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Despite clinical approval of erlotinib, most advanced lung cancer patients are primary non-responders. Initial responders invariably
develop secondary resistance, which can be accounted for by T790M-EGFR mutation in half of the relapses. We show that MET is
highly expressed in lung cancer, often concomitantly with epidermal growth factor receptor (EGFR), including H1975 cell line. The
erlotinib-resistant lung cancer cell line H1975, which expresses L858R/T790M-EGFR in-cis, was used to test for the effect of MET
inhibition using the small molecule inhibitor SU11274. H1975 cells express wild-type MET, without genomic amplification
(CNV¼ 1.1). At 2 mM, SU11274 had significant in vitro pro-apoptotic effect in H1975 cells, 3.9-fold (P¼ 0.0015) higher than erlotinib,
but had no effect on the MET and EGFR-negative H520 cells. In vivo, SU11274 also induced significant tumour cytoreduction in
H1975 murine xenografts in our bioluminescence molecular imaging assay. Using small-animal microPET/MRI, SU11274 treatment
was found to induce an early tumour metabolic response in H1975 tumour xenografts. MET and EGFR pathways were found to
exhibit collaborative signalling with receptor cross-activation, which had different patterns between wild type (A549) and L858R/
T790M-EGFR (H1975). SU11274 plus erlotinib/CL-387,785 potentiated MET inhibition of downstream cell proliferative survival
signalling. Knockdown studies in H1975 cells using siRNA against MET alone, EGFR alone, or both, confirmed the enhanced
downstream inhibition with dual MET–EGFR signal path inhibition. Finally, in our time-lapse video-microscopy and in vivo multimodal
molecular imaging studies, dual SU11274-erlotinib concurrent treatment effectively inhibited H1975 cells with enhanced abrogation
of cytoskeletal functions and complete regression of the xenograft growth. Together, our results suggest that MET-based targeted
inhibition using small-molecule MET inhibitor can be a potential treatment strategy for T790M-EGFR-mediated erlotinib-resistant
non-small-cell lung cancer. Furthermore, optimised inhibition may be further achieved with MET inhibition in combination with
erlotinib or an irreversible EGFR-TKI.
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Receptor tyrosine kinases (RTKs) play a key role in lung cancer
tumorigenesis and progression (Choong et al, 2005). Progress has
been made in the treatment of advanced non-small-cell lung
cancer (NSCLC) using small-molecule tyrosine kinase inhibitors
(TKIs) gefitinib and erlotinib, targeting epidermal growth factor
receptor (EGFR) (Lynch et al, 2006). EGFR kinase domain
mutations (frequently L858R) and exon 19 deletions have been
identified to be predictive of response to gefitinib/erlotinib
(Shigematsu and Gazdar, 2006; Sharma et al, 2007). Although
erlotinib was shown to prolong survival in a large phase III

randomised trial (NCIC-BR.21) (Shepherd et al, 2005), the
majority of unselected lung cancer patients are still primary non-
responders. Patients whose cancer has wild-type EGFR geno-
type are generally non-responders but may at best derive stable
disease from the TKIs. Initial responders with mutant EGFR
invariably develop secondary resistance and soon succumb to
the disease. At least half of the acquired resistance is mediated by
the ‘gatekeeper’ mutation T790M-EGFR (Kobayashi et al, 2005a;
Pao et al, 2005). Moreover, T790M was found in the H1975 cell
line, in combination with L858R, which was previously established
without prior exposure to EGFR TKIs. Hence, T790M may also
have a role in primary EGFR-TKI resistance. Currently, there
are still no Federal Drug Administration (FDA)-approved
clinical inhibitors that can overcome T790M-mediated EGFR-TKI
resistance yet.

The MET receptor has been shown to be an important molecule
in a variety of malignancies (Tsarfaty et al, 1994; Schmidt et al,
1997, 1998, 1999; Birchmeier et al, 2003; Ma et al, 2003b; Benvenuti
and Comoglio, 2007), and has recently been validated as an
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attractive therapeutic target in cancer therapy, including lung cancer
(Ma et al, 2003a, 2005a, b; Christensen et al, 2005; Salgia, 2006).
Overexpression of MET or its ligand HGF have been found to confer a
poor prognosis (Ma et al, 2003b; Miyata et al, 2006; Garcia et al, 2007;
Sawada et al, 2007). Dysregulation of the MET–HGF signalling axis
upregulates diverse tumour cell functions, including cell proliferation,
survival, cell scattering and motility, epithelial-mesenchymal transi-
tion, angiogenesis, invasion, and metastasis (Corso et al, 2005;
Dietrich et al, 2005; Ma et al, 2005a; Peruzzi and Bottaro, 2006).
Reversible small-molecule inhibitors such as SU11274 targeting MET
have been developed for therapeutic inhibition (Christensen et al,
2003; Sattler et al, 2003; Ma et al, 2005a, b). We hypothesised that
MET signalling plays a key role in lung cancer oncogenic signalling
and optimised therapy targeting MET would be effective as a
treatment strategy in the face of EGFR-TKI resistance. In this study,
we sought to define the role of MET signalling in EGFR-TKI-resistant
lung cancer. Furthermore, using a combination of small-molecule
kinase inhibitors and short-interfering RNA (siRNA), we examined
the role of MET inhibition, either alone or combined with EGFR
inhibition, using both in vitro and in vivo assays against the EGFR-
TKI-resistant lung cancer cell line H1975 (L858R/T790M-mutant
EGFR). Our data support the potential role of dual TKI combinatorial
inhibition using EGFR inhibitors to enhance MET inhibition in
T790M-EGFR-mediated therapy resistance.

MATERIALS AND METHODS

Cell culture, cell lysates preparation, immunoprecipitation,
and immunoblotting

Lung cancer cell lines were obtained from American Type Culture
Collection and grown in RPMI 1640 (Hyclone, Logan, UT, USA),
10% (v/v) foetal bovine serum (FBS) as instructed under standard
cell culture conditions. For growth factor stimulation studies,
human HGF (50 ng ml�1) (R&D Systems, Minneapolis, MN, USA)
and human EGF (100 ng ml�1) (Calbiochem, Cambridge, MA,
USA) were used as indicated. Cellular proteins were extracted
from whole cells as previously described (Choong et al, 2006).
Immunoprecipitation (IP) studies and immunoblotting (WB) were
performed as previously described (Maulik et al, 2002; Choong
et al, 2006) using the following primary antibodies as indicated:
p-MET[Y1234/1235] (i.e., pY1252/1253 as in the full-length MET
version) (Cell Signaling, Danvers, MA, USA), MET (C-12, Santa
Cruz Biotechnology, Santa Cruz, CA, USA), p-EGFR[Y1068] (Cell
Signaling), EGFR (Santa Cruz Biotechnology), p-ERBB3[Y1289]
(Cell Signaling), p-AKT[S473] (Cell Signaling), AKT (Biosource-
Invitrogen, Carlsbad, CA, USA), p-extracellular signal-regulated
kinases 1 and 2 (ERK1/2)[T202/Y204] (Cell Signaling), ERK1/2
(Biosource-Invitrogen), p-STAT3[Y705] (Cell Signaling), STAT3
(Zymed-Invitrogen, Carlsbad, CA, USA), phosphotyrosine (p-Tyr;
Upstate-Millipore, Billerica, MA, USA), and Actin (Santa Cruz
Biotechnology).

