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Abstract
Yersinia spp, is currently an antibiotic resistance concern and a re-emerging disease. An essential
virulence factor YpkA, contains a Ser/Thr kinase domain whose activity modulates pathogenicity.
Here we present an approach integrating a machine learning method, homology modeling, and
multiple conformational high throughput docking for the discovery of YpkA inhibitors. These first
reported inhibitors of YpkA may facilitate studies of pathogenic mechanism of YpkA, and serve as
a starting point for development of anti-plague drugs.

Many Gram-negative bacterial pathogens utilize a type III secretion system (TTSS) to inject
effector proteins into the cytosol of host cells1. These virulence factors play an important role
in bacterial pathogenesis by modulating the host processes that regulate actin cytoskeletal
assembly2. With the emergence of antibiotic resistance and the threat of such bacteria being
used as biological weapons, targeting virulence proteins for antibiotic design is attractive, as
such compounds are unlikely to be cross-resistant or to induce resistance3,4.

Herein, we report our efforts on the discovery of inhibitors for the Yersinia protein kinase A
(YpkA). YpkA is an essential virulence determinant in Yersinia spp., which includes the
causative agent of plague5. The protein contains a chaperone binding/membrane localization
domain6, a Ser/Thr kinase domain, a GDI-like domain that interacts with the Rho-family of
small GTPases, and a C-terminal sub-domain responsible in part for actin binding and kinase
activation7,8. As the kinase activity of YpkA has been shown to directly correlate to virulence
by phosphorylating the small G protein Gαq, inhibition of YpkA could yield new anti-plague
therapeutics9,10.

Protein kinase inhibitor design is a challenging problem because of the high similarity and
plasticity of the catalytic site11-14. In this study, we applied an approach combining a machine
learning method and multiple conformational high throughput docking for the discovery of
YpkA inhibitors. The screening strategy employed is illustrated in Figure 1. First, we developed
a machine learning support vector machine (SVM) model using a data set of known kinase
inhibitors from a diverse kinase collection. The ligand-based SVM model was used as a kinase
filter to prioritize the large size of chemical databases and a target-focused library was obtained.
Second, we constructed homology models of YpkA based on the MAPK templates, and further
performed MD simulations to sample different protein conformations characterized in the
catalytic site to account for protein flexibility. Finally, with an ensemble of protein structures
and the kinase inhibitor-enriched library, multiple conformational high throughput docking
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was performed and a number of potent and selective inhibitors of YpkA have been successfully
identified.

In order to develop a general kinase model for database filtering, a data set of known kinase
inhibitors was seeded into a randomly selected chemical library serving as the training set.
These kinase inhibitors were assembled from the literature and those in complex with a protein
target deposited in the protein data bank (PDB). In total, 364 kinase inhibitors were selected
covering a diversity of known chemical scaffolds for both Ser/Thr kinases and Tyr kinases.
The inactive data set comprising 4220 compounds was randomly selected from the MDDR
database (Elsevier MDL, San Leandro, CA). Molecular descriptors were calculated with
ADMET/Predictor consisting of 276 descriptors from the 3D structure (SimulationsPlus,
Lancaster, CA). The use of ADMET molecular descriptors was anticipated to improve the
drug-likeness property of identified compounds, which is a crucial aspect in the late stage of
drug development. The SVM model was derived from the molecular descriptors of the training
set in distinguishing the active and inactive compounds. As shown in Figure 2, 319 out of 364
inhibitors were classified in the “positive” region, while only 15% of the active compounds
were mis-classified as false negative. To validate the model, a testing data set comprising 175
known kinase inhibitors and 669 inactive compounds was applied using the SVM model. 127
out of 175 active compounds were predicted correctly, yielding an enrichment of 70%. This
result is promising and comparable to many other machine learning models published
recently15,16. Given the high efficiency of the SVM model, we then screened our in-house
database collections consisting of more than 2 million compounds, and a kinase-focused library
of ∼200,000 compounds was obtained.

Because the structure of YpkA is unavailable, we constructed 3D models based on MAPK.
YpkA shares about 20% homology to mammalian Ser/Thr kinases (Figure 3), but considering
only the residues near the ATP binding site, the sequence identity to MAPK is 60%. Therefore,
there is enough similarity to build a reliable model focused on the catalytic site. Two structural
models were constructed based on different templates of MAPK. Model A used the apo
structures of p38 (PDB id 1p38 and 1erk), while model B adopted ligand-bound complexes
with induced fit at the ATP binding site (PDB id 1a9u and 3erk). As shown in Figure 3,
structural differences can be seen within these two models. Model A possesses a more open
ATP binding pocket at the Glycine loop (G-loop), while the catalytic site in model B is closed
with the G-loop flipping down. As the conformational changes of the G-loop are sensitive to
ligand perturbation, both are valid conformations for inhibitor design. We also examined the
DFG motif, which is a key element in kinase inhibitor design17. Although in YpkA the
corresponding motif is DLG, His293 following the DLGL motif could potentially act in a
similar manner to the Phe in mammalian kinases, namely, “His-in” and “His-out” as modeled
in A and B.

To further examine the structural features of YpkA, we performed molecular dynamic
simulations using both the apo and ATP bound models. The simulations were carried out in
vacuo to permit more extended conformational changes. Analysis of the dynamics of the
protein at different states revealed a number of active site residues that exhibited high flexibility
(Figure 3). In order to sample a good representation of protein conformations for the subsequent
ensemble docking, 500 conformers were extracted from 2.0 ns MD simulations and clustered
according to a defined residue center at the active site. Five major clusters were obtained with
model A and three clusters with model B. From the MD simulations and the docking studies
we believe that the conformational changes of the active site residues represent to some extent
the plasticity of the ATP binding site upon ligand binding.

