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Repeated bouts of aerobic exercise lead to reductions
in skeletal muscle free radical generation and nuclear
factor κB activation
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Chronic exercise improves endurance and skeletal muscle oxidative capacity. Despite the
potential importance of reactive oxygen species (ROS) generated during exercise as regulators of
these adaptations, the effect of repeated bouts of aerobic exercise on ROS generation by skeletal
muscles during contractions has not been examined. Our aim was to establish the impact of
repeated treadmill running exercise on muscle ROS generation and activation of redox-sensitive
transcription factors. Following 8 weeks of treadmill running, mice displayed an improvement
in running speed that was associated with an enhanced ability of gastrocnemius (GTN) muscles
to maintain force during a protocol of isometric contractions. In contrast to GTN muscles of
cage-sedentary (Sed) mice, muscles from exercised (Exer) mice did not release superoxide or
nitric oxide during the isometric contractions. For male mice, basal levels of nuclear factor κB
(NFκB) and activator protein-1 (AP-1) DNA binding were increased by treadmill running, and
the contraction-induced activation of NFκB and AP-1 observed in muscles of Sed mice was
absent in Exer muscles. Also in contrast to Sed muscles, Exer muscles displayed no reductions
in glutathione or protein thiol levels in response to contraction. Our observations of decreases
for Exer compared with Sed muscles in contraction-induced (i) ROS generation, (ii) activation
of redox-sensitive signalling pathways, and (iii) ROS stress suggest that exercise conditioning
enhances the ability of skeletal muscle to readily and rapidly detoxify ROS and/or reduces ROS
generation, providing protection from ROS-induced damage and reducing signals that might
act to mediate further unnecessary adaptations.
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Effects in skeletal muscle of aerobic exercise on both
oxidative (Holloszy, 1967; Baldwin et al. 1972; Holloszy &
Coyle, 1984; Booth & Thomason, 1991) and antioxidant
(Sen et al. 1992; Leeuwenburgh et al. 1994; Ji, 1996;
Leeuwenburgh et al. 1997; Clanton et al. 1999; Powers
et al. 1999) capabilities have been well described, but
the regulatory mechanisms underlying this wide range
of adaptations are complex and incompletely under-
stood (reviewed in Flück, 2006; Hood et al. 2006).
Reactive oxygen species (ROS) generated by contra-
cting muscles have for many years been viewed as
inevitable but unwanted effects of aerobic exercise, but
important roles for ROS as signalling molecules that
contribute to normal cell function are also recognized
(Pahl, 1999; Zhou et al. 2001; Jackson et al. 2002).
Based on a growing appreciation of the influence of
redox-sensitive signalling pathways on normal cellular

processes (Rhee, 2006), a reasonable hypothesis is that an
important regulator of the adaptations in skeletal muscle
in response to aerobic exercise may be ROS generated
during the exercise. This hypothesis was explored recently
using a myoblast cell line treated in culture with lactate
anion (Hashimoto et al. 2007). Treatment with lactate
not only increased hydrogen peroxide production, but
also activated redox-sensitive signalling pathways and
increased expression of antioxidant enzymes and proteins
associated with mitochondrial biogenesis, responses
typically seen as a result of aerobic exercise (Hashimoto
et al. 2007).

Specific ROS generated by contracting muscles include
nitric oxide, superoxide, hydrogen peroxide and hydro-
xyl radicals (Powers et al. 1999). Despite the potential
importance of ROS generated during skeletal muscle
contractions as regulators of the adaptations that occur
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in response to aerobic exercise, no studies have examined
the effect of regular exercise on the generation of ROS
by skeletal muscle during subsequent contractile activity.
Furthermore, the effect of repeated aerobic exercise
on the ability of acute contractile activity to stimulate
activation of redox-sensitive transcription factors has not
been explored. We previously developed a demanding
but non-damaging protocol of isometric contractions
that results in the production of ROS (McArdle et al.
2001; Vasilaki et al. 2006a) and the activation of the
redox-sensitive transcription factors NFκB and AP-1
(Vasilaki et al. 2006b). The aim of the present study was
therefore to determine the effect of aerobic exercise on ROS
generation and the associated activation of NFκB and AP-1
DNA binding by contracting skeletal muscles. Toward this
aim, both male and female mice were exposed to 8 weeks
of 5 days per week treadmill running exercise and sub-
sequently muscles of these mice, as well as age-matched
sedentary controls, were administered the aforementioned
protocol of isometric contractions. The production of ROS
in response to the contraction protocol was measured and
muscles were subsequently analysed for NFκB and AP-1
activation as well as other corroborating measures of ROS
stress, and oxidative and antioxidant enzyme activities.