Chemicals

SU11274: [(3Z)-N-(3-chlorophenyl)-3-({3,5-dimethyl-4-[(4-methyl-
piperazin-1-yl)carbonyl]-1H-pyrrol-2-yl}methylene)-N-methyl-2-oxo-
2,3-dihydro-1H-indole-5-sulphonamide] (Ma et al, 2005a) and
CL-387,785 were purchased from EMD-Calbiochem (Cambridge,
MA, USA), dissolved in DMSO, and used at the indicated
concentrations. Erlotinib was prepared as previously described
(Choong et al, 2006).

Genomic studies of MET gene DNA extraction and DNA
sequencing: Genomic DNA of H1975 cells were extracted using
Qiagen DNAeasy Kit (Qiagen, Valencia, CA, USA) according to
the manufacturer’s instructions. Direct DNA sequencing of

the complete MET gene was performed as previously described
(Ma et al, 2005a).

Quantitative real-time polymerase chain reaction (QPCR): Genomic
copy number variation of the MET gene was determined in triplicate
using QPCR with the RNaseP as the reference gene. Quantitative real-
time polymerase chain reactions were performed in ABI PRISM 7900-
HT System and the reaction conditions are available upon request.
The QPCR primers for MET copy number variation determination
were purchased from ABI (ABI assay no.: Hs01565582_g1).

Cellular apoptosis and viability assay: For cellular apoptosis
assays, cells were plated separately in triplicate in six-well plates
in 10% FBS-containing media. Drug inhibitor treatment using
erlotinib, SU11274, or DMSO control as indicated was added the next
day, with the cells incubated for 72 h further. Cellular apoptosis was
determined by fluorescence-activated cell sorting (FACS) analysis
using the Annexin-V-Fluos Staining Kit (Roche Diagnostics,
Mannheim, Germany) according to the manufacturer’s instructions.
Cellular apoptosis assays were performed in triplicate. Cellular
viability assays were performed using the Trypan-Blue Dye Exclusion
assay with duplicate counting using standard haemacytometer-light
microscopy, with each experiment further repeated in duplicate.

Time-lapsed video microscopy and image analysis of
cytoskeletal functions

H1975 cells were plated on cell culture dishes and placed into a
temperature-controlled chamber at 371C in an atmosphere of 5%
CO2. The cells were examined by and recorded under video
microscopy using an Leica 6000 B inverted microscope, Pecon
incubation chamber, and Retiga EXI 12 bit camera (Q imaging,
Vancouver, BC, Canada) with MetaMorph image analysis software
(Universal Imaging, Downington, PA, USA) (details see also
Supplementary Materials and Methods).

Lentivirus transduction of luciferase-expressing vector (a) Lenti-
virus production: Plasmids. The packaging plasmid pCMVÄR8.91,
the vesicular stomatitis virus glycoprotein G (VSV.G), and encoding
plasmid pCSO-rre-cppt-MCU3-LUC were kind gifts from Dr Donald
B Kohn (University of Southern California). Virus production.
Transfection with transfer vector, packaging plasmid and envelope
plasmid were performed by calcium phosphate precipitate 12 h after
planting package 293T cells into 10 cm cell culture dishes. (b)
Lentiviral transduction of EGFR-TKI-resistant lung tumour cells:
Medium from the package cell culture was then collected and
centrifuged at 3000 r.p.m. for 5 min at room temperature, followed
by filtering through 0.45mm filter. The filtered medium containing
virus particles was then added to the target transduction cells
(H1975), which were plated the day before transduction.

In vivo murine xenograft model

Six-week-old female Ncr-nu (Nude) mice were purchased from
Charles River Laboratories (Wilmington, MA, USA) and hosted in
the pathogen-free animal facility at the Case Western Reserve
University. In vivo animal studies were performed according to
institution-approved protocols and guidelines. Xenografts of the
luciferase-expressing H1975 lung cancer cells were established by
intradermally injecting 3� 106 viable cells in RPMI 1640 media
into the flank/leg region of nude mice to produce subcutaneous
tumours. Indicated treatments with targeted TKIs were given at
the time when tumour xenografts were beginning to be visible
(corresponding to 7 days post-implantation of H1975 cells).
In vivo daily inhibitor drug treatments were performed as
indicated. SU11274 was administered as intratumoral injections,
whereas erlotinib was administered using oral gavage. Body weight
was recorded for each animal twice weekly to monitor potential
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toxicities. Tumour xenografts were subsequently dissected and
harvested at the end of the experiments, formalin-fixed, and stained
with haematoxylin and eosin (H&E) using standard techniques.

Small animal in vivo imaging (a) Bioluminescence imaging
(BLI): Xenograft tumour growth of H1975-luc cells were monitored
by non-invasive luciferase-bioluminescence molecular imaging. Mice
were imaged by BLI using a Xenogen IVISs 200 bioluminescence
scanner (Xenogen, Hopkinton, MA, USA) at indicated times on the
pretreatment day as baseline, and then on various post-TKI
treatment days as specified (details see also Supplementary Materials
and Methods). (b) MicroPET/magnetic resonance imaging (MRI)
imaging: For microPET/MRI imaging study, H1975 tumour xeno-
grafts were allowed to grow to a readily visible size in a total of 7 days
post-implantation to ensure adequate baseline micro-PET uptake.
H1975 tumour xenografts were treated with (a) diluent control and
(b) SU11274 (100mg per xenograft). The nude mice were subjected to
MRI (Bruker Biospec 7T MRI scanner, Bruker BioSpin MRI, Billerica,
MA, USA) and microPET scanning (R4 micro-PET system, Siemens
Medical Solutions, Knoxville, TN, USA) at the indicated time of
treatment (details see also Supplementary Materials and Methods).

siRNA inhibition

Specific siRNAs targeting human MET or EGFR mRNA, ON-
TARGET plus SMARTpool, were purchased from Dharmacon Inc.
(Chicago, IL, USA). The siRNA duplexes were transiently
transfected using DharmaFECT 1 Transfection reagent (Dharmacon
Inc.) according to the manufacturer’s instructions. Control
transfection using scrambled siRNA was performed in parallel
using ON-TARGETplus siCONTROL siRNA (Dharmacon Inc.).

