
Gene expression dynamics in the macrophage
exhibit criticality
Matti Nykter*†, Nathan D. Price†, Maximino Aldana‡, Stephen A. Ramsey†, Stuart A. Kauffman§, Leroy E. Hood†¶,
Olli Yli-Harja*, and Ilya Shmulevich†¶

*Institute of Signal Processing, Tampere University of Technology, 33101 Tampere, Finland; †Institute for Systems Biology, Seattle, WA 98103; ‡Center of
Physical Sciences, National Autonomous University of Mexico, C.P. 62210, Cuernavaca, Morelos, Mexico; and §Institute for Biocomplexity and Informatics,
University of Calgary, Calgary, AB, Canada T2N 1NF

Contributed by Leroy E. Hood, December 14, 2007 (sent for review October 20, 2007)

Cells are dynamical systems of biomolecular interactions that
process information from their environment to mount diverse yet
specific responses. A key property of many self-organized systems
is that of criticality: a state of a system in which, on average,
perturbations are neither dampened nor amplified, but are prop-
agated over long temporal or spatial scales. Criticality enables the
coordination of complex macroscopic behaviors that strike an
optimal balance between stability and adaptability. It has long
been hypothesized that biological systems are critical. Here, we
address this hypothesis experimentally for system-wide gene ex-
pression dynamics in the macrophage. To this end, we have
developed a method, based on algorithmic information theory, to
assess macrophage criticality, and we have validated the method
on networks with known properties. Using global gene expression
data from macrophages stimulated with a variety of Toll-like
receptor agonists, we found that macrophage dynamics are indeed
critical, providing the most compelling evidence to date for this
general principle of dynamics in biological systems.

complex systems � normalized compression distance � information theory

Many complex systems are capable of undergoing a phase
transition between a disorganized and an organized state.

This phenomenon has been observed in enzyme kinetics (1),
growth of bacterial populations (2), foraging in ant colonies (3),
brain activity (4), and traffic f low on the Internet (5). A system
that is operating near such a phase transition is said to be critical.
At equilibrium, this transition will occur at a critical value of a
system parameter, such as the Curie temperature in a ferromag-
net, below which the system can maintain spontaneous magne-
tization. Nonequilibrium systems, however, are capable of self-
organizing to such a critical state, whereby complex behavior can
emerge in a robust manner without fine-tuning the details of the
system (6, 7).

A hallmark of critical behavior is the spontaneous emergence
of complex and coordinated macroscopic behavior in the form
of long-range spatial or temporal correlations. Such coordina-
tion across many scales enables information to propagate over
time from one part of the system to another with a high degree
of specificity and sensitivity. For example, measurements of
human brain oscillations revealed such critical dynamics of
neural networks, implying their ability to effectively propagate
information and rapidly reorganize (8). Similarly, measurements
of computer network traffic indicate that the Internet exhibits
critical dynamics, accordingly, suggesting optimal information
transfer (9, 10). Many other complex systems, such as financial
markets (11), forest fires (12), neuronal networks supporting our
senses (13), and biological macroevolution (14) have been shown
to self-organize to a critical state.

A living cell is a complex dynamical system of interacting
biomolecules. While this system exhibits stability even in varying
environments, it is also capable of changing states and in so doing
make decisions in response to specific changes in its environ-
ment, such as the initiation of cellular differentiation upon

exposure to certain stimuli. Therein lies a delicate balance
between stability and adaptability. Too much stability—a char-
acteristic of ordered behavior—and the system cannot respond
to changes, rendering it inflexible. Too much sensitivity—a
feature of chaotic behavior—and the system loses its ability to
maintain one or more stable steady states necessary for
executing orderly cellular functions.

