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SUMMARY
We propose a class of kernel stick-breaking processes for uncountable collections of dependent
random probability measures. The process is constructed by first introducing an infinite sequence of
random locations. Independent random probability measures and beta-distributed random weights
are assigned to each location. Predictor-dependent random probability measures are then constructed
by mixing over the locations, with stick-breaking probabilities expressed as a kernel multiplied by
the beta weights. Some theoretical properties of the process are described, including a covariate-
dependent prediction rule. A retrospective Markov chain Monte Carlo algorithm is developed for
posterior computation, and the methods are illustrated using a simulated example and an
epidemiological application.
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1. Introduction
This article focuses on the problem of choosing priors for an uncountable collection of random
probability measures, , where  is a Lesbesgue measurable subset of ℜp and
Gx is a probability measure over a measurable Polish space (Ω, ℬ), with Ω the sample space
and ℬ the corresponding Borel σ-algebra. A motivating application is the problem of estimating
the conditional density of a response variable using the mixture specification f(y | x) = ∫ f(y |
x, φ)dGx (φ), with f(y | x, φ) a known kernel and Gx an unknown probability measure indexed
by the predictor value, x = (x1, …, xp)′.

The problem of defining priors for dependent random probability measures has received
increasing attention in recent years. Most approaches focus on generalizations of the Ferguson
(1973, (1974) Dirichlet process prior, with methods varying in how they incorporate
dependence. One approach is to include a regression in the base measure (Cifarelli & Regazzini,
1978), which has the disadvantage of capturing dependence only in aspects of the distribution
characterized by the base parametric model.

Much of the recent work has instead relied on generalizations of Sethuraman (1994)’s stick-
breaking representation of the Dirichlet process. If G is assigned a Dirichlet process prior with
precision α and base measure G0, denoted by G ~ DP(αG0), then the stick-breaking
representation of G is
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(1)

where δθ is a probability measure concentrated at θ and all Vh’s and θh’s are independent.
MacEachern (1999, 2001) proposed the dependent Dirichlet process, which generalizes (1) to
allow a collection of unknown distributions indexed by x by allowing the weights p = (ph, h =
1, …, ∞) and atoms θ = (θh, h = 1, …, ∞) to vary with x according to a stochastic process. If
we assume fixed p, the dependent Dirichlet process has been successfully applied to analysis
of variance (De Iorio et al., 2004), spatial modelling (Gelfand et al., 2005), and time series
(Caron et al., 2006).

Noting limited flexibility due to the fixed p assumption, Griffin & Steel (2006) proposed an
order-based dependent Dirichlet process, which incorporates dependence by allowing the
ordering of the random variables {Vh, h = 1, …, ∞} in the stick-breaking construction to depend
on predictors. An alternative is to incorporate dependence through weighted mixtures of
independent Dirichlet processes. Müller et al. (2004) used this idea to allow dependence across
experiments, while Dunson (2006) and Pennell & Dunson (2006) considered discrete dynamic
settings. Dunson, Pillai & Park (2007) defined a prior for   through a weighted mixture of
independent Dirichlet process random probability measures introduced at the sampled
predictor values. This prior is sample dependent and lacks reasonable marginalization and
updating properties.

In developing a prior for , we would also like to generalize the Dirichlet process prediction
rule, commonly referred to as the Blackwell & MacQueen (1973) Pólya urn scheme, to
incorporate predictors. Assuming φi ~ G, with G ~ DP(αG0), one obtains the Dirichlet process
prediction rule upon marginalizing over the prior for G:

(2)

This prediction rule forms the basis for commonly-used algorithms for efficient posterior
computation in Dirichlet process mixture models (MacEachern, 1994).

The Dirichlet process prediction rule induces clustering of the subjects according to a Chinese
restaurant process (Aldous, 1985; Pitman, 1996). This clustering behaviour is often exploited
as a dimension-reduction device and a tool for exploring latent structure (Dunson, Herring &
Engel, 2007; Kim et al., 2006; Medvedovic et al., 2004). The Dirichlet process and related
approaches, including product partition models (Barry & Hartigan, 1992; Quintana & Iglesias,
2003) and species sampling models (Pitman, 1996; Ishwaran & James, 2003), assume
exchangeability. In many applications, it is appealing to relax the exchangeability assumption
to allow predictor-dependent clustering.

Motivated by these issues, this article proposes a class of kernel stick-breaking processes to be
used as a sample-free prior for i , which induces a covariate-dependent prediction rule upon
marginalization.