Statistical analysis

Statistical significance was tested by two-tailed Student’s t-test,
with P-value of less than 0.05 considered statistically significant.

RESULTS

Co-expression of MET and EGFR in lung cancer

We first examined the expression pattern of MET and EGFR in lung
cancer cell lines. Nine of 11 NSCLC cell lines (82%) (except H520 and
H661) (see Supplementary Table 1 for baseline characteristics of the
cell lines) co-expressed both MET and EGFR, including the H1975 cell
line (Figure 1). Signal transducer and activator of transcription 3
(STAT3) is a common downstream signalling target for both MET
and EGFR, and has been shown to be crucial in mediating the
oncogenic potential of mutant EGFR signalling (Song et al, 2003).
STAT3 was ubiquitously expressed in all the cell lines examined.

SU11274 induces apoptosis and inhibition of cytoskeletal
functions in erlotinib-resistant H1975 lung cancer cells
expressing L858R/T790M-EGFR

As we found that many NSCLC cell lines co-express EGFR and
MET, including H1975 cells, we first investigated if MET inhibition
using the small-molecule inhibitor SU11274 can be effective in the
erlotinib-resistant H1975 cells. H1975 cell line was chosen because
it expresses the ‘gatekeeper’-resistant T790M-EGFR mutation
(in-cis with L858R) in the receptor kinase domain hydrophobic
pocket, representing a major mechanism of resistance to reversible
EGFR-TKI (erlotinib/gefitinib) (Kobayashi et al, 2005a; Pao et al,
2005). SU11274 was previously characterised as a reversible
inhibitor of MET, inhibiting specific tyrosine phosphorylation of
the juxtamembrane CBL-binding phosphosite (pY1003), the major
kinase autophosphorylation sites (pY1234/1235), as well as down-
stream signalling (Sattler et al, 2003; Ma et al, 2005a). It exhibits

460-fold selectivity for MET over FLK and 4400-fold selectivity
over RON, FGFR-1, SRC, CDK2, PDGFR-b, EGFR, and Tie-2 (Ma
et al, 2005a). Here, we tested the pro-apoptotic effect of SU11274
treatment, in comparison to erlotinib, in the EGFR-TKI-resistant
cell line H1975 (L858R/T790M-EGFR, wild-type KRAS). SU11274 at
2 mM induced apoptosis (Annexin V- and propidium iodide-stained
positive cells) in 14.8±2.4% of T790M-EGFR expressing H1975
cells, which is 5.5-fold (Po0.001) higher than diluent control and
3.9-fold (P¼ 0.0015) higher than erlotinib. To further demonstrate
that the pro-apoptotic effect of SU11274 seen above was not
a result of off-target effects, we also tested the EGFR-negative
and MET-negative H520 cell line as negative control. SU11274 at
5 mM did not result in any significant apoptosis in H520 cells
(0.44±0.30%, P¼ 0.22). Similarly, H520 cells were also insensitive
to erlotinib without any significant apoptosis induced by the drug
(0.3±0.1%, P¼ 0.35) (Figure 2).

SU11274 induces cytoreduction of erlotinib-resistant
H1975 tumour xenograft in vivo

To further test the role of MET inhibition in EGFR-TKI-resistant
lung cancer in vivo, we developed stable luciferase-expressing
H1975 lung cancer cells using lentivirus transduction. These cells
were used in an in vivo xenograft model coupled with multimodal
molecular imaging for non-invasive monitoring of xenograft
growth and tumour response to TKI. Daily treatment with the
MET inhibitor SU11274 caused statistically significant interval
retardation of the xenograft tumour growth of H1975 cells with a
ninefold reduction (P¼ 0.0251) in the xenograft growth, when
compared with the diluent control, during the treatment period
(Figure 3A-a,b). At the end of treatment period, SU11274-treated
H1975 xenograft tumour BLI flux remained essentially unchanged
at 104% (P¼ 0.0251), when compared to 905% as seen in the
diluent control (Figure 3A-a,b). Histological analysis of the tumour
xenografts harvested at the end of the experiment confirmed the
presence of intense tumour necrosis in the SU11274-treated
animals, but not in the diluent control (Figure 3A-c). Both EGFR
and MET signal pathways are functional and ligand-sensitive in the
erlotinib-resistant H1975 cells. HGF stimulated downstream signal
path activation in AKT (survival) and the mitogen-activated protein
kinase ERK1/2 (proliferation–differentiation), as surrogate markers
for MET inhibition were both abrogated in the H1975 cells by
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SU11274 treatment in vitro (Figure 3A-d). Furthermore, we also
showed that SU11274 inhibition effectively induced erlotinib-resistant
A549 xenograft cytoreduction in vivo (Supplementary Figure 1).

SU11274 inhibition induces early tumour response of the
H1975 in vivo xenograft evident in microPET/MRI studies

We focused further on the H1975 cell line to investigate whether MET
inhibition with SU11274 induced H1975 xenograft tumour response
in terms of glucose metabolism as monitored by in vivo FDG-PET
(glucose analogue [18F]fluoro-2-deoxy-D-glucose-positron emission
tomography) studies with MRI co-registration. In vivo SU11274
inhibition induced a metabolic tumour response in H1975 xenografts
within 24 h of the first treatment dose (Figure 3B and C). Although the
changes of the calculated xenograft tumour volumes between the two
treatment groups did not differ significantly (P40.05) (Figure 3B),
the SU11274-treated xenografts had statistically significant lower
glucose metabolism by 45% (P¼ 0.0226), when compared to diluent
control (Figure 3B and C) (also see Supplementary Figure 2).

MET– EGFR signalling cross-activation in lung cancer

As MET and EGFR often co-express in lung cancer cells (Figure 1),
we asked if there is signalling cross-activation between MET

and EGFR pathways. Both A549 (wild-type EGFR) and H1975
(L858R/T790M-EGFR) cell lines were used as models for the
signalling studies (Figure 4). Here, MET and EGFR signal
transduction pathways were both shown to be functional
and ligand-sensitive, although H1975 cells have higher serum-
independent constitutively activated MET and EGFR. Enhanced
and more durable downstream signalling activation was
observed in phospho-AKT (survival), phospho-ERK1/2 (prolifera-
tion-differentiation), and phospho-STAT3 (transcriptional acti-
vation) when A549 and H1975 cells were co-stimulated with
dual-ligand (HGF and EGF) (Figure 4A; see lanes 4, 7, 11, and
14). Immunoprecipitation studies of the MET and EGFR under
single- or dual-ligand stimulation confirmed the presence of
receptor cross-activation between MET and EGFR in these
lung cancer cell lines (Figure 4B). In A549 cells, HGF was
capable of activating EGFR in the presence of EGF, whereas in
H1975, EGF activated MET with and without co-stimulation with
HGF.