Such exquisite molecular decision-making is exemplified by
the macrophage, a cornerstone cell type of the innate immune
system and a key regulator of the inflammatory response.
Batteries of cell surface receptors, such as the Toll-like receptors
(TLRs), recognize different pathogen-associated molecular pat-
terns and propagate that information through intracellular mo-
lecular networks (15). By combining the information associated
with each of these molecular patterns, the macrophage triggers
distinct (but overlapping) signal transduction pathways that lead
to distinct gene expression programs (‘‘bar codes’’) correspond-
ing to the specific invading microorganism. The macrophage uses
this information to undergo a series of distinct functional state
changes, resulting in cytoskeletal rearrangements, production of
reactive oxygen and nitrogen intermediates, release of toxic
peptides used to kill the pathogen, antigen presentation that
activates specific T cells, and secretion of proinflammatory
cytokines that further instruct the adaptive immune response. To
carry out such complex and coordinated responses to the wide
diversity of molecular patterns, the information read by the cell
needs to flow through its molecular networks without being lost
or degraded. The nature of this information flow constitutes the
focus of our study.

It has long been hypothesized that living cells, as manifesta-
tions of their underlying networks of molecular interactions, are
poised at the critical boundary between an organized and a
disorganized state (16). Recently, several analytic approaches
applied to gene expression datasets support the ‘‘life on the edge
of chaos’’ hypothesis (17–19). If this hypothesis is true, criticality
is a result of the cell’s ability to coordinate complex behaviors
while maintaining stability and robustness in a variable environ-
ment. More importantly, it represents a manifestation of a
general principle governing the dynamics of living systems,
placing them into a broader class of self-organized systems that
are governed by the same universal principles. The equivalent
principle in the study of the network architecture (i.e., structure)
is the scale-free property (power-law degree distribution) shared
by most real-world networks (20). Just as scale-free networks are
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extremely robust to random perturbations and are highly sus-
ceptible to specific targeted perturbations (attacks) (21), net-
works that are critical are also dynamically stable under most
random perturbations, but undergo global state changes, such as
macrophage activation, in response to targeted perturbations.

Quantifying Information Processing and Flow
Using an information-theoretic approach, we demonstrate that
the macrophage exhibits dynamics in the critical regime at the
boundary between order and chaos, providing the most com-
pelling evidence to date for this general principle of dynamics in
biological networks. Because sufficiently detailed quantitative
descriptions of global system dynamics are not yet within reach
(22), standard time-series analysis methods of detecting long-
range (power-law) temporal correlations that are characteristic
of critical systems (23) are not suitable for studying macrophage
criticality. Instead, we approached the question of criticality
from the perspective of information flow through a molecular
network in the absence of a detailed description of the network
itself. Recent studies have demonstrated that neglecting the
details of biochemical interactions in favor of more coarse-
grained statistical descriptions of large-scale dynamics can yield
fundamental new insights into global regulatory information
flow and signaling structure of complex molecular systems
(24–26).

Consider two stimuli that transiently place the molecular
system into two different states, where a state of a system at a
given time is defined as the collective activity of its components,
such as mRNA concentrations. If we can quantify the difference
between the information content of these two states, we can then
ask how this information difference changes as the system
proceeds forward in time. Information loss can occur in two
different ways. On the one hand, the successor states of the
system may tend to be more similar than their predecessor states,
leading to informational convergence. In contrast, the successor
states may become more dissimilar, resulting in informational
divergence. In the former case, the system forfeits discriminatory
sensitivity in that it tends to ‘‘forget’’ the differences that
distinguish different stimuli. In the latter case, robustness is
killed because even small differences get amplified, making it
difficult or impossible to reliably propagate information over
time. In terms of information dynamics, critical behavior rep-
resents precisely the point of minimal information loss—neither
convergence nor divergence—and thus a balance between
adaptability and stability.

To quantitatively study this tradeoff, we required a means of
measuring the difference in the information content of two
different system states so that we could examine whether this
information tends to get attenuated or amplified by the dynam-
ical system. Our basic tool, and a recent development in the field
of information theory, is the universal information distance (27,
28), which can be applied to any two objects stored on a
computer (e.g., networks, genome sequences, or in our case,
macrophage system states). This distance uniquely specifies the
informational difference between two objects and is defined in
terms of the Kolmogorov complexity. The Kolmogorov com-
plexity, K(x), of an object x is defined to be the length of a
shortest program to output x on a universal computer (i.e., on an
‘‘all-purpose’’ machine) (29). Intuitively, K(x) represents the
minimal amount of information required to generate x by any
effective process and can be thought of as the ultimately
compressed form of x.