Methods

Animals

These studies were carried out on specific pathogen-free
(SPF) adult (6–8 months old) male and female C57BL/6
mice. Mice were randomly separated into two groups,
those that underwent 8 weeks of treadmill running
(exercised mice; Exer group) and those that served as
unexercised controls (cage sedentary mice; Sed group).
Throughout, all mice were housed in an SPF barrier
facility in microisolated shoe box cages at the University of
Michigan. All experimental procedures were approved by
the University Committee for the Use and Care of Animals
at the University of Michigan.

Treadmill running exercise

In order to exercise all mice at the same relative intensity,
initial fitness levels were evaluated by a graded exercise
test that established the maximum running capacities of
the mice (Mazzeo et al. 1984). For this test, mice were
placed individually on a motorized treadmill (Columbus
Instruments, Eco 3/6, Columbus, OH, USA) at a 0%
grade and an initial speed of 10 m min−1, a speed that
we expected all mice to be capable of tolerating (Pagala
et al. 1998). Treadmill speed was increased by 2 m min−1

every 2 min until the mouse could no longer keep pace
with the treadmill. Based on the initial graded test, mice
were grouped with other mice of the same gender with

similar running capabilities for the 8 weeks of treadmill
exercise.

Treadmill running was performed using programs
similar to those previously described for studies of cardio-
vascular, skeletal muscle oxidative capacity and anti-
oxidant adaptations in rats (Fitts et al. 1975; Mazzeo
et al. 1984; Gore et al. 1998; Hollander et al. 1999). The
exercise program consisted of running 5 days per week at
an intensity of ∼75% of the maximum running speed. At
the outset, mice were run for 15 min at a speed 70–80%
of the maximum determined in the graded exercise test.
After 2 to 3 days, running times were increased 15 min
each day until the animals could run continuously for 1 h
per day. Mice were manually encouraged to run, as well
as being exposed to brief periods of electric shock if they
failed to keep up with the speed of the treadmill. If, at
any time, a mouse absolutely refused to run, choosing
instead to sit on the shock bar, the animal was removed
from the treadmill for the day. Attempts were made
each week to progressively increase running speed to
maintain the exercise intensity throughout the 8 weeks.
If running performance showed evidence of decline, mice
were exercised at a lower treadmill speed with the goal
of keeping the maximum number of mice running for as
close to 60 min as possible. Overall, for the entire 8 week
training period, female mice ran an average of 49 ± 3 min
per day and male mice ran an average of 40 ± 6 min per
day.

At the end of the 8 weeks of treadmill running, mice
were once again tested for maximum running speed
using the graded exercise test. Within 24 h of the final
exposure to treadmill running, the Exer mice were again
separated into two groups. One group of Exer mice was
killed by intraperitoneal injections of an overdose of
the anaesthetic Avertin (tribromoethanol; 400 mg kg−1)
and limb muscles were removed, quickly weighed and
rapidly frozen in liquid nitrogen and stored at −70◦C
for subsequent analysis as quiescent muscles. The second
group of Exer mice was anaesthetized and the hind limb
muscles were subjected to a 15 min protocol of demanding
but non-damaging isometric contractions (McArdle et al.
2001; Vasilaki et al. 2006a,b) prior to removing the muscles
and killing the animals. Sed mice, that had not under-
gone treadmill running, were also separated into groups
whose hind limb muscles either remained quiescent or
were exposed to the isometric contraction protocol and
were treated in the same fashion as muscles from Exer
animals.

Isometric contraction protocol to assess ROS
generation during contractile activity

Mice were anaesthetized with intraperitoneal injections
of Avertin (tribromoethanol; 250 mg kg−1), with
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supplemental doses administered as needed to maintain
a depth of anaesthesia sufficient to prevent response to
tactile stimuli. Incisions were made at both ankles to
expose the gastrocnemius (GTN) muscles. The right
Achilles tendon was clamped to the lever arm of a
servomotor (Aurora Scientific, Model 305) to monitor
the force produced by the right GTN muscle during the
contraction protocol. The right knee was immobilized
between two sharpened screws, and surface electrodes
were placed in a position as proximal along the limbs
as possible as well as around the ankles to activate
the muscles of both hind limbs (McArdle et al. 2001).
Maximum isometric tetanic contractions were produced
by square wave pulses of 0.2 ms duration, a voltage slightly
greater than that required to produce a maximum twitch
(usually ∼70 V), and a frequency of 100 Hz (McArdle
et al. 2001). GTN muscle length was set at the optimum
length for force production. Isometric contractions were
held for 500 ms, with one contraction every 5 s for a total
of 180 contractions during the 15 min of contractions.

