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Biological systems are robust, in that they can maintain
stable phenotypes under varying conditions or attacks.
Biological systems are also complex, being organized
into many functional modules that communicate through
interlocking pathways and feedback mechanisms. In these
systems, robustness and complexity are linked because
both qualities arise from the same underlying mechanisms.
When perturbed by multiple attacks, such complex systems
become fragile in both theoretical and experimental
studies, and this fragility depends on the number of agents
applied. We explore how this relationship can be used to
study the functional robustness of a biological system using
systematic high-order combination experiments. This pre-
sents a promising approach toward many biomedical and
bioengineering challenges. For example, high-order experi-
ments could determine the point of fragility for pathogenic
bacteria and might help identify optimal treatments against
multi-drug resistance. Such studies would also reinforce
the growing appreciation that biological systems are best
manipulated not by targeting a single protein, but by
modulating the set of many nodes that can selectively
control a system’s functional state.
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Introduction

Even the simplest organisms are robust, in that they are able to
maintain functional stasis to a remarkable degree in the face
of environmental changes or functional component losses

(Kitano, 2004, 2007; Stelling et al, 2004). For example,
mutation studies in yeast (Winzeler et al, 1999), nematodes
(Fraser et al, 2000), flies (Boutros et al, 2004), and mice (Walke
et al, 2001) find that surprisingly few genes (typically 10–20%)
affect viability when deleted from the genome. In humans, this
robustness is reflected in the fact that many drug candidates
discovered using the prevailing one-drug-one-target paradigm
fail because of a lack of efficacy (Hopkins and Groom, 2002).
Clearly, there is sufficient flexibility in biological systems to
overcome even severe attacks to isolated components (Hartman
et al, 2001).

Another quality of biological systems is their complexity
(Carlson and Doyle, 2002; Stelling et al, 2004), which is
apparent in the topology of network models that are
constructed from interactions between the many thousands
of genes (Lee et al, 2002), proteins (Uetz et al, 2000), and
metabolites (Duarte et al, 2004) that make up cells in an
organism. These networks are organized into modules
(Hartwell et al, 1999; Gavin et al, 2002) of interconnected
nodes (functional elements) with relatively few highly
connected nodes (functional elements) that then link to other
subnetworks. These networks have relatively few highly
connected modules at their center with many more peripheral
nodes, giving rise to approximately power-law node degree
distributions (Barabási and Albert, 1999). But the topological
structure also involves interlocking serial pathways of meta-
bolic reactions and genetic regulatory networks involving
transcription factors that affect many target genes (Ideker and
Lauffenburger, 2003). Functional robustness arises from the
many redundancies and feedbacks inherent to this structure
that allow the system to dynamically adapt or compensate for
losses or environmental changes (Stelling et al, 2004).

Simulated network systems become less robust when they
are attacked by node removals or other perturbations,
especially if the perturbations are combined. Power-law
networks that have been constructed using random node
attachment are topologically robust against removal of
randomly selected nodes (Albert et al, 2000), because most
nodes are peripheral, but they become increasingly fragile as
more nodes are removed (Agoston et al, 2005). More realistic
network simulations of metabolism with combined node
removals find many ‘synthetic lethal’ interactions (B4 per
enzyme), where a combination disrupts the system’s function
strongly even when both single deletions have no effect (Segrè
et al, 2005). Dynamic simulations of more realistic pathways also
produce synergistic responses (Araujo et al, 2004; Lehár et al,
2007) that increase with combination order (Araujo et al, 2007).

Combinations are also very effective in biological experi-
ments (Sharom et al, 2004; Keith et al, 2005). Synthetic
lethality rates of B8 per gene are observed in yeast double-
mutant screens (Tong et al, 2004) and siRNA gene silencing on
nematodes (Ceron et al, 2007). Comparable rates are also
found when targeted pairs are only partially inhibited, for
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either mutant chemical sensitivity screens (Giaever et al, 2004;
Lum et al, 2004; Parsons et al, 2004) or chemical combination
experiments (Borisy et al, 2003; Yeh et al, 2006; Lehár et al,
2007). Finally, clinical experience shows that drug combina-
tions can be more effective than single agents (Zimmermann
et al, 2007), especially for resistant bacteria (Walsh, 2000),
viruses (Bonhoeffer et al, 1997), and many cancers, where
combinations have become the main treatment strategy
(Dancey and Chen, 2006). At higher order, in vitro studies of
resistant bacteria show that third-order combinations are more
effective than drug pairs (Bhusal et al, 2005), and clinical
regimens for resistant tuberculosis (Anonymous, 2003) or
AIDS infections (Bonhoeffer et al, 1997) routinely require
more than two drugs together.