MET is activated with no genomic amplification or
mutations in H1975 lung adenocarcinoma cells

Using standard QPCR technique, we determined the MET
genomic copy number in several NSCLC cell lines, namely A549,
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H1975, H441, H520, H596, and H661. None of the cell lines
examined exhibited MET genomic amplification. MET genomic
copy number in H1975 was found to be 1.1, whereas that of A549
being 1.0 for comparison (Figure 4B). Direct DNA sequencing of
the MET gene in H1975 did not reveal any non-synonymous
mutations.

Dual inhibition with SU11274 plus erlotinib/CL-387,785
potentiates the MET-targeted inhibitory efficacy in
erlotinib-resistant lung cancer cells

As both MET and EGFR are functional in erlotinib-resistant cell
lines such as A549 and H1975 cells, and there is signalling
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cross-activation between the two receptors (Figure 4), we next
investigated if MET inhibition could be enhanced in combination
with an EGFR inhibitor. The EGFR-TKI-resistant H1975 cells were

tested against SU11274 inhibition, either alone or in combination
with erlotinib. We determined the functional effect of combined
MET–EGFR inhibition on the cytoskeletal functions of H1975
cells. Cell motility and migration are crucial cellular regulatory
functions in tumour cell invasion and metastasis. Video micro-
scopy studies showed that SU11274 inhibition substantially
abrogated the constitutively activated cytoskeletal changes of the
serum-starved H1975 cells (with activated p-MET and p-EGFR), as
reflected in the cellular migrational trajectories and velocity
(Supplementary Figure 3). Moreover, SU11274 alone had some
inhibitory effect on cytoskeletal functions in H1975 cells under
serum-stimulated (10% FBS) conditions, whereas concurrent dual
TKI combinatorial inhibition using SU11274 plus erlotinib
completely abrogated the cytoskeletal functions (Figure 5A).

Using dual-ligand concurrent stimulation (HGF and EGF) to
activate both MET and EGFR in A549 and H1975 cells, single TKI
alone was relatively ineffective in inhibiting the downstream
signalling completely (Figure 5B). On the other hand, concurrent
dual inhibition with MET– EGFR TKIs (SU11274 plus erlotinib)
effectively induced cooperative and enhanced inhibition of the
key downstream proliferative/survival and anti-apoptotic signal
paths (phospho-AKT, phospho-ERK1/2, and phospho-STAT3)
(Figure 5B). Most interestingly, despite the fact that
p-EGFR[Y1068] was not significantly inhibited under the dual
SU11274/erlotinib combinatorial treatment in H1975 cells,
p-ERBB3[Y1289] activation was effectively abrogated only under
this dual inhibitory strategy (Figure 5B).

The signalling experiment using MET-specific siRNA instead
of SU11274 in A549 cells (Figure 5C) showed similar inhibition
synergism using dual RTK inhibition with siRNA-MET and
erlotinib. Using the A549 cell line as a model, we further
demonstrated that alternative ligand-stimulated RTK signalling
(MET– HGF and EGFR–EGF) indeed could rescue the downstream
signalling activation from single targeted inhibitor (Figure 5D),
supporting our hypothesis of the optimal efficacy of dual
MET–EGFR inhibition especially in the in vivo setting where both
RTK signal paths are functional and activated. Irreversible
EGFR-TKIs (Kobayashi et al, 2005b), such as CL-387,785 or
HKI-272 (Ruhe et al, 2007), have been shown to exhibit inhibitory
efficacy against erlotinib-resistant T790M mutation. Here, in
H1975 cells, results similar to erlotinib were obtained using the
irreversible EGFR-TKI, CL-387,785, in combination with SU11274
(Figure 5E).

As erlotinib is the only FDA-approved clinical EGFR-targeted
inhibitor for the treatment of advanced lung cancer in the United
States, we further investigated its potential use in combination
with MET inhibition against erlotinib-resistant H1975 cells using
an in vitro cellular viability assay and BLI tumour xenograft
growth assay in vivo. Under serum-stimulated conditions, when
both EGFR and MET were basally activated, SU11274 plus erlotinib
(3mM of each TKI) induced a significantly enhanced cell viability
inhibition (3mM: 58.0±6.8%, Po0.05), when compared with either
erlotinib or SU11274 treatment alone (Figure 6A). To further
validate this combination dual TKI strategy, we also subjected the
H1975 cells to pathway-specific siRNA knockdown of the MET and
EGFR kinase signal paths, either alone or in combination, under
serum-stimulated conditions (Figure 6B). Optimal downstream
signalling inhibition (phospho-AKT and phospho-STAT3) and
global phosphotyrosine (p-Tyr) cellular signalling inhibition were
achieved through dual inhibition with siRNA knockdown of both
MET and EGFR targets, when compared with single target
knockdown. Taken together, these data provide support that
cooperative enhanced inhibition using dual TKIs against MET and
EGFR pathways may be an effective treatment strategy to inhibit
lung cancer with intrinsic or acquired T790M-EGFR-mediated TKI
resistance.

Finally, we also tested concurrent dual SU11274 plus erlotinib
combinatorial treatment in our in vivo H1975-luc BLI xenograft
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0 hr 24 hr 0 hr 24 hr
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Fused Fused