Levels of ROS generated and released into the interstitial
fluid were monitored in the left GTN muscle during the
contraction protocol (McArdle et al. 2001). Four micro-
dialysis probes (MAB 3.8.4, Metalant, Stockholm, Sweden)
with a molecular mass cut-off of 35 kDa were placed into
the muscle with a 22-gauge plastic introducer to permit
analysis of extracellular ROS activities. The microdialysis
probes consist of a 10 mm tubular dialysis membrane
that has a diameter of 0.5 mm with concentric inlet and
outlet tubes. Perfusion of the probes was performed at a
very slow flow rate so small molecules in the perfusate
and extracellular space reached equilibrium (McArdle
et al. 2001). Probes were perfused at 4 μl min−1 with
normal saline for analysis of hydrogen peroxide and total
nitric oxide (NO) content (Vasilaki et al. 2006a) or with
50 μM cytochrome c in normal saline for analysis of super-
oxide levels (McArdle et al. 2001). Perfusate samples were
collected from the probes via the outlet tubes every 15 min,
for the 60 min before the contractions, during the 15 min
of isometric contractions, and for 15 min after the period
of contractions. Mice remained under anaesthesia until
the end of the experiment and were then killed with an
intraperitoneal injection of an overdose of Avertin.

Biochemical analyses

Muscle masses. At the time of kill, the extensor digitorum
longus (EDL), soleus (SOL), tibialis anterior (ATB),
gastrocnemius (GTN), plantaris (PLN), flexor digitorum
longus (FDL), biceps femoris (BFM), vastus lateralis
(VLT) and vastus medialis (VMD) muscles were dissected,
trimmed of tendons, and weighed on a microbalance to
the nearest 0.1 mg.

Analyses of extracellular ROS activities in microdialysates.
Analyses of the microdialysates were undertaken as
described by Vasilaki et al. (2006a). Briefly, reduction of
cytochrome c was used as an index of superoxide anion
radical concentration previously described (McArdle et al.
2001). The total nitrate and nitrite content was measured
as an index of total NO generation using a commercial
fluorometric assay (Cayman Chemical Co. USA) based on
the method of Miles et al. (1995), and hydrogen peroxide
content was measured using a modification of the method
of Lei et al. (1997).

Analyses of muscle enzyme activities. Frozen GTN
muscle samples were analysed as previously described
(Larkin et al. 1997) for citrate synthase activity. Briefly,
muscle homogenates (from a 700 g supernatant) were
used to determine citrate synthase activity (μmol (μg
protein)−1 min−1) using the method of Srere (1969).
GTN muscle homogenates were also analysed for catalase
activity by following the kinetic decomposition of
hydrogen peroxide spectrophotometrically at 240 nm with
the method described by Claiborne (1985). Total muscle
superoxide dismutase (SOD) activity was measured
according to the method of Crapo et al. (1978).

Analysis of muscle total glutathione and protein thiol
content. The automated glutathione recycling method
described by Anderson (1996) was used to assess the
total glutathione content of samples with a 96-well plate
reader (Benchmark, Bio-Rad). The protein thiol content
of samples was analysed by the method of Di Monte et al.
(1984), adapted for use on a 96-well plate reader.

Western blotting analysis of muscle SOD content

MnSOD and CuZnSOD contents of
GTN muscles were analysed by Western
blotting techniques. Muscle samples were
homogenized in 1% SDS containing 1 mM

iodoacetimide, 1 mM benzithonium chloride, 5.7 mM

phenylmethylsulphonyl fluoride and 5 mM EGTA (Sigma
Co., Dorset, UK). Cellular debris was removed by
centrifugation and samples stored at −70◦C until
analysis. Protein content of samples was determined using
the bicinchoninic acid method (Sigma). One hundred
micrograms of total cellular protein were separated on
SDS-PAGE followed by Western blotting. MnSOD and
CuZnSOD were identified using antibodies obtained
from Stressgen Inc. (MnSOD, Cat #SOD-110; CuZnSOD,
Cat #SOD-101). Bands were visualized using a Biorad
Chemi-Doc System (Biorad).
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Table 1. Body mass and hind limb muscle masses

Body mass Muscle mass (mg)

(g) EDL SOL ATB GTN PLN FDL BFM VLT VMD

Male mice
Cage sedentary 31.9 11.6 10.2 53.3 153.2 20.2 32.8 170.7 102.3 94.7
(Sed) ± 0.7 ± 0.2 ± 0.2 ± 0.7 ± 2.4 ± 0.4 ± 0.4 ± 2.7 ± 1.4 ± 1.3

Exercised 28.5 10.9 10.4 50.1 135.8 18.4 30.4 151.0 94.9 88.1
(Exer) ± 0.7∗ ± 0.3∗ ± 0.4 ± 1.2∗ ± 2.5∗ ± 0.4∗ ± 0.8∗ ± 4.3∗ ± 2.3∗ ± 2.3∗