2. Predictor-dependent random probability measures
2.1. Proposed formulation

Let ∼ , with  a probability measure on (Ψ, ), where Ψ is the space of uncountable
collections of probability measures on the Polish space (Ω, ℬ) indexed by x ∈  and i  is a
corresponding σ-algebra. Our focus is on choosing .
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We first introduce a countable sequence of mutually independent random components,

where, for each h, independently, Γh ~ H is a location, Vh ~ Be(ah, bh) is a probability weight,
and  is a probability measure. Here, H is a probability measure on the Polish space (ℒ

), where  is a Borel σ-algebra of subsets of ℒ, and ℒ is a Lesbesgue measurable subset
of ℜp that may or may not correspond to . In addition,  is a probability measure on the
space of probability measures on (Ω, ℬ). For example, ℬ may correspond to a Dirac measure
at a random location, a Dirichlet process, or a species sampling model (Pitman, 1996).

The kernel stick-breaking process is defined as follows:

(3)

where K: ℜp × ℜp → [0, 1] is a bounded kernel function. Note that (3) formulates Gx as a
predictor-dependent mixture over an infinite sequence of basis probability measures, with 
located at Γh, for h = 1, …, ∞. Bases located close to x and having a smaller index, h, will tend
to receive higher probability weight.

Starting with the unit probability stick, Gx allocates probability V1K(x, Γ1) to the first basis
measure, . This probability ranges from 0, for x far from Γ1, to V1, for x close to Γ1, depending
on the choice of kernel K. A proportion V2K(x, Γ2) is then broken off from the remaining stick
of length 1 − V1K(x, Γ1) and allocated to the second basis measure, . This proportion ranges
from 0 to V2 depending on the distance from x to Γ2. This predictor-dependent stick-breaking
process continues infinitely many times, using up the unit sticks at all locations x ∈  in the
limit. Note that Gx and Gx′ will allocate similar probabilities to the elements of the basis set

 if x is close to x′. In this manner, the kernel stick-breaking process accommodates
dependence.

Let πh(x; Vh, Γh) = U(x; Vh, Γh)Π l<h {1 − U(x ; Vl, Γl)}, for h = 1, …, ∞, with Vh = (V1, …,
Vh)′ and Γh = (Γ1, …, Γh)′. By replicating the arguments in Lemma 1 in Ishwaran & James

(2001), one can show that Gx is well-defined, with  almost surely for all x
∈ .

In order for the kernel stick-breaking process to be useful in applications with limited data in
any particular small local region of , it is important to favour sparseness and borrowing of
information. Sparseness can be represented in the process by choosing (i) a sequence

 that favours values of  close to one, (ii) a kernel K that decreases to 0 slowly
with increasing separation between predictors, and (iii) a random measure  that tends to assign
high mass to few atoms. Property (i) leads to dominant basis locations that are assigned high
probability by all Gx in a local region, property (ii) allows borrowing of information broadly
across , and property (iii) ensures that few parameters are needed to characterize each basis
measure.

A number of interesting special cases arise when K(x, Γ) = 1 for all , so that

. Then if , independently for each h, we obtain
a stick-breaking mixture of Dirichlet processes as a prior for G. Under the additional conditions
ah = 1 and bh = λ, the prior for G is a Dirichlet process mixture of Dirichlet processes, which
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is a two parameter extension of the Dirichlet process. This mixture reduces to a Dirichlet
process in the limiting case as either λ or α → 0. Finally, when , independently
for h = 1, …, ∞, without any constraints on , G is assigned a stick-breaking prior in
the class considered by Ishwaran & James (2001).

2.2. Conditional properties
Returning to the general case, we first derive moments of Gx conditionally on the random
weights V and random locations 3, but marginalizing out the random basis measures,

. Letting , for all , we obtain

(4)

As a result of the lack of dependence on V and Γ, we also have , so that the
prior is centred on the base measure G0. In addition,

(5)

where  and . By a similar route, the
correlation coefficient is

(6)

where < ·, · > is the inner product. The correlation coefficient ρ(x, x′; V, Γ) ≤ 1, with the limiting
value of 1 as x → x′, if we assume that limx→ x′ K(x, Γ) = K(x′, Γ), for all . This expression
is quite intuitive, being a simple normed cross product of the weight functions. An appealing
property is that the correlation coefficient is free from the set B, so that a single quantity can
be reported for each (x, x′) pair. Interestingly, the correlation coefficient does not depend on
the choice of , the probability measure generating the bases at each of the locations.

