-33.1, 4q24-28.2, and
15g21-15qter. The highest LOD scores were identified for the
regions on chromosome 4 and 15. The determination of
population frequencies of the homozygous alleles of each
linked marker in these three regions showed that only the
homozygous alleles of chromosome 15 were rarely present in
40 control Tunisian individuals. More controls (45) were used
to check for the novel variant on CERKL gene. On the basis
of these results, we believe chromosome 15 locus is the most
likely locus for the defective gene. This region colocalizes
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with an autosomal recessive nonsyndromic HI locus
(DFNB48) mapped to 15g23-g25.1 in five large Pakistani
families [16]. Among interesting candidate genes on
chromosome 15 region, one gene, MYOIE, was selected.
Myosins are motor proteins that hydrolyze ATP and
translocate along actin filaments [17]. Indeed, the
involvement of unconventional myosins in hereditary HI is
well documented [18]. Mutations of myosins IA, IIIA, VI,
VIIA, and XVA are associated with HI in humans [19-23].
Mutations in MYO7A4 have been reported essentially in
families with USH1 but also can lead to atypical USH [24].
MYOIE is amember of a Myosin [ isozyme which are essential
for hair cells, the sensory cell of inner ear. All eight Myosin I
isozymes are expressed in rodent auditory and vestibular
epithelia. Three Myosin [ isosymes Myolb,Myolc, and
Mpyole, are expressed at birth in cochlea and vestibular organs.
In mouse, Myole is expressed in hair cell of the auditory and
vestibular epithelia. [25]. This isozyme was enriched in the
cuticular plate. Myosin Ie may mediate adaptation of
mechanoelectrical transduction. All exons and the flanking
sequences of the MYO!E gene were sequenced in patients and
were found to be negative for functional sequence variants.

As the chromosome 15 interval is large and no more
information can be obtained from this family to reduce the
size of this locus, other families with USH2, even if small,
would be useful to identify the novel gene.
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