Female mice

Cage sedentary 24.1 8.7 7.9 39.3 112.0 13.6 23.7 128.7 77.3 68.8
(Sed) ± 0.4 ± 0.2 ± 0.1 ± 0.5 ± 1.6 ± 0.3 ± 0.4 ± 1.8 ± 1.0 ± 0.9

Exercised 22.3 8.1 7.8 36.2 99.2 12.1 22.0 114.4 72.5 62.9
(Exer) ± 0.6 ± 0.2∗ ± 0.3 ± 1.0∗ ± 2.6∗ ± 0.4∗ ± 0.7∗ ± 3.3∗ ± 2.4∗ ± 1.8∗

Body masses in grams and muscle masses in milligrams are given as means ± S.E.M. for cage sedentary (Sed) mice and for mice that
completed 8 weeks of 5 days per week treadmill running exercise (Exer). Muscles are the extensor digitorum longus (EDL), soleus
(SOL), tibialis anterior (ATB), gastrocnemius (GTN), plantaris (PLN), flexor digitorum longus (FDL), biceps femoris (BFM), vastus lateralis
(VLT) and vastus medialis (VMD). In all cases, values were significantly (P < 0.05) larger for male compared with female mice within
an experimental group. ∗ indicates significant difference from cage sedentary mice of the same gender by Tukey post hoc pair-wise
multiple comparison.

Gel shift analysis of NFκB and AP-1 DNA binding

Electrophoretic mobility shift assays (EMSA) of DNA
biding by nuclear factor κB (NFκB) and activator
protein-1 (AP-1) were carried out using previously
reported techniques (Broome et al. 2006; Vasilaki et al.
2006b).

Statistical analyses

Changes throughout the treadmill running program
in body mass and maximum running speed as
determined by graded exercise tests were assessed
by two-way repeated measures analysis of variance
(gender × repetition). Two-way repeated measures
ANOVAs (treadmill running × sample) were also used to
determine the effect of treadmill running on changes
in levels of extracellular ROS for samples taken before,
during, and after the isometric contraction protocol. The
effects of gender and treadmill running on the remainder
of the variables described above were determined
by standard two factor analyses of variance. When
significance was detected, Tukey’s post hoc comparison
was used to assess the individual differences. In all cases,
the level of significance was set a priori at P = 0.05.

Results

All data are reported as means ± standard error of the
mean (S.E.M.). In cases where the responses of male
and female mice differed significantly, data are reported
separately. In contrast, in instances when statistical analysis

showed no gender effects, data were pooled and the
combined results are presented for brevity.

Body mass and running ability

The initial mean body mass of 28.0 ± 0.7 g for the eight
male Exer mice was significantly larger than the initial
mass of 21.0 ± 0.5 g for the eight female Exer mice. The
body mass for the male mice at the time of kill (Table 1)
was not different from the initial mass. In contrast, female
mice demonstrated a small, but significant, weight gain
throughout the 8 weeks of exercise. The lack of weight gain
for male mice throughout the 8 weeks running program
resulted in body masses for male Exer mice that were
smaller than the masses of the 18 age-matched Sed males
(Table 1). The Exer females were also slightly smaller than
the 23 Sed female mice (Table 1), but the difference was
not significant (P = 0.06).

The maximum running speeds during the initial graded
exercise test were lower for male than for female mice,
with mean maximum speeds of 20.8 ± 0.4 m min−1 and
24.9 ± 0.7 m min−1, respectively. Both males and females
improved their running speed by ∼35% following 8 weeks
of treadmill running exercise. The similar increase in
running speed for male and female mice was observed
despite a 20–25% longer time on average that female mice
actually ran. Furthermore, no correlation was found for
individual mice between the average time spent on the
treadmill and the improvement in maximum running
capability suggesting that 40–50 min per day of running
elicited similar improvements in function.
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Muscle mass and force

The smaller body masses for Exer compared with Sed
mice were reflected in smaller muscle masses that were
on average 8% smaller for Exer mice than for gender
matched Sed mice (Table 1), with no differences between
Exer and Sed mice when muscle masses were normalized
for body mass. One exception was no difference between
Exer and Sed mice for SOL muscle mass (Table 1) and, thus,
greater SOL muscle mass/body mass ratios for Exer mice,
indicating that SOL muscles hypertrophied in response to
the treadmill running exercise. A second exception was
a smaller muscle mass to body mass ratio for the GTN
muscles of female Exer compared with Sed mice, indicating
atrophy of GTN muscles in female mice.