Although the universal information distance, like the Kolmog-
orov complexity itself, is not computable, it can nonetheless be
approximated by real-world data compressors (herein, gzip) to yield
the normalized compression distance (NCD) (28, 30), defined as

NCD�x, y� �
C�xy� � min�C�x� , C�y��

max�C�x� , C�y��
, [1]

where C(x) is the compressed size of x and xy is the concatenation
of the strings x and y. It is easy to see that if x and y are identical,
then C(x) � C(y) and because it is trivial to compress two
identical strings, C(xy) � C(x) � C(y), resulting in the NCD being
close to zero. At the other extreme, if x and y are random and
independently generated from the same distribution, then
C(x) � C(y) and C(xy) � C(x) � C(y), resulting in the NCD being
close to one. Cilibrasi and Vitányi (30) have demonstrated that
the NCD can be used for clustering a variety of datasets with
remarkable success, approximating the provable optimality of
the (theoretical) universal information distance.

Analysis of Macrophage Information Dynamics
To study the information flow in the macrophage, we used
time-course transcriptional measurement data from murine
bone marrow-derived macrophages treated with six TLR ago-
nists: lipopolysaccharide (LPS), PAM2, PAM3, poly(I�C), R848,
and unmethylated CpG-containing oligodeoxynucleotide, rep-
resenting different pathogen-associated molecular patterns
(PAMPs). Each time-course experiment consisted of five time-
point measurements (ten for LPS) and was biologically repli-
cated two to four times, depending on the stimulus, yielding a
total of 35 network state measurements (consisting of 9,941
differentially expressed genes) from a total of 94 microarrays
after combining replicates [see supporting information (SI)
Appendix for details].

We then computed the NCD for every pair of time-point
measurements for which there are successor time-point pairs,
and we plotted it versus the NCD computed from the successor
states. For example, the NCD between the two time-point
measurements, say, LPS/20 min and PAM2/40 min, would be
plotted against the NCD between the measurements LPS/40 min
and PAM2/60 min, respectively. This procedure allows us to
observe how the difference between the information content of
any two system states, possibly in response to different stimuli,
changes over time. Because NCD is normalized to be in the range
[0, 1], a scatter plot that lies below the main diagonal would
indicate a general tendency for informational convergence or
ordered behavior. Conversely, a scatter plot above the main
diagonal would indicate divergence or chaotic behavior. Our
main result (Fig. 1 A and B) is that this scatter plot lies closely
along the main diagonal with a slope of 1, indicating that the
underlying dynamical network of the macrophage is operating in
the critical regime.

MATLAB (MathWorks) implementation of the data analysis
algorithms is available from the authors upon request.

Validation of the Information Theoretic Order Parameter
The slope of this scatter plot can be considered as an informa-
tion-based measure of order and chaos that closely parallels the
well known Derrida curve (16, 31) in Boolean networks and the
Lyapunov exponent (23) in continuous dynamical systems. How-
ever, such order parameters are defined in terms of the system’s
response to only the smallest perturbations, making their use
with gene expression data problematic. For example, the Derrida
curve, which consists of plotting the Hamming distance (the
number of bits that are different) between two states at time t
versus the Hamming distance between their successor states at
time t � 1, is only indicative of the system’s dynamical regime by
its slope at the origin. An additional difficulty is that the
Hamming distance is only meaningful in the binary domain, and
a different measure would need to be used for, say, ternarized
data. By contrast, the NCD-based approach used here can be
used as is, because it only captures the relative information flow
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between states and their successors. See SI Appendix for an
extended discussion of these issues and a plot of the Hamming
distance-based Derrida curve applied to the macrophage data,
which also supports critical behavior.