2.3. Marginal properties
To obtain additional insight into the properties of the kernel stick-breaking process, it is
interesting to marginalize out the random weights, V, and random locations, 3. Let Kh(x) ~
Fx denote the random variable obtained in the transformation from Γh ~ H to K(x, Γh). Since
the random locations are independent and identically distributed, we have Kh(x) ~ Fx,
independently for h = 1, …, ∞. In addition, the random variables Kh(x) and Kh(x′) are dependent,
while Kh(x) and Kl(x′) are independent, for h ≠ l.

Let Uh(x) = VhKh(x) and πh(x) = Uh(x)Πl<h{1 − Ul(x)}, for h = 1, …, ∞. Dependence in the
random weights, π(x) = {πh(x), h = 1, …, ∞} and π(x′) = {πh(x′), h = 1, …, ∞}, arises through
dependence between the components Uh(x) and Uh(x′), for h = 1, …, ∞.
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Theorem 1—Let μ(x) = E{Uh(x)} and μ(x, x′) = E{Uh(x)Uh(x′)}. Then, if we assume that
Vh ~ Be(a, b), independently for each h, for any B ∈ ℬ we have

The derivation is in the Appendix. From this expression, it is straightforward to show that

(7)

where μ (2)(x) = μ(x, x). In addition, the correlation coefficient has the simple form

(8)

Note that this expression is free of B and only depends on the expectations of Uh(x) and
Uh(x)Uh(x′).

If Vh ~ Be(1, λ), independently for each h, we obtain the modified expression

(9)

where κ(x) = E{Kh(x)}, κ2(x) = E{Kh(x)2} and κ (x, x′) = E{Kh(x)Kh(x′)}. This expression is
useful in considering the correlation structure induced for different choices of H and K, as well
as the impact of the hyperparameter λ. For example, note that, when the first two moments of
Uh(x) are free from x, expression (9) reduces to

(10)

with the dependence on x in κ and κ2 dropped. For some special cases of H and K, the moments
of Uh(x) and Uh(x)Uh(x′) can be calculated in closed form, so that the above expressions are
also available in closed form.

2.4. Example 1
Suppose that Vh ~ Be(1, λ), independently for all h, K(x, Γh) = 1 (|xj−Γhj| < ψj, j = 1, …, p) is
a rectangular kernel, with ψj > 0 for j = 1, …, p, and H corresponds to a uniform probability

measure on ℒ. Focusing on the unit hypercube, , and letting ,
for any , we have

(11)

where .
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From expression (11), it is apparent that the moments of Uh(x) are free from x, while the
expectation of Uh(x)Uh(x′) depends only on the distance between x and x′. Calculating the
variance, we obtain the simple expression

(12)

In addition, the correlation coefficient takes the form

(13)

which is a function of the distance between x and x′. When , ρ(x
− x′; λ, ψ) = 0. In addition, in the limit as  and ρ(x − x′; λ, ψ) → 1. Hence,
the correlation coefficient is bounded between 0 and 1, depending on the distance between the
predictor values. The results for Example 1 are easily generalizable to arbitrary bounded
predictor spaces and to Gaussian kernels.

3. Clustering and prediction rules
As mentioned in §1, one of the most appealing and widely used properties of the Dirichlet
process is the simple prediction rule shown in expression (2). In this section, we obtain a
predictor-dependent prediction rule derived by marginalizing over the kernel stick-breaking
process prior for   shown in expression (3) with three additional assumptions: (i) ,
with Θh ~ G0, independently for h = 1, …, ∞; (ii) G0 is non-atomic; and (iii) Vh ~ Be(1, λ),
independently for h = 1, …, ∞. Assumption (i) implies that there is a single atom, Θh, located
at Γh, so that all subjects allocated to a given location will belong to the same cluster.

Consider the following hierarchical model:

(14)

where  is a kernel stick-breaking process characterized in terms of a
precision parameter, λ, a kernel, K, and a base measure, G0. Note that (14) can be equivalently
expressed as

(15)

where Zi indexes the unobserved location for subject i. It follows that pr(φi ∈ ·| xi) = G0(·). As
a notation to aid the description of marginal properties, we let

(16)

where  is a subset of the integers between 1 and n. In some important special
cases, including rectangular and Gaussian kernels, these moments can be calculated in closed
form, if we use a straightforward generalization of results shown for Example 1.
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Lemma 1
Under the prior structure (15), the probability that subjects i and j belong to the same cluster
conditionally on the subjects’ predictor values, but marginalizing out , is

with μi, μj, μij defined in (16).

Under the conditions of Example 1, the expression in Lemma 1 takes the form

(17)

which reduces to 0 if , as xi and xj are not in the same
neighbourhood in that case. In addition, as xi → xj, pr(φi = φj| xi, xj) → 1/(1 + λ), which
corresponds to the clustering probability for the Dirichlet process prediction rule when Gxi =
G ~ DP (λG0).