Despite slightly larger masses for GTN muscles of
male than female mice, the maximum isometric forces
(Po) were not significantly different between males and
females. Mean Po for GTN muscles of Sed mice was
3254 ± 127 mN. Consistent with the 11% smaller muscle
masses for GTN muscles of Exer compared with Sed
mice, the mean Po of 2858 ± 109 mN was 12% lower,
although the decrease was not statistically significant.
For GTN muscles of Sed mice of both genders, the
force dropped during the 15 min isometric contraction
protocol by nearly one half within the first 2 min (Fig. 1).
Subsequently, force dropped more slowly to a final level
that was 35% of the initial Po. The treadmill running
program resulted in an increased ability of the GTN
muscles to sustain force during the isometric contraction
protocol, as evidenced by the maintenance by muscles of
Exer mice of greater than 65% of initial Po after 2 min
(Fig. 1). Higher variability in the response of muscles,
of Exer mice in particular, during the latter part of the
contraction protocol precluded a statistically significant
improvement in isometric force after the full 15 min of
contractions, although the magnitude of the difference
between Exer and Sed mice was similar at 15 min to that
observed after 2 min.

Extracellular ROS levels resulting from the isometric
contraction protocol

Microdialysates were analysed for superoxide, hydrogen
peroxide (H2O2) and nitric oxide (NO) activities in the
extracellular fluid of the GTN muscle resulting from the
15 min isometric contraction protocol. For all micro-
dialysis experiments, data from male and female mice
were pooled. Baseline levels of all three ROS analysed
were not different between muscles of Exer and Sed mice
(Fig. 2). For muscle of Sed mice, superoxide activities
increased 70% relative to baseline values during the
isometric contractions followed by a complete recovery
back to baseline levels within 15 min (Fig. 2A). This
increase in superoxide was completely absent for muscles

of Exer mice resulting in superoxide levels during contra-
ctions that were 70% greater for muscles of Sed compared
with Exer mice (Fig. 2A). Similarly, NO levels in Exer
mice did not change with the onset of the contraction
protocol, whereas increased NO levels in Sed muscles
during contractions resulted in over 2-fold higher NO
levels compared with the values for muscles of Exer mice
(Fig. 2B). H2O2 levels remained essentially unchanged
from baseline during and after the contraction protocol
for muscles of both Exer and Sed mice with no difference
between the groups (Fig. 2C).

Activation of transcription factor DNA binding

Figures 3 and 4 show representative gel shift analyses of
DNA binding by NFκB and AP-1, respectively, along with
the average data for each experimental group. Compared
with Sed mice, an ∼2-fold increase was observed following
the 8 weeks of treadmill running (Exer mice) for males in
the basal level of NFκB DNA binding in quiescent muscles
(Fig. 3A), and the basal level of AP-1 DNA binding was
more than 50% higher in muscles of male Exer compared
with Sed mice (Fig. 4A). In addition, the 15 min protocol
of isometric contractions elicited a greater than 2-fold
increase in NFκB activation (Fig. 3A) and a trend for an
increase of ∼50% in DNA binding by AP-1 (Fig. 4A)
in muscles of Sed male mice, whereas for both NFκB
and AP-1 the increased basal levels of DNA binding in
quiescent muscles of Exer mice were coupled with an
abolition of the ability of the contraction protocol to
induce any further activation of either transcription factor.
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Figure 1. The drop in maximum isometric force during a
demanding protocol of repeated isometric contractions
Values are shown for force generated by gastrocnemius (GTN) muscles
following 2 (left bars) and 15 (right bars) minutes of repeated
isometric contractions expressed as a percentage of the initial force
levels. Data are for GTN muscles of mice that had been subjected to
8 weeks of treadmill running exercise (grey bars, Exer) and
age-matched cage-sedentary controls (black bars, Sed). All bars are
means with standard error bars. Significant differences (P < 0.05)
between Exer and Sed groups are indicated by asterisks.
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For female mice, basal levels of NFκB binding of DNA
showed a trend for an increase in quiescent muscles in
response to the 8 weeks of exercise (Fig. 3B), although
the effect was not significant, and basal AP-1 activation
was not altered appreciably in female mice following
the treadmill running (Fig. 4B). The contraction-induced
increases in DNA binding of NFκB and AP-1 observed
in muscles of Sed male mice were not observed for Sed
females (Figs 3B and 4B), nor was any increase in NFκB
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Figure 2. Release of free radicals into the extracellular space
during a demanding protocol of repeated isometric contractions
Values are shown for: A, superoxide activity (determined by
measurement of the reduction in cytochrome c); B. nitric oxide (NO)
release (determined by measurement of total nitrate and nitrate
content); and C. hydrogen peroxide (H2O2) content in microdialysates
collected from gastrocnemius muscles of mice that either had (grey
circles, Exer) or had not (black circles, Sed) been subjected to 8 weeks
of treadmill running exercise. Data are from samples collected for
15 min periods just prior to (Baseline), during (Stimulated) and
following (Recovery) the isometric contraction protocol. Values are
means with standard error bars. ∗ indicates significant effects of
stimulation (P < 0.05), ∗∗ indicates significant differences between
Exer and Sed groups.

activation observed following the isometric contraction
protocol for muscles of Exer female mice (Fig. 3B). Inter-
estingly, the levels of DNA binding by AP-1 in muscles
of female mice that had exercised on the treadmill for
8 weeks increased slightly in response to the 15 min
isometric contraction protocol (Fig. 4B).