With the model of YpkA and the SVM-enriched kinase inhibitor library, we then performed a
multiple conformational high throughput docking to search for YpkA inhibitors. The program
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FlexE was used, which accommodates multiple protein conformations in docking by forming
new structural representatives16. A total of eight conformers of YpkA sampled from MD
simulations were used in FlexE docking. A kinase focused library consisting of ∼200,000
compounds was subsequently docked into the ensemble of protein structures and ranked
according to the FlexX score. To improve the hit selection, we also applied consensus scoring
for the FlexX-docked complexes. The top 5% compounds were extracted and re-ranked using
X-Score.18 The top 1000 compounds from both the original FlexX score and the X-Score were
visually inspected in terms of overall fit, interactions in the binding site, as well as for structural
complexity and diversity. A total of 45 compounds were finally selected to experimentally test
against YpkA. Seven of the 45 compounds showed complete inhibition at 225 μM to 450 μM,
yielding a hit rate of 15%. The IC50 values of these compounds were determined by radiological
assay with three compounds exhibiting inhibitory activities at 1.81, 5.87, and 9.72 μM, and the
remaining four having IC50 values below 50 μM. Examination of these active compounds
revealed a diversity of chemical structure, as represented in Figure 4. Compound 1 possesses
a scaffold of indolin-2, which is found in the derivatives of CDK2 inhibitors.19 Compound 2
belongs to the anthraquinone family, potent inhibitors of casein kinase-2.20 The structures of
compounds 3 and 4 are quite interesting, as they possess the functional group pyrimidine-2,4,6-
trione. As can be seen in figure 5, the binding mode of pyrimidine derivative in YpkA resembles
the adenosine moiety of the cofactor, involving in two H-bonding interactions with hinge
residues Glu216 and Asp218.

We further evaluated the selectivity of the YpkA inhibitors by testing against two other kinases,
MAPK and protein kinase C (PKC). It is not surprising that some compounds showed
comparable inhibitory activities to MAPK, from which the homology models of YpkA were
derived. For example, compound 1 showed the best inhibition of YpkA with an IC50 of 1.81
μM, but also exhibited similar activity to MAPK with an IC50 of 2.45 μM. However,
compounds 2, 3, 4 are more selective to YpkA over MAPK and PKC with 5 to 10 fold better
inhibition (Figure 4). The predicted interactions of compound 4 in the YpkA active site showed
that the nitro group forms strong interactions with residue Arg221 at the end of hinge loop
(Figure 5). As an Asp or Glu residue is typically present at this position in mammalian serine/
threonine kinases, interactions between the basic, positive charged Arg residue and compound
4 may impart selectivity for YpkA. To the best of our knowledge, these are first reported small
molecule inhibitors for YpkA, providing a means to investigate the mechanism of YpkA in
bacterial pathogenesis, as well as a staring point for the design of potent and selective inhibitors
as anti-plague drugs. Although these results are promising, one must consider non-specific
inhibition due to the induction of protein aggregation21. Based on our experimental results in
figure 4, the reported inhibitors are most likely not acting as aggregation agents and are
specifically inhibiting YpkA. This is demonstrated as the compounds have little effect on PKC,
but are inhibitory to MAPK, from which our homology model was created.

In summary, we have described an integrated approach combining machine leaning techniques
and high throughput docking for the discovery of Yersinia protein kinase A inhibitors. We have
made use of the abundant resource of known kinase inhibitors and have developed a SVM
model to prioritize these databases. With the construction of homology models and an ensemble
of protein structures, we performed multiple conformational high throughput docking on the
target-focused library for the search of potent and selective inhibitors of YpkA. The
combination of both ligand-based and structure-based knowledge of protein kinases has
demonstrated high screening efficiency and reasonable speed, which has allowed us to
characterize the first reported inhibitors of Yersinia Protein Kinase A. This integrated approach
therefore provides a practical method to account for protein flexibility in a large-scale database
for virtual screening of effective inhibitors of therapeutic targets.
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GDI  
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Protein Kinase C

PDB  
Protein Data Bank

SMV  
Support Vector Machine

SMV  
Support Vector Machine

YpkA  
Yersinia Protein Kinase A
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Figure 1.
Virtual screening strategy combined machine learning method, homology modeling, and
multiple conformational high throughput docking for the discovery of YpkA inhibitors.
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Figure 2.
Machine leaning SVM model derived from kinase inhibitors. The “positive” are known kinase
inhibitors and the “negative” are randomly selected, inactive compounds. The “false negative”
and “false positive” are those that were predicted incorrectly by the SVM model.
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Figure 3.
(A) Sequence alignment of YpkA (115-431) with protein kinases P38 and ERK. Strict sequence
conservation is shown in red background, and strong sequence conservation in yellow. The
solvent-accessibility of each residue in the P38 structure is indicated in the bar at the base of
the sequences, with white representing buried residues, dark blue representing solvent-
accessible residues, and light blue representing an intermediate value. The secondary structural
elements are also indicated according to the structure of P38. (B) Structural alignment of the
two homology models of YpkA kinase domain. Model A (red) represents a conformation of
YpkA with an open ATP-binding pocket, while model B (cyan) has a closed ATP-binding
pocket. The key residues to the ligand binding are shown in magenta.
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Figure 4.
IC50 values of inhibitors from virtual screening with the kinase Homology Model. The
chemical structure of each compound is listed along with its IC50 value measured at YpkA
concentrations of 0.15μM.
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Figure 5.
The predicted intermolecular interactions of compound 4 in the YpkA active site. The YpkA
inhibitor is shown in orange, hydrogen bonding interactions are shown in green, and the
relevant residues of YpkA are colored by atom type and labeled
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