For both the simulated and experimental studies, there is a
trend toward more functional fragility as the system is
subjected to perturbations of increasing combination orders.
This can be explained by the high-order combinations over-
whelming any functional redundancy in the system (Figure 1).
From this it follows that by determining the ‘combination
order of fragility’ (COF), high-order perturbation experiments
can be used to probe the robustness of a biological system.
This can be demonstrated by adapting random attachment
network algorithms (Barabási and Albert, 1999) to produce
networks with intrinsic functional redundancy, and examining
their robustness to successively higher order node removals
(Box 1). A similar process could be followed experimentally to
evaluate the complexity of a biological system. Here, we
explore how high-order perturbation experiments can use this
approach not only to identify key sets of agents that can
selectively control the state of a robust system but also to
functionally dissect a network in terms of its functional
complexity.

Measuring synergy in high-order
experiments

Realizing the potential of high-order combinations for probing
biological robustness requires the selection of relevant probe
sets and measured end points, the definition of appropriate

synergy metrics, and efficient strategies for exploring the vast
combinatorial space of high-order perturbations.

Systematic biological perturbation studies require quantita-
tive phenotypes that monitor the system’s function, in most
cases a global phenotype such as cellular proliferation (Tong
et al, 2004; Yeh et al, 2006). Such integrative phenotypes
permit the system to be monitored simultaneously across
many functions with relatively few measurements, and can
probe the system’s responses to perturbations even when the
direct targets are not known. Thus for large-scale investi-
gations of high-order combinations, it is likely that global
phenotypes will be most practical in the foreseeable future.

The perturbations must target particular functional compo-
nents, and be flexible enough to permit high-order combina-
tions to be assembled. Large-scale genetic studies are limited
to organisms with mutant libraries, and current efforts to
extend systematic double-mutant studies (Tong et al, 2004; St
Onge et al, 2007) to high-order mutations will be very
challenging. Combined siRNA gene silencing experiments
(Sahin et al, 2007) are promising, but this work has only been
explored to third order. By contrast, biologically active
chemical probes can be readily combined in mixtures up to
very high order. Chemicals also offer the advantage of variable
dosing, as the system’s behavior can be monitored in response
to different concentrations alone and in combination (Zim-
mermann et al, 2007). This added detail can be used to identify
both synthetic effects at high concentration and potentiation
interactions (where the presence of one agent makes the other
achieve its maximum effect at lower doses) that could be missed
entirely using knockout experiments. The dose–response sur-
faces from chemical combinations can contain useful mechan-
istic information (Lehár et al, 2007), and chemicals also provide
an excellent starting point for therapeutically exploiting any
promising synergies. For these reasons, chemical probes have
great potential for high-order testing.

To detect synergy, appropriate experimental designs and
combination effect measures are required. For genetic muta-
tions, the necessary data are the responses to the full
combination and to all constituent subcombinations. Chemi-
cal combinations also require appropriate concentration

Figure 1 How complex systems are less fragile to high-order perturbations. Biological processes are often modeled as networks of interacting components that
generate output responses based on input conditions. For a trivially simple system with a single pathway and no feedback, removing a single node will eliminate all
output, so applying additional deletions will yield no synergistic responses. Networks that have more redundancy provide opportunities for synergy because cutting off
alternative pathways or feedbacks can lead to lower output levels. If we monitor the output response as well-chosen nodes are successively removed from the network,
the output should be only weakly affected until it reaches a ‘combination order of fragility’ (COF), where all available alternative pathways have been blocked.
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sampling to make the most of dose responses (Greco et al,
1995). A factorial design, where all permutations of serially
diluted single-agent doses are tested, makes very few
assumptions about the response surface shape, but is
prohibitively expensive for high-order combinations. A more
efficient format is to test fixed dose ratio responses, by mixing
the component drugs at a high concentration (e.g. twice
their 50% effective concentrations, or the highest achievable
concentration for singly inactive compounds) and serially
diluting that mixture. If response curves are collected for all
submixtures of any high-order combination as part of a
systematic experiment, there will be sufficient information to
fully describe most high-order synergies and antagonisms.
Most synergy measures compare a combination’s response to
those of the constituent single agents (Greco et al, 1995). For
genetic interactions, synergy is measured by comparing the
combined effect to a model that represents the expectation for
non-interaction (Anastassiou, 2007; Mani et al, 2008). For
chemical combinations, synergy can be measured either as a
high concentration effect boost using one of the genetic
interaction models, or as a potency shift at a chosen effect level
(Chou and Talalay, 1984; Lehár et al, 2007). These definitions
generalize readily to high-order combinations and can be used
to quantify the ‘absolute synergy’ of a combination compared
to its single agents (see Figure 2). Although there is
considerable debate concerning which null-interaction model