Figure 3 MET inhibition with SU11274 successfully induced in vivo
tumour response in EGFR-TKI-resistant H1975 cells in murine xenograft
model assessed by multimodal molecular imaging. (A) In vivo tumour
xenografts for H1975-luc cells were established as described in the
Materials and Methods section in 6-week old nude mice. Daily SU11274
(100mg per xenograft) treatment was administered to the H1975-luc lung
cancer tumour xenografts in nude mice as described. DMSO diluent
control was included for comparison. Imaging was performed using a
Xenogen IVIS 200 System cooled CCD camera at indicated times. (a)
Representative BLI digital pictures of nude mouse from each of the
treatment conditions are illustrated. SU11274 significantly inhibited L858R/
T790M-EGFR expressing H1975-luc in vivo tumorigenesis within the
treatment durations (6 days). (b) Mean values of relative BLI flux of each
group are plotted here (H1975-luc). N¼ 4 per treatment group. Error bar,
s.e.m. (*), P¼ 0.025 for H1975-luc. Representative tumour xenograft
micrographs from H1975-luc (c) cell line under haematoxylin and eosin
(H&E) staining are also shown here for the control and SU11274 treatment
animals. Magnification � 100 (inset, � 200). (d) SU11274 inhibited HGF-
driven signalling activation in H1975 cells. H1975 cells were stimulated with
HGF (50 ng ml�1, 15 min) and inhibited by MET inhibitor SU11274 (1 mM,
4 h) in vitro, and analysed with 7.5% SDS–PAGE and immunoblotting with
the indicated antibodies as described in Materials and Methods. (B, C)
Magnetic resonance imaging (MRI) and microPET molecular imaging studies
of MET inhibition of H1975 in vivo xenograft. H1975 in vivo xenografts were
established as above for treatment with either diluent control (N¼ 2) or
SU11274 (N¼ 2). The nude mice with H1975 xenografts were subjected
to MRI and microPET imaging as described in the Materials and Methods
section at 0, and 24 h with the MET inhibitor SU11274 treatment or diluent
control. (B) Examples of the transverse sections of high-resolution MRI
images of the tumour xenografts at baseline between the two treatment
groups were shown here for illustration (left). The MRI tumour volumes
were analysed digitally with the calculated tumour volume changes at the
indicated time intervals (0 and 24 h) plotted. Comparing with baseline, the
control xenograft tumour volume increased by 105.1±8.3% at 24 h,
whereas the SU11274-treated xenografts increased by 120.2±16.2% at
24 h. The MRI tumour volumes changes at 24 h post-treatment between
the two groups were not statistically significant (*P¼ 0.360). Error bar,
s.e.m. Quantitative microPET radiotracer uptake of the H1975 tumour
xenografts at 60 min of radiotracer tail-vein infusion in the animals’
pretreatment baseline (0 h) and post-MET-TKI treatment at 24 h is shown
graphically (right). N¼ 2 in each treatment group: Control and SU11274.
Error bar, s.e.m. Representative co-registered pictures of the microPET/MRI
(low-resolution) images of each xenograft from the two treatment groups
are shown in (C). SU11274 induced early tumour metabolic response, as
early as 24-h post-TKI treatment, with statistically significant inhibition of
glucose metabolism as evident in the decrease in microPET uptake signal
intensity by 45% (P¼ 0.0226) in SU11274-treated xenografts, when
compared with diluent control. The degree of increase in the glucose
uptake in the H1975 tumour xenograft in diluent control is also consistent
with the average rate of the xenograft growth (increase of 50.8% BLI flux
per day) as reflected in the bioluminescence imaging.
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growth assay (Figure 6C). Here, a suboptimal daily dose of
SU11274 (50 mg per xenograft per day) was found to be partially
effective in retarding the xenograft growth, when compared with
either diluent control or erlotinib (100 mg kg�1 day�1) alone.
Moreover, we found that combining SU11274 with erlotinib
induced a complete tumour xenograft regression (0.12-fold BLI
from baseline), evident within 2 weeks of dual inhibitor therapy.
The difference seen with dual MET–EGFR-TKIs treatment is
statistically significant when compared with either erlotinib alone
(35.8-fold BLI increase, P¼ 0.0006) or with SU11274 alone (12.2-
fold, P¼ 0.0003). These molecular imaging data were confirmed by
xenograft H&E-stained histology examination (Figure 6D). In
particular, the combined SU11274 plus erlotinib treatment resulted
in substantial tumour necrosis.

DISCUSSION

At least half of the acquired resistance to EGFR-TKI in advanced
NSCLC patients is thought to be mediated by the ‘gatekeeper’
mutation T790M in exon 20 of EGFR (Kobayashi et al, 2005a; Pao
et al, 2005). Many tumours with intrinsic resistance to erlotinib/
gefitinib were found to have wild-type EGFR and/or mutant KRAS.
At present, no FDA-approved inhibitor drugs have been shown to
be successful in overcoming T790M-mediated resistance clinically.
Recent study suggested that T790M-EGFR-mediated resistance
could even emerge from the irreversible EGFR/ERBB2 inhibitor
HKI-272 treatment at maximally tolerated dosing, as it mediates
resistance to low concentrations of the irreversible inhibitor
(Godin-Heymann et al, 2008). Alternative novel therapies to target
lung cancer patients with intrinsic or acquired resistance to
erlotinib are needed. MET has recently been affirmed to be an
attractive anti-neoplastic therapeutic target (Corso et al, 2005;