Theorem 2

Let   denote the set of possible r-dimensional subsets of {1, …, s} that include i, let

 denote the set of possible r-dimensional subsets of {1, …, s} including i and j, and let

where  is the cardinality of set ℐ and  is the set of length t subsets of ℐ. Then, under
expression (15), the following prediction rule is obtained on marginalizing out :

Under the conditions of Example 1, we obtain the following simple expression for :

(18)

where X = (x1, …, xn)′ is an n × p matrix and
. From this result, one can show that the

prediction rule from Theorem 2 reduces to the Dirichlet process prediction rule in the special
case in which xj = x, for j = 1, …, i.

4. Posterior computation
4.1. Background and overview

For Dirichlet process mixture models, two main strategies have been used in developing
algorithms for posterior computation; the marginal approach and the conditional approach. If
φi ~ G, with G ~ DP(αG0), the marginal approach avoids computation for the infinite-
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dimensional G by relying on the Pólya urn scheme, which is obtained if we marginalize over
the Dirichlet process prior. The most widely used marginal algorithm is the generalized Pólya
urn Gibbs sampler of MacEachern (1994) and West et al. (1994). Ishwaran & James (2001)
extend this approach to a general class of stick-breaking measures.

The conditional approach avoids marginalizing over the prior, resulting in greater flexibility
in computation and inference (Ishwaran & Zarepour, 2000). To avoid the need for a truncation
approximation, Papaspiliopoulos & Roberts (2007) recently proposed a retrospective Markov
chain Monte Carlo algorithm. We propose a conditional approach to posterior computation for
kernel stick-breaking process models, relying on a combined Markov chain Monte Carlo
algorithm that uses retrospective sampling and generalized Pólya urn sampling steps.

We focus on the kernel stick-breaking process model of expression (3), with Vh ~Be(ah, bh),
independently for each h, K and H having arbitrary forms, and  corresponding to a stick-
breaking prior. Although the algorithm can in principle deal with any model in this class, some
models are more tractable than others. In particular, as for stick-breaking priors and Dirichlet
process mixture models, simplifications result when the base G0 is conjugate to the likelihood.

4.2. Details
Let θ = (θ1, …, θk)′ denote the k ≤ n unique values of φ = (φ1, …, φn)′, let  if φi = φh denote
that subject i is allocated to the hth unique value, with , and let  denote
that θh is an atom from , with . Let φ(i), θ (i), S(i), C (i) and Z (i) correspond to
the vectors φ, θ, S, C and Z that would have been obtained without subject i’s contribution.

The number of subjects allocated to the jth location is , with . The
index set for locations, , consists of two mutually exclusive subsets, namely
occupied locations, , and vacant locations, , so that

, for h = 1, …, k.

If  denotes the subset of the positive integers indexing subjects
allocated to location h, {φj, } is a species sampling sequence (Pitman, 1996). Hence, it
follows from Pitman (1996) and Ishwaran & James (2003) that

(19)

where  and {lihj} are the probability weights implied by the species
sampling prediction rule. For example, in the Dirichlet process special case, we have

 and . We obtain the following from (19) by marginalizing
out Zi, noting that pr(Zi = h | xi, V, Γ) = πh(xi; Vh, Γh) = πih for h = 1, …, ∞, and grouping
together the subjects with the same unique value:

(20)

with k(i) the length of θ (i) and the weights defined by

(21)
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If the likelihood contribution for subject i is f(yi | xi, φi), expression (21) can be updated to
obtain a conditional posterior distribution for φi. From this posterior, we obtain

(22)

where qij = ci wij f0(yi | xi), for j = 0, k(i)+1, and , for j = 1, …, k(i), with
f0(yi | xi) = ∫ f(yi | xi, φ) dG0(φ) and ci a normalizing constant. We update  by sampling based
on (22). Sampling  corresponds to assigning subject i to a new atom at an occupied

location, with , where . When , subject i is
assigned to an atom at a new location. Since there are infinitely many possibilities for this new
location, we use a retrospective sampling approach, which follows along similar lines to
Papaspiliopoulos & Roberts (2007).

After updating S and C, we update θh, for h = 1, …, k, from

(23)

Let M(t) correspond to the maximum element of  across the first t iterations of the sampler.
To update Vh, for h = 1, …, M(t) we use a data augmentation approach. Let Aih ~ Ber(Vh) and
Bih ~ Ber{K(xi, Γh)}, independently for each h, with Zi =  = min{h: Aih = Bih = 1}. Then,
alternate between sampling (Aih, Bih) from their conditional distribution given Zi and updating
Vh by sampling from the conditional posterior distribution

Updating of Γh, for h = 1, …, M(t), can proceed by a Metropolis-Hastings step or a Gibbs step

if , with  a grid of potential locations.