is most generally applicable to biological contexts (Chou and
Talalay, 1984; Greco et al, 1995; Lehár et al, 2007; Mani et al,
2008), all of them permit the calculation of an absolute synergy
score as described here. At high order, it is also useful to
consider the ‘differential synergy’ (Figure 2) that measures the
extra benefit gained by increasing the combination order.
Differential synergy can be calculated from the differences
between an mth order combination’s synergy score and those
of its (m�1)th order submixtures, and should peak at the
combination order where the system becomes fragile and the
absolute synergy increases most rapidly.

Finally, efficient sampling methods are needed to explore
the vast space of possible high-order combinations. Compre-
hensively testing all pairs of 10 perturbers and their single
agents would require only 55 tests, but that number grows to
845 up to sixth order, and for 20 perturbations there are over
60 000 permutations up to sixth order. High-throughput
experimental testing should enable screens on that scale
(Zimmermann et al, 2007), but it will be some time before
comprehensive coverage at higher order or for more than 20
agents is feasible. It is still possible, however, to sample such
high-order spaces using informed searching methods. For
example, one strategy is to employ an iterative maximal
damage search (Agoston et al, 2005) where each perturber is
first tested alone and the most effective agent is combined and
tested with all the other agents. Higher orders are tested by

Box 1 To illustrate how the combination order of fragility (COF) depends on system complexity, we used a simple simulation of graphs with looped topology.
A family of networks with the same number of nodes but increasing numbers of loops can be created using a modified attachment algorithm (Barabási and Albert,
1999), starting with a single closed loop and randomly connecting both ends of fixed-length linear ‘pathways’ to the existing network. Such networks can be tested
for vulnerability to dismemberment by deleting a set of nodes M and measuring the average distance �dM ¼

P
fi;jg di;j=N between nodes in network fragments,

where N is the number of distinct node pairs {i,j}, and di,j is the number of steps along the shortest path between nodes i and j, excluding node pairs across
fragments. The integrity of perturbed network can be assessed by calculating the ratio between d̄M and the corresponding d̄0 for the unperturbed network. Using
this procedure to generate 100-node networks with 1 through 32 loops (left), and applying a maximal damage algorithm that selects the most disruptive node at
each order for the next set of combined deletions (Agoston et al, 2005), the robustness to high-order perturbations shows a clear trend with system complexity.
Simple networks are rapidly disrupted by second- or third-order combinations, whereas networks with many loops are steadily eroded at slower rates. Networks
with intermediate levels of complexity are able to maintain integrity under low-order attacks, but are rapidly dismembered once the combination order exceeds a
critical level related to the network’s level of redundancy. Note that these networks are robust not only to the removal of random peripheral nodes but also to the
removal of the highly connected central nodes until the COF has been exceeded. More realistic simulations would require a biologically relevant modeling
approach (e.g. flux balance analysis; Segrè et al, 2005), but are likely to find similar trends.

Box 1 How fragility to combined perturbations depends on system complexity
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combining the most active mixture from the previous order
with the full set of single agents. This will identify progres-
sively more effective combinations as the order is increased,
but is guaranteed to miss the most dramatic high-order
synergies between inactive agents. If information on the
mechanistic targets of the perturbers is available, such a
greedy search can be improved by selecting more than one
agent for testing at the next order, based on both activity and
mechanistic diversity.

Synergy as a window into network
complexity

Combination order of fragility (COF) determinations from
systematic experiments should provide useful probes of
biological complexity, providing global constraints on corre-
sponding network models. A set of perturbations encompass a
subnetwork between the target nodes and the measured end
point, and as each such set probes different subnetworks, its

Figure 2 Synergy scores for high-order combinations. Absolute synergy measures the activity gained in combination over the responses of the single agents, and
differential synergy measures the incremental benefit from adding one more agent. For a mixture M comprising a set of chemical agents {A}, the combination can
improve the end point response E(C) either by boosting the high-concentration effect level Emax or by shifting the effective dose at a chosen level C50 to lower doses.
Synergy scores quantify boosts and shifts relative to the single agents using one of many possible null models (Chou and Talalay, 1984; Anastassiou, 2007; Lehár et al,
2007; Mani et al, 2008), and here we refer simply to the most effective single agent. Overall absolute synergy can be measured by integrating the area between curves.
Differential synergies compare the absolute score of an mth order mixture to those of its (m�1)th order ingredients. Here, we show how the submixtures might score for
a sixth-order synergy, and define differential synergy using the smallest gain due to adding an mth compound. Differential synergy will peak at the COF, providing a
convenient empirical measure of system robustness relevant to a measured end point.