Peruzzi and Bottaro, 2006; Salgia, 2006), including lung cancer
(Christensen et al, 2003, 2005; Ma et al, 2003a, b, 2005a, b; Sattler
et al, 2003). MET was found overexpressed in up to 67% of lung
adenocarcinomas in our previous study (Ma et al, 2005a). Various
targeted inhibitory strategies are being undertaken in drug
development to antagonise MET/HGF signalling in human cancers,
including small-molecule kinase inhibitors, antibodies to the
ligand HGF, and receptor MET itself (Christensen et al, 2005;
Martens et al, 2006; Peruzzi and Bottaro, 2006). In this study,
we identified that there is frequent co-expression of MET and
EGFR in NSCLC cell lines. In the erlotinib-resistant H1975 cell line
(L858R/T7980M-EGFR), MET is neither genomically amplified nor
mutated. Yet, MET is activated in the cells, possessing both
constitutive (serum/ligand-independent) and basal (serum-stimu-
lated) receptor activation. Furthermore, MET also remains HGF
ligand-sensitive. Owing to the unique intrinsic properties of MET
regulating cellular ‘invasive signalling’, MET has been proposed as
not merely playing a role in ‘oncogene addiction’ in a small subset
of human cancers but can also play an essential role in ‘oncogene
expedience’ by inducing an enhanced transformed tumour
malignant ‘fitness’ in a much larger range of cancers leading to
promotion of tumour progression (Comoglio et al, 2008). And in
the latter case, activated MET can intercept with various other
oncogenic signals, including mutant-EGFR, in maintaining and
enhancing the tumour invasive –progressive phenotype, thereby
also allowing the opportunity for MET to be a therapeutic target
even in late advanced metastatic disease. The MET inhibitor
SU11274 was shown to promote apoptosis in H1975 cells, but
was ineffective in the MET-negative/EGFR-negative H520 cells.
SU11274 was previously characterised to be a selective, reversible
ATP-competitive inhibitor of MET kinase (Sattler et al, 2003; Ma
et al, 2005a). Here, we show that SU11274 exhibited inhibitory
efficacy in the EGFR-TKI-resistant H1975 cells both in vitro and
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Figure 4 Signalling cross-activation between MET and EGFR signalling pathways. (A) Cross-activation between MET and EGFR signalling in lung cancer
cells, A549 and H1975. A549 or H1975 cells were cultured in serum-starved conditions with exogenous stimulation with RTK ligands: EGF alone, HGF
alone, or both EGF and HGF. Cells without any ligand stimulation were included as control. Both MET and EGFR signalling pathways are functional and
ligand-sensitive in A549 and H1975 cells. There was augmented downstream signalling with combined EGF-HGF co-stimulation, with also more durable
signalling induction. In A549 cells, although HGF alone did not activate EGFR phosphorylation appreciably, under co-stimulation conditions with EGF
together, HGF further enhanced the EGFR phosphorylation in A549 cells to a level higher than that with EGF alone. On the other hand, EGF stimulation of
H1975 cells co-activated MET receptor to enhance the level of MET phosphorylation. (B) MET–EGFR cross-activation in lung cancer. Left panel (A549),
HGF cross-activated p-EGFR in A549 cells in the presence of co-stimulation with EGF. A549 cells were cultured in serum-starved conditions overnight, then
stimulated with EGF alone (100 ng ml�1, 15 min), HGF alone (50 ng/ml, 15 min), or both. Whole cell lysates were collected for immunoprecipitation with
EGFR antibody, followed by immunoblotting (WB) with antibodies against p-EGFR[Y1068] (upper panel) and total EGFR (lower panel). Right panel
(H1975), EGF cross-activates phospho-MET in H1975 cells. H1975 cells were cultured in starved media overnight, then stimulated with EGF alone
(100 ng ml�1, 15 min), HGF alone (50 ng ml�1, 15 min), or both. Whole cell lysates were collected for immunoprecipitation with MET antibody (C-12),
followed by immunoblotting with antibodies against p-MET[Y1234/1235] (upper panel) and total MET (lower panel). The MET and EGFR genotypes of the
A549 and H1975 cells, as well as their MET genomic copy numbers, are shown in the bottom.
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in vivo. In particular, it inhibited MET signalling, induced cellular
apoptosis, and abrogated cytoskeletal functions (key controlling
step in tumour invasion and metastasis) in vitro (Birchmeier et al,
2003), and was effective in vivo, leading to cytoreduction of murine
tumour xenografts of the T790M-EGFR expressing erlotinib-
resistant H1975 cells. Taken together, our study supports the

hypothesis that MET may be targeted to circumvent T790M-EGFR-
mediated intrinsic or acquired resistance to EGFR-TKI (erlotinib)
in lung cancer.

H1975 cells were tested further to provide a better understanding
of the mechanism of dual MET–EGFR inhibition. A549 cell line was
included as model in signalling studies for comparison with H1975
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Figure 5 SU11274 inhibition of MET in combination with EGFR inhibitor in erlotinib-resistant NSCLC cell signalling. (A) Potentiated inhibition of cellular
cytoskeletal functions by combined MET–EGFR inhibition (SU11274 plus erlotinib) in H1975 cells under video microscopy. H1975 cells had constitutively
activated cytoskeletal functions with enhanced cell motility and migration under the serum-starved culture conditions. Comparing with the untreated control
(left panel), drug treatment using SU11274 (right panel) substantially inhibited the constitutively activated cytoskeletal functions of H1975 cells
(Supplementary Figure 3). H1975 cells were cultured in serum-stimulated conditions (10% FBS) and treated with the following for video microscopy digital
video recording as described in the Materials and Methods: (a) DMSO diluent control, (b) Erlotinib alone (2 mM), (c) SU11275 alone (5 mM), and (d)
combined concurrent SU11274 (5mM)þ erlotinib (2mM). Complete abrogation of cytoskeletal functions with inhibition of cell motility and migration was
only evident in the dual SU11274/erlotinib TKI-treated cells (d). (B) MET inhibition using SU11274, in combination with EGFR inhibition (erlotinib), induced
cooperative downstream signalling inhibition in A549 (left panel) and H1975 (right panel) cells in vitro. EGFR-TKI-resistant A549 and H1975 cells were
cultured in serum-starved conditions with EGF and HGF dual ligands stimulation as described in the Materials and Methods section. The cells were treated
with SU11274 alone, erlotinib alone, or combination SU11274 plus erlotinib, then analysed in immunoblotting as indicated. (C) MET inhibition using specific
siRNA-MET, in combination with EGFR inhibition (erlotinib) induced cooperative downstream signalling inhibition in A549 cells in vitro. Cells were
transfected with control siRNA or siRNA-MET as described in Methods. Forty-eight hours after transfection, cells were cultured in starved media overnight,
then treated with or without erlotinib and alone or in combination with siRNA-MET as indicated. After 4 h of inhibitor treatment, cells were then stimulated
with both EGF (100 ng ml�1) and HGF (50 ng ml�1) ligands as indicated for 15 min. Whole cell lysates were then collected for immunoblotting analysis as in
panel B above. (D) Rescue from alternative RTK ligand-stimulated signalling (MET–HGF vs EGFR–EGF) against TKI in A549 cells. A549 cells were cultured
under serum-starved conditions, and then treated with either HGF or EGF, and in the presence or absence of the corresponding targeted inhibitor SU11274
or erlotinib as indicated (lanes 2, 4). Dual ligand stimulation (HGF and EGF) with single or dual TKIs treatment was included as indicated (lanes 1, 3, 5, 6).
Although receptor-specific TKI was able to inhibit the downstream signalling driven by the corresponding ligand stimulation, alternative ligand stimulation in
the form of dual ligand stimulation rescued the inhibited downstream signals. Dual TKI SU11274 plus erlotinib inhibition was required to fully knockdown the
dual ligand-stimulated downstream signal activation of AKT, ERK1/2, and STAT3 (lane 6). (E) MET inhibition with SU11274, in combination with EGFR
inhibition using CL-387,785 (irreversible EGFR-TKI), induced cooperative downstream signalling inhibition in H1975 cells in vitro. Cells were cultured in
starved media overnight, then treated with or without CL-387,785 and alone or in combination with MET inhibitor SU11274 as indicated. After 4 h of
inhibitor treatment, cells were then stimulated with both EGF (100 ng ml�1) and HGF (50 ng ml�1) ligands as indicated for 15 min. Whole cell lysates were
then collected for immunoblotting analysis. Similar to erlotinib, CL-387,785 further sensitised H1975 cells to SU11274 inhibition with enhanced cooperative
inhibition of signalling pathways downstream of the two RTKs.
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cells. A549 is an extensively studied lung cancer cell line and is
known to have KRAS mutation but not any EGFR kinase domain
mutations. In our in vitro signalling studies, we identified that there
was signalling cross-activation between MET and EGFR in both
A549 and H1975 cells. Nonetheless, the pattern of cross-activation
appeared to be different between the two cell lines. In A549 cells,
HGF brought about cooperative induction of p-EGFR[Y1068] in the
presence of EGF, whereas in H1975 cells, EGF induced cross-
activation of p-MET[Y1234/1235] by itself and further MET
activation when combined with HGF in dual ligand stimulation.
It is tempting to postulate that the different pattern of cross-
activation observed in A549 and H1975 cells might be a result of the
different EGFR kinase mutational status in the two cell lines, that is