5. Simulation example
In this section, we illustrate the proposed method in a mixture of normal linear regression
models for conditional density estimation, assessing sensitivity to the kernel and
hyperparameters in the kernel stick-breaking process. Let

, with φi = βi ~ Gxi, and , in which  is a
kernel stick-breaking process chosen so that ah = 1, bh = λ,  is a DP(αG0) random measure,
and G0 follows a Gaussian law with mean β and variance matrix Σβ. In addition, we choose

priors π(τ) = Ga(τ; aτ, bτ), π(β) = N(β;β0, Vβ0), and , the

Wishart density with ν0 degrees of freedom and . We let β0 = 0, Vβ0 = (X′

X)−1/n, ν0 = p, , and aτ = bτ = 0.1, and choose every point from 0 to 1 with increment
of 0.02 as Γ*, with T = 51 and probability weight al = 1/T.

Following Dunson, Pillai & Park (2007), we simulate data for n = 500 subjects from a mixture
of two normal linear regression models as follows:
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where xi = (1, xi)′, with p = 2 and xi ~ Un(0, 1). This case was chosen as a challenging example
as the shape of the conditional density changes rapidly, with limited sample size in any
particular local region. The performance is at least as good in other examples we have
considered, and is excellent when the base parametric linear regression model provides an
adequate approximation.

In a reference analysis, we chose α = 1 and λ = 1 to favour few occupied basis locations and
few clusters per location. In addition, we chose a Gaussian kernel K(x, x′) = exp(−ψ||x − x′||2),
letting the kernel precision ψ be unknown through use of a log normal prior on ψ with μψ =

2.5 and . As the choice of ψ has a strong impact on borrowing of information across
the predictor space, we expect the results to be sensitive to ψ and recommend choosing a
hyperprior to allow the data to inform about the choice. In simulated and real data examples,
we find the data are highly informative about ψ.

Results were obtained by running the Markov chain Monte Carlo algorithm described in §4
for 30000 iterations, with a burn-in of 8000 iterations discarded. Based on examination of trace
plots, apparent convergence occurred quickly and there was efficient mixing. Figure 1 plots
the true density, dotted line, and estimated predictive density, solid line, along with pointwise
99% credible intervals, dashed lines, at 5 selected percentiles (10, 25, 50, 75, 90) of the sampled
xi. The true density is contained in pointwise 99% credible intervals. A plot of the data along
with the estimated and true mean curve is also provided, showing they are indistinguishable.

To assess sensitivity to the hyperparameter specification, we repeated the analysis with ψ fixed
at 0.2, 1 or 5, K(x, x′) = 1(||x − x′|| < ψ) or K(x, x′) = exp(−ψ||x − x′||), α = 10 and λ = 10. In each
of these cases, the other hyperparameters were chosen as in the reference analysis. For small
values of ψ we expect that local features of the conditional densities will be poorly estimated,
while for large α or λ we expect the conditional densities to be strongly shrunk toward the
baseline normal linear regression model. Table 1 shows the Kullback-Leibler divergence
between the true and estimated conditional densities in each case, also reporting results for the
method proposed by Dunson, Pillai & Park (2007) using their recommended hyperparameter
values.

We find that the results are robust to the choice of kernel as long as a hyperprior is chosen for
the kernel precision, though the Gaussian kernel gave the best performance. In addition, as
expected the Kullback-Leibler divergence increased for small values of ψ and for large values
of α or λ. In these cases, there was a tendency to under estimate local peaks and over-smooth
the conditional densities. The estimates for the kernel stick-breaking process and Dunson, Pillai
& Park (2007) approaches were similar, although the former has clear conceptual advantages
over the latter because of the coherent updating property and lack of sample dependence. In
addition, by not including basis distributions at every data-point, computational speed is
increased considerably. We repeated the simulation example for n = 1000 for the reference
analysis and Dunson, Pillai & Park (2007) approach. The average Kullback-Leibler divergence
was reduced by 50% in this case.

6. Epidemiology application
6.1. Background and motivation

dde In epidemiology studies, a common focus is on assessing changes in a response distribution
with a continuous exposure, adjusting for covariates. For example, Longnecker et al. (2001)
studied the relationship between the ddt metabolite dde and preterm delivery. The substance
ddt is effective against malaria-transmitting mosquitoes, and so is widely used in malaria-
endemic areas in spite of growing evidence of health risks. The Longnecker et al. (2001) study
measured dde in mother’s serum during the third trimester of pregnancy, while also recording
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the gestational age at delivery, gad, and demographic factors, such as age. Data on dde and gad
are shown in Fig. 2 for the 2313 children in the study, excluding the children for whom gad>
45 weeks, unrealistically high values attributable to measurement error.