Adaptations in oxidative and antioxidant systems

No differences were observed between muscles of male
and female Sed mice for citrate synthase, catalase, or SOD
activities. Compared with Sed mice, muscles of Exer mice
displayed dramatic increases of 50% to 60% in total SOD
activity (Fig. 5). The increase in SOD activity in response to
the 8 weeks of treadmill running was similar for both male
and female mice. The increased SOD activity appeared to
be due primarily to an increase in MnSOD protein content,
whereas CuZnSOD protein levels were not dramatically
affected by the 8 weeks of treadmill running (Fig. 5A).
Previous reports of only an 18% increase in citrate synthase
activity for quadriceps muscles of mice following 8 weeks
of treadmill running for 2 h per day (Chow et al. 2007) as
well as no effect in mice of 4 weeks of treadmill running
on cytochrome c protein expression in either PLN or
GTN muscles (Massett & Berk, 2005) suggest that the
classic adaptation of a robust increased in muscle oxidative
capacity typical in studies of treadmill running in rats
(Fitts et al. 1975; Holloszy, 1967) is much more modest
in mice. Consistent with previous studies of mice, 8 weeks
of treadmill running exercise resulted in a trend in the
present study for a moderate 10% to 15% increase in citrate
synthase activity in GTN muscles, but the increase was not
significant. Catalase activity was unaltered by exposure to
treadmill running for either males or females. The overall
mean catalase activity was 6.3 ± 0.4 units (mg protein)−1

when values were pooled for all muscles in all experimental
groups.

Additional dramatic alterations were observed in
response to the treadmill running in non-enzymatic
antioxidant systems. Total glutathione and protein thiol
contents were not different between GTN muscles of male
and female Sed mice, but glutathione content decreased by
50% following the 8 weeks of exercise (Table 2). The effect
of the treadmill running program to reduce glutathione
levels was similar for muscles of male and female mice.
Similarly, a trend was observed for a decrease in response
to treadmill running in resting protein thiol levels, but
the effect did not reach statistical significance (Table 2).
The protocol of isometric contractions elicited a decrease
for muscles of Sed mice in glutathione and protein thiol
levels of approximately 50% and 30%, respectively, for
both males and females (Fig. 6). The significant reduction
in response to the treadmill running program in resting
levels of glutathione in muscles of Exer mice was coupled
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with the abolition of the effect of the isometric contraction
protocol to induce any further depletion of glutathione
(Fig. 6A). Furthermore, although the trend observed for
a decrease in response to treadmill running in resting
protein thiol levels did not reach statistical significance,
the decrease was sufficient to also abolish for muscles of
Exer mice the effect of the isometric contraction protocol
to diminish protein thiol level (Fig. 6B).

Discussion

Our present finding of ROS release by GTN muscles
of Sed mice in response to a demanding protocol of
isometric contractions is consistent with numerous
reports of ROS generation by skeletal muscles during
contractile activity (Balon & Nadler, 1994; O’Neill et al.
1996; McArdle et al. 2001; Vasilaki et al. 2006a). In
addition, activation by contractile activity of NFκB and
AP-1 has previously been associated with ROS generation
in mice (Vasilaki et al. 2006b). Thus, our observation
of increased DNA binding of these redox-sensitive
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Figure 3. Levels of NFκB binding to DNA in response
to a protocol of repeated isometric contractions
Data are shown for levels of NFκB activation in quiescent
(quies.) gastrocnemius (GTN) muscles and muscles
immediately following exposure to the isometric
contraction protocol (immed.) for: A, male and B, female
mice that either had (grey bars, Exer) or had not (black bars,
Sed) been subjected to 8 weeks of treadmill running
exercise. All bars are means with standard error bars.
Significant differences (P < 0.05) are indicated by asterisks.