We performed four different studies to validate our approach.
First, to be sure that our conclusions were not biased by the
number of discretization levels, we performed our analysis with
binary as well as ternary discretization (Fig. 1 A and B). It was
important to demonstrate criticality with both binary and ternary
discretization levels to verify that the somewhat arbitrary choice
of discretization level did not affect the results. Second, we
repeated the analysis by using two different methods of com-
bining biological replicates. In all cases, we obtained consistent
results (see SI Appendix). Third, we decided to determine
whether the particular time sampling of our microarray data
could affect the conclusions of the analysis. On the basis of a
simulation analysis, we found that ordered, chaotic, or critical
behavior can be observed over arbitrary time steps (see SI
Appendix). Finally, it was necessary to validate the approach in
classes of Boolean and ternary networks for which there are well
established notions of ordered, chaotic, and critical dynamics
(32). Different degree distributions and their known parameter
values were used to generate networks in ordered, chaotic, and
critical regimes. We found that the measure correctly deter-
mined the dynamical regimes for all network ensembles tested
(Fig. 1 C and D), with results for additional topologies and
degree distributions in SI Appendix. Thus, our approach was
validated by each of these studies.

To be convinced that no artifact or trivial reason was behind
the data being clustered around the criticality line, we decided
to see whether noncritical behavior could be attained by dis-
abling a key regulator of the TLR-mediated response of the
macrophage. There are two ways that a departure from criticality
could happen. Either the system may no longer be able to
respond to certain external information, making the observed
responses ordered or relatively insensitive to stimuli, or the
system may no longer be able to control its response, rendering
it chaotic or hypersensitive to stimuli. To test these alternatives,
we performed the NCD-based analysis on an additional time-
course data set from macrophages in which an important
immune regulator (ATF3) has been knocked out. ATF3 was
recently shown to be a negative regulator of the innate immune
response, and ATF3�/� macrophages exhibited a significantly
amplified pro-inflammatory response as measured by the in-
creased production of several cytokines (33). Further, ATF3�/�

mice were more susceptible to endotoxic shock and succumbed
much more quickly than wild-type mice when challenged with
LPS. The NCD-based analysis indicated that the response of
ATF3�/� macrophages to the selected pathogen-associated mo-
lecular patterns deviated from criticality in a statistically signif-
icant manner, displaying slightly chaotic dynamics (see SI Ap-
pendix). This finding demonstrates that noncritical behavior can
be observed with this type of analysis.

Conclusions
Our information-based approach revealed that the macrophage
exhibits critical dynamics as reflected by global gene expression

Fig. 1. Estimated information-based measure of order and chaos for gene expression in murine macrophage cells stimulated with various TLR-like stimuli.
(A and B) The measure is discretized into two (A) and three (B) expression levels (k-means). The x axis value of each data point is the NCD between two expression
states. The y axis value of a data point is the NCD of the expression states for the same two experiments at the next time point of the experiment. The red line
shows the least-squares fit of the data points, with residual distances being orthogonal to the main diagonal. The data show critical behavior for both binarized
and ternarized expression data sets. (C and D) Information-based measure for order and chaos computed for random Boolean networks (K � 1, 2, 3, 4; K � 2
corresponds to the critical regime) (C), and random ternary networks (K � 1, 1.5, 2, 3, and 4; K � 1.5 corresponds to the critical regime) (D).
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changes and thus demonstrates its ability to coordinate complex
behavior with minimal information loss. The competing selec-
tion pressures on the macrophage to have diversity of immune
responses yet maintain homeostatic stability must have caused it
to evolve the specific dynamic trait of criticality. It will be
important to study the evolutionary mechanisms that could have
given rise to critical behavior in biological systems (34). Our
study also highlights the utility of information-theoretic ap-
proaches for analyzing complex biological systems in circum-

stances where global and detailed quantitative measurements of
system behavior are not available or may not be possible to
generate.
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