Following standard practice in reproductive epidemiology, Longnecker et al. (2001)
dichotomized gad using a 37-week cut-off, so that deliveries occurring prior to 37 weeks of
completed gestation were classified as preterm. Categorizing dde into quintiles based on the
empirical distribution, they fitted a logistic regression model, reporting evidence of a highly
significant dose response trend. Premature deliveries occurring earlier in the period before 37
weeks have greater risk of mortality and morbidity. Hence, from a public health and clinical
perspective, it is of interest to assess how the entire left tail of the gad distribution changes with
dde dose, with effects earlier in gestation more important.

6.2. Analysis and results
We analyzed the Longnecker et al. data using the following semiparametric Bayes model:

(24)

where , yi is the normalized gestational age at delivery, xi = (1, ddei, agei)′,
ddei is the normalized dde dose for woman i, agei is her normalized age, and  is a kernel stick-
breaking process, with a Gaussian kernel and  corresponding to a DP(αG0). Prior specification
and other details are as described in §5 for the reference analysis.

Convergence was rapid and mixing was good based on examination of trace plots, not shown.
Even though the sample size was 2313, the posterior mean number of occupied locations was
only 5.4, while the posterior mean number of clusters was 28.1.

Figure 3 shows the estimated conditional densities of gestational age at delivery for a range of
dde values. There is some suggestion of an increasing left tail with dose, representing increasing
risk of premature delivery at higher exposure values. At very high exposures, data are sparse
and the credible intervals are much wider. To assess more directly the impact of dde on the left
tail, Figure 4 shows dose-response curves for pr(Y < T) for different choices of cut-off T. For
early preterm birth before 33 weeks, the dose response curve is flat except at high doses where
the credible interval is wide. As the cut-off increases, the dose response becomes more
significant. Hence, the increased risk of preterm birth with increasing dde dose reported by
Longnecker et al. (2001) can be attributed to more deliveries late in the interval before 37
weeks.

7. Discussion
The article proposed a class of kernel stick-breaking processes, which should be widely useful
in settings in which there is uncertainty in an uncountable collection of probability measures.
We have focused on a density regression application in which one is interested in studying how
a response density changes with predictors. However, there are many other applications that
can be considered, including predictor-dependent clustering, dynamic modelling and spatial
data analysis.

The kernel stick-breaking process should provide a useful alternative to dependent Dirich-let
process methods, such as the order-based dependent Dirichlet process (Griffin & Steel,
2006). An advantage of the kernel stick-breaking process formulation is that many of the tools
developed for exchangeable stick-breaking processes, such as the Dirichlet process, can be
applied with minimal modification. This has allowed us to obtain some insight into theoretical
properties and to develop computational algorithms, which are straightforward to implement

DUNSON and PARK Page 11

Biometrika. Author manuscript; available in PMC 2008 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in cases in which stick-breaking basis measures are used having base distributions conjugate
to the likelihood. In future work, it will be interesting to consider algorithms for efficient
posterior computation in non-conjugate models and in cases with many predictors.

We also obtained a predictor-dependent urn scheme, which generalizes the Pólya urn scheme
(Blackwell & MacQueen, 1973). It will be interesting to apply this urn scheme for computation
and clustering without need to explicitly consider the random weights and locations in the stick-
breaking representation.

Acknowledgements
This research was supported by the Intramural Research Program of the NIH, National Institute of Environmental
Health Sciences. The authors would like to thank Yeonseung Chung, Rongheng Lin, Shyamal Peddada and an
anonymous referee for helpful comments.

References
ALDOUS, DJ. Exchangeability and related topics. École d’ Été de Probabilités de Saint-Flour XII. In:

Hennequin, PL., editor. Springer Lecture Notes Math. 1117. Berlin: Springer; 1985. p. 1-198.
BLACKWELL D, MACQUEEN JB. Ferguson distributions via Pólya urn schemes. Ann Statist

1973;1:353–5.
BARRY D, HARTIGAN JA. Product partition models for change point problems. Ann Statist

1992;20:260–79.
CARON, F.; DAVY, M.; DOUCET, A.; DUFLOS, E.; VANHEEGHE, P. Bayesian inference for

dynamic models with Dirichlet process mixtures. International Conference on Information Fusion;
Florence, Italy: INRIA - CCSd - CNRS. 2006. p. 1-8.