non-mutated in A549 but L858R/T790M in H1975. The mutant
EGFR in H1975 evidently is capable of cross-activating MET in an
EGF –ligand-dependent manner, indicating that MET could be
‘downstream’ of the mutant EGFR in H1975. Of interest, it has
recently been shown that the MET receptor activating phosphory-
lation site was highly responsive to EGFRvIII levels in glioblastoma
cells in vitro, suggesting downstream cross-activation of MET by
mutant EGFRvIII (Huang et al, 2007).

L858R/T790M-EGFR mutations exist in H1975 cells in-cis
(Pao et al, 2005). The double mutations not only confer resistance
to gefitinib/erlotinib but also result in markedly enhanced catalytic
kinase and oncogenic activity (Mulloy et al, 2007). Emerging
evidence suggests that the T790M ‘gatekeeper’ mutation may exist
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Figure 6 Dual SU11274–erlotinib inhibition induced cooperative inhibition in H1975 cell viability in vitro and murine xenograft tumour growth in vivo. (A)
In vitro inhibition using MET inhibitor SU11274 combined with erlotinib was more effective in H1975 cell viability inhibition under serum-stimulated
conditions. Enhanced inhibition of cell viability was evident with dual SU11274-erlotinib treatment in combination (at 3mM of each TKI as indicated).
*Po0.05 (SU11274/erlotinib vs SU11274); **Po0.02 (SU11274/erlotinib vs erlotinib); and ***P¼ 0.281 (SU11274 vs erlotinib). Error bar, s.d. (B)
Combined knockdown of MET and EGFR signalling using short-interfering RNA (siRNA) in H1975 cells resulted in enhanced downstream signal transduction
inhibition. H1975 cells cultured under serum-stimulated conditions were treated with siRNAs specifically targeted against mRNA of MET alone, EGFR alone,
or both MET and EGFR as described in the Materials and Methods section. Cells with siRNA knockdown as indicated were harvested for immunoblotting
using antibodies against phosphotyrosine (left panel) to survey the effects on global cellular phosphotyrosine phosphoproteomic profiles. Cells were also
immunoblotted with antibodies against the MET and EGFR signal paths including the downstream pro-survival AKT and STAT3 pathways (right panel).
Concurrent dual knockdown of MET and EGFR signalling by siRNA in H1975 cells led to optimally enhanced downregulation of global phosphorylated
cellular proteome (left panel) including the pro-survival downstream p-AKT and p-STAT3 signal activation (right panel). (C) In vivo treatment using SU11274
combined with erlotinib induced cooperative complete regression of EGFR-TKI-resistant H1975 tumour xenograft growth. EGFR-TKI-resistant H1975-luc
cells were used to establish nude mouse xenograft in vivo as described in the Materials and Methods section. The nude mice with H1975-luc xenografts were
then treated with diluent control, EGFR inhibitor (erlotinib, 100 mg/kg/day) alone, MET inhibitor (SU11274, 50 mg per xenograft per day) alone, or both
inhibitors concurrently (SU11274 plus erlotinib). Tumour xenograft growth was monitored by BLI at pretreatment baseline (day 0), and on post-treatment
days 6 and 13. SU11274, in combination with erlotinib, induced complete tumour xenograft regression of H1975 cells in vivo. The mean relative BLI flux from
each treatment group was plotted graphically (N¼ 4 per treatment group). Error bar, s.e.m. (*), (SU11274/erlotinib vs erlotinib) P¼ 0.0006. (**), (SU11274/
erlotinib vs SU11274) P¼ 0.0003. (***), (SU11274 vs erlotinib) P¼ 0.0070. (D) H1975 tumour xenograft micrographs under H&E staining at � 100
magnification (and � 200, inset) showed substantial viable tumour cells in panel (a) DMSO control, and (b) erlotinib-treated animals, whereas there were
necrotic and apoptotic tumour cells seen in panel (c) SU11274 (suboptimal dose: 50 mg per xenograft) and massively so in panel (d) in combined SU11274
plus erlotinib-treated animals.
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in lung tumours before EGFR-TKI therapeutic selection (Bell et al,
2005; Godin-Heymann et al, 2007), partly due to its enhanced
oncogenicity, and accounts for the adverse clinical course and
outcome in gefitinib/erlotinib-resistance lung cancers after a
course of rapid TKI selection. Interestingly, we found that H1975
cells co-express EGFR and MET at high level, although without any
MET genomic amplification, and were capable of serum-indepen-
dent constitutive MET activation. Moreover, MET and EGFR
engage in collaborative signalling cross-activation to transduce
stronger and more durable downstream signals. A recent report
utilised a mutant EGFR (deletion 19)-expressing NSCLC cell
line HCC827, which is highly sensitive to gefitinib, an in vitro
gefitinib-resistance long-term inhibition culture system to select
for gefitinib-resistant cell subclones (Engelman et al, 2007).
Acquired MET amplification was identified to be a potential
alternative mechanism to enable the mutant EGFR-expressing
HCC827 to become secondarily resistant (HCC827-GR) without a
T790M mutation. In the course of our study, Bean et al (2007)
reported the presence of MET amplification that occurred
independently with and without T790M-EGFR mutation in lung
tumours. MET amplification in gastric cancer cell lines has
recently been correlated with high sensitivity towards MET
inhibitor (Smolen et al, 2006). Interestingly, another recent report
adopted a global phosphoproteomic approach using cell lines
sensitive to gefitinib (HCC827) and sensitive to SU11274 (MKN45),
and showed that besides p-EGFR inhibition, gefitinib also
inhibited p-MET (that is indeed constitutively activated) in
HCC827, but not vice versa (Guo et al, 2008). In the case of
SU11274, the MET inhibitor inhibited p-EGFR in MKN45 besides
p-MET, but not vice versa (Guo et al, 2008). Further studies to
examine the signalling cross-talk between the EGFR and MET
receptor pathways in the context of mutations and downstream
signalling networking would be helpful in optimising combina-
tional therapeutic strategies. Moreover, it would be useful to
further investigate and catalogue the activating mechanisms of
MET (such as activating mutations, transcriptional and protein
overexpression), and their role in oncogenic signalling in the
context of multiple receptor co-activation in lung cancer.