Figure 3 Expected differential synergy in modular systems. Biological networks are organized into modules, some with differing levels of functional redundancy
(Hartwell et al, 1999; Gavin et al, 2002; Ideker and Lauffenburger, 2003). Experiments that focus on different modules, based on which perturbing agents and end
points are chosen, should yield differential synergy peaks at combination orders that reflect the complexity of the sampled modules. In this example with multiple
essential modules, probe sets targeting nodes in the green module will have COFs at three agents, whereas those targeting the blue module will peak at five perturbers.
In this way, systematically testing increasing combination orders for a variety of probe end point sets can yield information on many aspects of the total system’s
complexity and robustness.
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differential synergy trend provides a new perspective on the
overall structure. Sets of probes that cover a large and
redundant portion of the network are likely to have high
COFs, whereas those encompassing a low-complexity subnet-
work should peak at relatively low orders (Figure 3). Thus, by
examining differential synergy for many high-order combina-
tions across different end points, it should be possible to probe
the complexity of the network at many levels. For example,
high-order perturbation studies could be conducted using
bacterial growth assays under different media conditions to
determine which media lead to more fragile states and
to identify particular sets of probes involved with fragility.
It would also be instructive to compare differential synergy
results from experiments performed on bacteria, yeasts, and
mammalian cells, where one might expect trends toward
higher COFs for more complex organisms.

Individual high-order synergies can also expose critical
vulnerabilities of the system under study. If a high-order
combination experiment reveals a set of perturbers whose
differential synergy peaks lower than most of the other sets,
the targeted nodes will encompass a subnetwork that can most
effectively control the mechanisms involved with the mea-
sured end point. Such combinations correspond to minimal
cut sets (Schilling et al, 1999), which delineate the eigenstates
that underlie the dynamic behavior of a system (Schuster et al,
1999), and that can also suggest optimal combination
therapies. This approach could be especially useful when
applied to the mounting threat of multi-drug-resistant bacteria
(Lowy, 2003; Normark and Normark, 2002). Antibiotic
combinations are more effective than single agents at slowing
both the proliferation of resistant strains (Saginur et al, 2006)
and the emergence of resistance under sustained exposure
(Kosowska-Shick et al, 2006). Thus, by impairing the patho-
gens and raising barriers to evolutionary adaptation, high-
order antibacterial synergies show great promise. Systematic
high-order experiments may even reveal particular combina-
tions that cripple bacteria to such an extent as to preclude the
development of any resistance. COF combinations that show
strong antibacterial synergy could also include drugs that on
their own are not especially selective for bacteria over human
toxicity, increasing the number of targets that can be usefully
explored for antibacterial effect. Because antibacterial combi-
nations at the COF can counter many functional redundancies
relevant to bacterial proliferation, they have potential for
preventing the emergence of any resistance, and could even
prove effective even against strains of bacteria that are
resistant to all of their constituent drugs when applied
individually. As there is always a trade-off between efficacy
and toxicity, especially for high-order combinations, the COF
should provide a useful guide for optimizing the choice of such
antiresistance combinations. Once demonstrated in bacteria,
this approach could be used against other pathologies where
resistance is an obstacle, including AIDS and cancer.

Finally, investigations of high-order synergy will help
reinforce the growing realization that a useful paradigm for a
therapeutic or bioengineering target is the set of nodes (e.g.
metabolites, genes, proteins, or pathways) in a network that
can selectively control the state of a biological system (Kitano,
2007; Kubinyi, 2003). In principle, the behavior of biological
systems should be controllable by individually adjusting the

state of many components, and the precision with which the
system can be manipulated should depend on the number of
such state settings. Because of this increased precision, high-
order perturbations are more likely than single agents to
produce a therapeutic outcome without triggering toxic side
effects. In practice, therapeutic selectivity can result both from
having more points of control and from the ability to reduce
the doses of individual perturbers if they cooperate toward a
beneficial end point. High-order experiments can identify such
selective synergies and determine the optimal number of
ingredients. Although there will always be some conditions
that are best treated by a single drug, high-order multi-target
combinations represent a strategy that addresses the very
complexity of biological systems.
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