CIFARELLI DM, REGAZINNI E. Nonparametric statistical problems under partial exchangeability:
The use of associative means. Ann Inst Mat Finian Univ Torino, II 1978;12:1–36.

DE IORIO M, MÜLLER P, ROSNER GL, MACEACHERN SN. An ANOVA model for dependent
random measures. J Am Statist Assoc 2004;99:205–15.

DUNSON DB. Bayesian dynamic modelling of latent trait distributions. Biostatistics 2006;7:551–68.
[PubMed: 16488893]

DUNSON DB, HERRING AH, ENGEL SM. Bayesian selection and clustering of polymorphisms in
functionally-related genes. J Am Statist Assoc. 2007ain press

DUNSON DB, PILLAI N, PARK JH. Bayesian density regression. J R Statist Soc B 2007b;69:163–83.
FERGUSON TS. A Bayesian analysis of some nonparametric problems. Ann Statist 1973;1:209–30.
FERGUSON TS. Prior distributions on spaces of probability measures. Ann Statist 1974;2:615–29.
GELFAND AE, KOTTAS A, MACEACHERN SN. Bayesian nonparametric spatial modelling with

Dirichlet process mixing. J Am Statist Assoc 2005;100:1021–35.
GRIFFIN JE, STEEL MFJ. Order-based dependent Dirichlet processes. J Am Statist Assoc

2006;101:179–94.
ISHWARAN H, JAMES LF. Gibbs sampling methods for stick-breaking priors. J Am Statist Assoc

2001;96:161–73.
ISHWARAN H, JAMES LF. Generalized weighted Chinese restaurant processes for species sampling

mixture models. Statist Sinica 2003;13:1211–35.
ISHWARAN H, ZAREPOUR M. Markov chain Monte Carlo in approximate Dirichlet and beta two-

parameter process hierarchical models. Biometrika 2000;87:371–90.
KIM S, TADESSE MG, VANNUCCI M. Variable selection in clustering via Dirichlet process mixture

models. Biometrika 2006;93:877–93.
LONGNECKER MP, KLEBANOFF MA, ZHOU HB, BROCK JW. Association between maternal serum

concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth.
Lancet 2001;358:110–4. [PubMed: 11463412]

MACEACHERN SN. Estimating normal means with a conjugate style Dirichlet process prior. Commun
Statist B 1994;23:727–41.

DUNSON and PARK Page 12

Biometrika. Author manuscript; available in PMC 2008 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



MACEACHERN, SN. ASA Proceedings of the Section on Bayesian Statistical Science. Alexandria, VA:
American Statistical Association; 1999. Dependent Nonparametric processes; p. 50-55.

MACEACHERN, SN. Decision Theoretic Aspects of Dependent Nonparametric Processes. In: George,
E., editor. Bayesian Methods With Applications to Science, Policy, and Official Statistics. Crete:
International Society for Bayesian Analysis; 2001. p. 551-60.

MEDVEDOVIC M, YEUNG KY, BUMGARNER RE. Bayesian mixture model based clustering of
replicated microarray data. Bioinformatics 2004;20:1222–32. [PubMed: 14871871]

MÜLLER P, QUINTANA F, ROSNER G. A method for combining inference across related
nonparametric Bayesian models. J R Statist Soc B 2004;66:735–49.

PAPASPILIOPOULOS O, ROBERTS GO. Retrospective Markov chain Monte Carlo methods for
Dirichlet process hierarchical models. Biometrika. 2007to appear

PENNELL ML, DUNSON DB. Bayesian semiparametric dynamic frailty models for multiple event time
data. Biometrics 2006;62:1044–52. [PubMed: 17156278]

PITMAN, J. Some developments of the Blackwell-MacQueen urn scheme. In: Ferguson, TS.; Shapley,
LS.; Mac-Queen, JB., editors. Statistics, Probability and Game Theory. 30. Hayward, CA: Inst. Math.
Statist; 1996. p. 245-67.IMS Lecture Notes-Monograph series

PITMAN J, YOR M. The two-parameter Poisson-Dirichlet distribution derived from a stable
subordinator. Ann Prob 1997;25:855–900.

QUINTANA FA, IGLESIAS PL. Bayesian clustering and product partition models. J R Statist Soc B
2003;65:557–74.

SETHURAMAN J. A constructive definition of Dirichlet priors. Statist Sinica 1994;34:639–50.
WEST, M.; MÜLLER, P.; ESCOBAR, MD. Hierarchical priors and mixture models, with applications

in regression and density estimation. In: Smith, AFM.; Freeman, PR., editors. Aspects of Uncertainty:
A Tribute to D.V. Lindley. New York: John Wiley; 1994. p. 363-386.