Our report here demonstrates the efficacy of dual RTK
targeted inhibition against MET (SU11274) and EGFR (erlotinib
or CL-387,785) as a strategy to achieve optimised inhibition of
cytoskeletal functions, cell viability, cellular signalling, and in vivo
xenograft complete regression in T790M-EGFR-mediated erlotinib
resistance. The concentrations of SU11274 used in our current
study are consistent with previous results to be within the range of
selectivity towards MET (Sattler et al, 2003; Ma et al, 2005a).
Finally, our dual siRNA knockdown experiment against MET and
EGFR (Figure 6B) in H1975 cells provides further validation of this
novel therapeutic approach. Dual inhibition may be of benefit over
single target inhibition, especially in the context of serum and/or
alternative ligand stimulation. This can be of clinical relevance
considering that tumour cells often exist and adapt in vivo under a
multitude of host stromal conditions during various stages of
tumour progression, including serum starvation (e.g. in tumour
core), serum-stimulation, and also potentially microenvironment-
specific ligand(s)-stimulation.

Dual TKI combinatorial approach may allow more effective
target inhibition with a lower MET inhibitor concentration
requirement, when compared with monotherapy alone, as
suggested in our in vivo H1975-luc xenograft study. The ability
to use lower drug concentrations than that in monotherapy would
be beneficial and clinically relevant to minimise additive toxicity
profiles of two inhibitor drugs of similar class used in combina-
tion. It is intriguing that we consistently observed a modest, but
readily detectable degree of potentiated inhibition of MET
phosphorylation by erlotinib, with and without SU11274, both in
A549 and in H1975 cells. In addition, our siRNA-EGFR knockdown
study in H1975 cells resulted in appreciable downregulation

of p-MET[Y1234/1235], suggesting that the mutant EGFR in
H1975 cells might signal into MET as a ‘downstream’ cross-talk
collaborative signal partner (Figure 6B). It may account for some
of the enhanced inhibitory effects seen in the dual TKI treatment.
In our in vivo bioluminescence xenograft model, combined
SU11274– erlotinib inhibition remarkably induced complete
H1975-luc tumour xenograft regression associated with histologi-
cal features of massive tumour necrosis– apoptosis. We were
initially intrigued that despite the lack of effective inhibition of
EGFR phosphorylation (at pY1068) by erlotinib alone, the drug
enhanced inhibitory efficacy both in vitro and in vivo in H1975
cells when combined with SU11274. Engelman et al (2007)
recently reported that MET, when amplified genomically as in
the setting of acquired EGFR-TKI resistance, can capture
the ERBB3 signal control from EGFR. Our data here suggest that
MET inhibition (SU11274) in H1975 cells had a modest but
detectible negative effect on ERBB3 activation, and that dual
SU11274/erlotinib inhibition cooperatively abrogated p-ERBB3
signal activation completely (Figure 5B). This might partially
explain the observed role of erlotinib in the dual inhibitory
strategy against the T790M-EGFR mutant cells, even though it is
ineffective against p-EGFR itself. Further studies to dissect the
interplay between MET and ERBB3 signal paths in lung cancer are
warranted. Besides the possible effect of erlotinib upon MET
activation per se, one might not rule out other potential off-target
effects of erlotinib as contributing factors. Stegmaier et al (2005)
first reported a previously unrecognised EGFR-independent
mechanism of gefitinib in inducing the differentiation and
inhibiting proliferation of EGFR-negative acute myeloid leukaemia
cells at clinically achievable doses (Stegmaier et al, 2005). More
recently, erlotinib was also found to exhibit off-target anti-
neoplastic effects in acute myeloid leukaemia and myelodysplastic
syndrome, supporting the potential clinical therapeutic utility of
these EGFR-TKIs in haematologic malignancies (Boehrer et al,
2007). As erlotinib is currently the only clinically approved EGFR-
TKI for lung cancer in the United States, discovery of its utility
in combinatorial inhibitory approaches would be of potential
clinical benefit. Combination strategy to target EGFR and MET
has recently been reported to show promise in overcoming
mutant-EGFRvIII-driven glioblastoma, although using a higher
concentration range of MET inhibitor (Huang et al, 2007). Some
success to overcome T790M-mutant EGFR resistance has been
reported using irreversible EGFR/ERBB family inhibitors, such as
CL-387,785 and HKI-272 (Kobayashi et al, 2005b; Wong, 2007).
Nonetheless, recent work in a L858R/T790M-EGFR transgenic
mouse model suggests that the double mutant-EGFR responds only
partially to HKI-272 alone (Li et al, 2007), and enhanced inhibition
was seen in combination with mammalian target of rapamycin
inhibitor.

In conclusion, the present study identified that despite having
no genomic MET alterations in H1975 cells, the MET–HGF signal
path is functional and activated in this EGFR-TKI-resistant cell line
that already expresses the oncogenic mutant EGFR (L858R/T790M)
signal axis. There are also receptor cross-activation and signalling
circuitry cross-talk between MET and EGFR, and MET inhibition
has efficacy in vitro and in vivo in the erlotinib-resistant H1975
cells. Our results also implicate that combination treatment using a
MET inhibitor plus a reversible or irreversible EGFR kinase
inhibitor to achieve dual MET–EGFR inhibition may represent an
alternative strategy to circumvent T790M-EGFR-mediated resis-
tance in lung cancer. Importantly, erlotinib may still have clinical
utility in this context of combined inhibition with MET inhibitor in
EGFR-TKI-resistant lung cancer. As T790M-EGFR may play a
role in both intrinsic and acquired EGFR-TKI resistance in lung
cancer, it would be useful to test concurrent combinatorial MET–
EGFR inhibitors in clinical trials on lung cancer patients refractory
to erlotinib/gefitinib. Other emerging pan-ERBB class inhibitors,
such as PF00299804, or EGFR-targeting dual/multitargeted
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inhibitors, such as lapatinib (EGFR/ERBB2 inhibitor) or ZD6474
(EGFR/VEGFR2 inhibitor), might also be candidates for combina-
tion with MET inhibitors. Whether a combined MET–EGFR
inhibitory strategy as upfront treatment is superior to MET
inhibition used only after EGFR-TKI monotherapy failure should
be the subject of further investigation.
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