transcription factors in muscles of Sed mice immediately
following the contraction protocol appears to be in
response to the ROS generation displayed by these muscles,
although alternate mechanisms for activation of skeletal
muscle NFκB are also known (Ji et al. 2004). Despite
extensive documentation of the effects of repeated bouts of
aerobic exercise on the oxidative and antioxidant capacities
of skeletal muscle (Holloszy, 1967; Fitts et al. 1975; Davies
et al. 1981; Leeuwenburgh et al. 1994; Powers et al. 1994;
Oh-ishi et al. 1997; Tonkonogi et al. 2000; Liu et al. 2000;
Navarro et al. 2004; Massett & Berk, 2005), whether the
generation of ROS or the activation of NFκB or AP-1
during subsequent contractile activity are affected by such
exercise had not been studied previously. Our findings of
a substantial reduction, or outright elimination, following
8 weeks of treadmill running, of the release of superoxide
and NO from contracting muscles and of the activation
by the contraction protocol of NFκB or AP-1 are highly
significant and could not have been predicted by previous
studies of antioxidant enzyme activities or indirect
measures of oxidant stress or damage (Leeuwenburgh et al.
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1994; Powers et al. 1994; Oh-ishi et al. 1997; Liu et al. 2000;
Tonkonogi et al. 2000; Navarro et al. 2004). While our data
show strong associations between contraction-induced
ROS release and activation of NFκB/AP-1, data on males
and females were pooled for our experiments on ROS
generation, whereas the data of NF-κB and AP-1 are
reported separately. Thus, although a direct effect of ROS
to activate NF-κB/AP-1 during contractions has not been
definitively demonstrated, these data strongly support the
growing view (McArdle et al. 2004; Hashimoto et al. 2007;
Gomez-Cabrera et al. 2008) that skeletal muscle not only
tolerates without damage the contraction-induced ROS
derived from a bout of exercise but the ROS elicit the
initiation of pathways leading to adaptations that protect
from future stresses.

Our observations that total glutathione and protein
thiol contents in GTN muscles of Sed mice fell significantly
in response to the isometric contractions also agree
with previous data illustrating transient declines in
muscle glutathione and protein thiols following a similar
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Figure 4. Levels of AP-1 binding to DNA in response
to a protocol of repeated isometric contractions
Data are shown for levels of AP-1 activation in quiescent
(quies.) gastrocnemius (GTN) muscles and muscles
immediately following exposure to the isometric
contraction protocol (immed.) for: A, male and B, female
mice that either had (grey bars, Exer) or had not (black bars,
Sed) been subjected to 8 weeks of treadmill running
exercise. All bars are means with standard error bars.
Significant differences (P < 0.05) are indicated by asterisks.

contraction protocol (McArdle et al. 2001; Vasilaki et al.
2006a). The mechanisms underlying the decreases in
muscle glutathione and protein thiols that accompany
contractile activity are still unclear, but our data
demonstrating an increase in ROS generation during
the isometric contractions by muscles of Sed mice are
consistent with the hypothesis proposed by several authors
that the thiol groups are oxidized by reaction with ROS
generated during activity (Ji et al. 1992; Sastre et al. 1992).
This mechanism is further supported by the abolition
of both ROS generation and falls in glutathione and
protein thiol levels in response to the contraction protocol
by muscles of Exer mice that had completed 8 weeks
of treadmill running. Collectively, our observations of
reductions in response to the demanding protocol of
isometric contractions for muscles of Exer compared with
Sed mice in (i) ROS generation, (ii) the activation of
redox-sensitive signalling pathways, and (iii) evidence for
elevated ROS stress suggest that exercise conditioning may
afford the muscles the ability to readily and rapidly detoxify
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Table 2. Glutathione and protein thiol levels

Male mice Female mice P (gender) P (exercise)

Sed Exer Sed Exer

Total glutathione content (μmol (g protein)−1) 15.8 ± 2.7 9.7 ± 1.0 18.0 ± 3.6 6.2 ± 1.3∗ 0.82 0.003
Protein thiol content (μmol (g protein)−1) 52.1 ± 5.6 39.0 ± 4.0 63.9 ± 9.7 55.3 ± 8.0 0.08 0.16

Total glutathione and protein thiol content are given as means ± standard error of the mean for quiescent gastrocnemius muscles
from cage sedentary (Sed) male and female mice and male and female mice that completed 8 weeks of 5 days per week treadmill
running exercise (Exer). Overall P values are also given for the effects of gender and exercise on glutathione and protein thiol levels
by two-way analysis of variance. ∗ indicates significant difference from muscles of Sed mice of the same gender by Tukey post hoc
pair-wise multiple comparison.

ROS. This ability to detoxify ROS is compatible with both
protection against ROS-induced damage and prevention
of the formation of additional ROS that may act to mediate
further unnecessary adaptive responses (Khassaf et al.
2003; Gomez-Cabrera et al. 2008).
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Figure 5. Effects of treadmill running on superoxide dismutase
in gastrocnemius (GTN) muscles of female and male mice
A, representative Western blots of MnSOD (upper panel) and
CuZnSOD (lower panel) protein levels for quiescent gastrocnemius
(GTN) muscles of male mice subjected to 8 weeks of treadmill running
(Exer) and GTN muscles of age-matched sedentary control (Sed) mice.
B, total superoxide dismutase (SOD) activities of GTN muscles of male
(left bars) and female (right bars) mice that either had (grey bars, Exer)
or had not (black bars, Sed) been subjected to 8 weeks of treadmill
running exercise. All bars are means with standard error bars.
Significant differences (P < 0.05) are indicated by asterisks.