APPENDIX

Proofs
Proof of Theorem 1

As shorthand notation, we let  and . Then we have

with linearity of expectation and reordering justified as the series is absolutely convergent.

DUNSON and PARK Page 13

Biometrika. Author manuscript; available in PMC 2008 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Proof of Lemma 1
Under formulation (15), we have

Proof of Theorem 2
Letting ℐ denote an arbitrary subset of {1, …, i} that includes , we have

where  denotes the set of all possible subsets of ℐ of length t.

Let  denote a arbitrary subset of {1, …, i} that includes i and j, and let .
Then, if we let Zi = Zj for all  and Zi ≠ Zj for all , the probability of observing

 and  in a sample from the prior is:

where  is the set of subsets of  of length s. The probability of Zi = Zj is then

Here r − 1 indexes the cardinality of the set {j : φi = φj}, and we obtain the expression in
Theorem 2 through normalization.
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Fig. 1.
Results for the kernel stick-breaking reference analysis in the simulation example. Estimated
conditional response densities are shown for different percentiles of the predictor, including
(a) 10th, (b) 25th, (c) 50th, (d) 75th, (e) 90th. The raw data and mean regression estimator are
shown in (f). The solid lines are the posterior means, the dashed lines are pointwise 99%
credible intervals, and the dotted lines are the true values.
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Fig. 2.
dde vs gestational age at delivery in days for 2313 women in the Longnecker et al. (2001)
study. The solid line is the conditional predictive mean, while the dotted lines are 99%
pointwise credible intervals. Vertical dashed lines are dde quintiles.
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Fig. 3.
Estimated densities of gestational age at delivery (in days) conditionally on dde, f(y|x), for the
kernel stick-breaking reference analysis. Estimates correspond to different percentiles of the
predictor distribution, including (a) 10th, (b) 60th, (c) 90th and (d) 99th. Solid lines represent
posterior means, and dashed lines represent 99% credible intervals.

DUNSON and PARK Page 17

Biometrika. Author manuscript; available in PMC 2008 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Estimated probability gestational age at delivery is less than T weeks versus dde dose, for (a)
T = 33, (b) T = 35, (c) T = 37, (d) T = 40. Solid lines are posterior means and dashed lines are
pointwise 99% credible intervals.

DUNSON and PARK Page 18

Biometrika. Author manuscript; available in PMC 2008 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

DUNSON and PARK Page 19
Ta

bl
e 

1
K

ul
lb

ac
k-

Le
ib

le
r d

iv
er

ge
nc

e 
be

tw
ee

n 
th

e 
tru

e 
an

d 
es

tim
at

ed
 d

en
si

tie
s.

Pe
rc

en
til

e 
of

 e
m

pi
ri

ca
l d

is
tr

ib
ut

io
n 

of
 x

10
th

25
th

50
th

75
th

90
th

K
SB

P1
re

fe
re

nc
e 

se
tti

ng
1.

65
3

1.
10

5
1.

10
5

1.
05

1
3.

13
1

α 
= 

10
, λ

 =
 1

6.
26

8
1.

51
9

4.
70

6
2.

79
5

9.
51

4
α 

= 
1,

 λ
 =

 1
0

6.
08

5
1.

51
5

4.
44

2
2.

63
8

9.
09

6
α 

= 
10

, λ
 =

 1
0

6.
69

3
1.

69
4

4.
71

8
2.

82
0

9.
88

3
Ex

po
ne

nt
ia

l K
er

ne
l

2.
10

7
1.

52
5

1.
24

4
1.

55
9

3.
52

8
R

ec
ta

ng
ul

ar
 K

er
ne

l
2.

13
3

0.
95

4
1.

18
7

1.
81

9
4.

08
2

ψ 
= 

0.
2

4.
82

8
1.

91
5

4.
04

0
2.

00
3

7.
40

3
ψ 

= 
1

2.
89

2
1.

93
0

1.
70

9
1.

55
5

4.
78

7
ψ 

= 
5

2.
35

8
0.

63
0

1.
54

4
1.

19
2

2.
79

1
W

M
D

P2
1.

48
9

1.
62

5
0.

68
6

2.
61

0
0.

78
2

1 K
SB

P=
ke

rn
el

 st
ic

k-
br

ea
ki

ng
 p

ro
ce

ss
,

2 W
M

D
P=

D
un

so
n,

 P
ill

ai
 &

 P
ar

k 
(2

00
7)

 m
et

ho
d

Biometrika. Author manuscript; available in PMC 2008 September 17.