Our observation of a dramatic increase in total SOD
activity in response to treadmill running is highly
consistent with previous findings (Higuchi et al. 1985;
Jenkins, 1988; Leeuwenburgh et al. 1994, 1997; Powers
et al. 1994; Oh-ishi et al. 1997). NFκB and AP-1 are
both thought to be involved in the up-regulation of
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Figure 6. Glutathione and protein thiol levels in response to a
demanding protocol of repeated isometric contractions
Data are shown for: A, glutathione and B, protein thiol levels in
quiescent gastrocnemius (GTN) muscles and GTN muscles immediately
following exposure to isometric contractions for mice that either had
(grey bars, Exer) or had not (black bars, Sed) been subjected to 8 weeks
of treadmill running exercise. All bars are means with standard error
bars. Significant differences (P < 0.05) are indicated by asterisks.
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antioxidant enzymes (Pahl, 1999; Zhou et al. 2001; Jackson
et al. 2002). The substantially higher SOD activity in GTN
muscles of Exer compared with Sed mice is consistent
with the hypothesis that NFκB and/or AP-1 activation
by ROS generated in response to the treadmill running
may mediate this adaptation. Although explored in a
cell culture system, Hashimoto et al. (2007) suggested a
similar hypothesis based on their finding that elevated
lactate increased hydrogen peroxide production as well
as glutathione peroxidase activity. In the present study,
muscles from Exer mice also showed NFκB activation
at rest. These data, along with the lack of any decrease
in glutathione or protein thiol levels in response to the
isometric contraction protocol by muscles of Exer mice
may be indicative of a chronic oxidizing environment in
these muscles and this shift may modify the ability of the
muscles to activate NFκB and AP-1. The failure in the
present study of Exer muscles to activate NFκB following
the demanding contraction protocol represents a possible
mechanism whereby signals for inducing adaptation are
not transduced. Further adaptation in response to contra-
ctile activity is not necessary since the muscle is already
adapted to the stress of contractions associated with
regular repeated treadmill running. Both the release of
superoxide during contractions (Vasilaki et al. 2006a)
and the contraction-induced activation of NFκB (Vasilaki
et al. 2006b) are also blunted for muscles of old compared
with adult mice, but whether the cellular mechanisms are
similar for the reductions in superoxide release and NFκB
activation for Exer mice and old mice is unclear.

The marked decrease in resting levels of glutathione
in the muscles of Exer compared with Sed mice in the
present study is clearly contrary to the generally accepted
response to endurance training to promote an increase in
skeletal muscle glutathione content (Sen et al. 1992; Marin
et al. 1993; Leeuwenburgh et al. 1994, 1997; Leeuwenburgh
& Ji, 1996; Liu et al. 2000). The observation in the
present and previous (McArdle et al. 2001; Vasilaki et al.
2006a) studies that that in mice a single episode of
demanding contractile activity leads to a fall in muscle
glutathione content, suggests that the net response of
muscle glutathione content to an exercise program is likely
to depend upon the duration of each bout of exercise
and the recovery period between bouts. Thus, altering the
frequency and/or duration of each bout of exercise may
influence the pattern of changes observed, but no data are
currently available to support this possibility. Our finding
of no effect of treadmill running on catalase activity is
consistent with the majority of previous studies on rats that
provide little evidence of an effect of endurance exercise to
increase catalase activity in skeletal muscle (Higuchi et al.
1985; Leeuwenburgh et al. 1994; Powers et al. 1994). In
fact, several investigators report reduced catalase activity
resulting from exercise training (Alessio & Goldfarb, 1988;
Laughlin et al. 1990; Leeuwenburgh et al. 1997).

While the gender differences observed in the present
study are currently unexplained, they are consistent with
other data examining oxidative responses to contraction
in mice (Vasilaki et al. 2006b). The most evident
gender-specific response was the substantially blunted
levels of activation in muscles of female mice of NFκB and
AP-1 transcription factors. The discrepancy between males
and females with respect to the effects of the treadmill
running exercise on NFκB and AP-1 activation was
previously unknown and existed despite the observation
that male and female mice displayed comparable
functional improvements in response to the exercise
program, as assessed by running speed and ability to
maintain force during the isometric contractions protocol.
Biochemical adaptations, such as increased SOD activity
and decreased glutathione levels, were also similar between
the genders. The clear adaptations observed in female
mice with little evidence for activation of NFκB or AP-1
transcription factors indicate that alternate or more likely
additional factors are critical to changes in muscle gene
expression that mediate many of the adaptations that occur
in response to chronic aerobic exercise.
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