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Abstract

This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized
excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are
explored with a three-state model of node activation for systematically varying levels of random background network
stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and
network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The
approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the
network’s modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is
strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic
states in the function of complex biological networks.
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Introduction

Hierarchical Biological Networks
The analysis of biological networks presents an intriguing

challenge, due to the complex, non-random organization of these

systems and the diverse dynamic behaviors that they express. The

topology of several biological networks has been shown to be based

on a scale-free degree distribution, which implies the existence of

highly connected network hubs [1,2]. Biological systems were also

found to be organized in network modules [3,4], or to contain

characteristic circuits (motifs) that do not occur as frequently in

other types of networks [5]. Hub nodes, which have been

identified in several biological networks, such as protein-protein

interaction networks or metabolic networks, may serve as central

distributing elements or linkage point for many regions of a

network [2,6,7]. Such hubs might also be present in neural systems

networks [8]. A hub, for our purposes, can either be a node with a

high degree or with a high centrality (i.e. with many shortest paths

between nodes passing through). For our purposes, the latter

definition is dynamically more relevant. Modules or network

clusters, which are characterized by a higher frequency or density

of connections within than between node clusters [9] have been

identified in biological metabolic networks [10,11], as well as

neural networks at the cellular level [12] or the systems level [13].

These modules often represent a specific function, e.g. a specific

synthesis pathway in a metabolic reaction network [14], and may

shape the functional interactions within the networks at different

scales [15–17]. It has also been argued that motifs may represent

specific functional circuits [18–20].

In addition to the mentioned features, the organization of

biological systems is often described as hierarchical. However, no

formal definition of hierarchical topology appears to exist. Typical

descriptions of hierarchical organization use a modules-within-

modules view [10,21], others focus on the coexistence of modules

and central (hub) nodes [11,22] or relate the concept of hierarchy

to fractality [23]. The distinction between hubs which organize

modules around them and hubs which connect modules on a

higher topological level has been productive for understanding the

functional roles of these hub categories in various empirical

networks [11,22,24]. Note: (1) In [10] the algorithm for generating

modules within modules, leading to a hierarchical network, also

produces a hierarchy of hubs in the network; (2) it is not

immediately clear, whether the fractal graphs discussed in [23] are

also ‘‘fractal’’ from the perspective of the box-counting formalism

developed in [25,26]. Particularly the latter concept of fractality

has interesting implications for the organization of dynamic

processes on the graph [27].

In the present paper, we attempt to summarize current

topological concepts, condense the spectrum of different network

arrangements into a few salient topological features and, using a

simple three-state model of excitable dynamics on graphs, study

how these topological features organize dynamic behavior. While

this approach and our findings are valid for a wide range of

networks, we investigate the question and the implications of our

findings particularly in the context of neural networks, which most

clearly express diverse patterns of excitable dynamics.

Models of Network Topology
From a combination of modular and hub features, various types

of network topologies can arise. Classical Erdös-Rényi (ER)

random graphs do not contain hubs or modules and may thus

serve as a general null model. Scale-free Barabási-Albert (BA)
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graphs, on the other hand, contain only hubs and no modules.

Within such graphs, projections from the hubs can reach many

network regions, and the hub nodes thus have a more privileged

role than nodes with fewer connections and a more restricted

reach. On the other hand, networks that do not contain hubs, but

are modular, may arise from linking many distributed, dense

clusters with a small number of inter-cluster connections. Such

clusters could exist at different levels (representing clusters of sub-

clusters of sub-sub-clusters [21]), resulting in a hierarchical

network organization, which has recently been termed ‘‘fractal’’

[23]. Finally, networks may be modular and also contain hubs,

which are either contained within the modules serving as local

hubs, or may form global hubs that integrated network modules at

different scales of organization [10,14,24,28]. The two latter

networks combine features of scale-free and modular networks.

Figure 1 summarizes the topology of modular and hub features

and their combination in complex networks. While all feature

combinations provide networks of complex organization, we are

particular interested in the hierarchical networks shown in the last

row of Figure 1, which form modular arrangements, with or

without hubs, at different network scales.

Models of Network Dynamics
For discussing the link between network topology and dynamics

we use a simple three-state model of an excitable medium. The

model consists of three discrete states for each node (susceptible S,

excited E, refractory R), which are updated synchronously in

discrete time steps according to the following rules: (1) A

susceptible node becomes an excited node, if there is at least

one excitation in its direct neighborhood. If not, spontaneous firing

occurs with the probability f, which is the rate of spontaneous

excitation; (2) an excited node enters the refractory state; (3) a node

regenerates (RRS) with the recovery probability p (the inverse of

which is the average refractory time of a node). This minimal

model of an excitable system has a rich history in biological

modeling. It has been first introduced in a simpler variant under

the name ‘‘forest fire model’’ [29] and subsequently expanded by

Drossel and Schwabl [30] who also introduced the rate of

spontaneous excitations (the ‘‘lightning probability’’ in their

terminology). In this form it was originally applied on regular

architectures in studies of self-organized criticality. Other variants

of three-state excitable dynamics have been used to describe

epidemic spreading [31–34]. As discussed previously [35,36], this

general model can readily be implemented on arbitrary network

architectures. It has been shown that short-cuts inserted into a

regular (e.g., ring-like) architecture can mimic the dynamic effect

of spontaneous excitations [35]. Using a similar model setup we

have recently shown [36] that the distribution pattern of

excitations is regulated by the connectivity as well as by the rate

of spontaneous excitations. An increase in each of these two

quantities leads to a sudden increase in the excitation density

accompanied by a drastic change in the distribution pattern from a

collective, synchronous firing of a large number of nodes in the

graph (spikes) to more local, long-lasting and propagating

excitation patterns (bursts). Further studies on the activity of

integrate-and-fire neurons in the classical small-world model from

[37] also revealed a distinct dependency of the dynamic behavior

on the connectivity of the system [38].

Here, we take this investigation one step further by analyzing

which topological properties determine the distribution patterns of

excitations. In order to study these patterns, we consider the

individual time series of all nodes and for each pair of nodes (s,t)

compute the number C = Cst of simultaneous firing events. When

applied to the whole network the resulting matrix C essentially

represents the distribution pattern of excitations which we now can

compare with a corresponding distribution pattern of some

topological property.

Examining hub and modular aspects of topology separately we

first investigate which of them explains best the observed pattern of

simultaneous firing events. In particular, we show that in different

parameter regimes (characterized by the rate of spontaneous

excitations) different topological properties determine the observed

synchronization patterns. Moreover, we show that small system-

atic changes in the graph architecture, designed to enhance or

decrease the selected topological property, are reflected in the

dynamics. In a second step, we extend our study to hierarchically

structured artificial graphs and then to biological networks, in

order to demonstrate that the distribution patterns of excitations

change dramatically when both properties are represented to

different degrees in the respective graphs. Finally, we summarize

our results and discuss limitations of the present approach, and

extend our observations to describe general principles of pattern

formation on graphs.

Results

Overview
In this study, we focus on two structural properties of networks

and use them in terms of topological references. These properties

are modularity and node centrality and they are represented by the

topological modularity (TM) reference and the central-node based

(CN) reference, respectively. To highlight the individual impact of

each topological property on dynamic pattern formation we first

probe different types of artificial networks dynamically and compare

the results with the respective topological reference. We then

validate our results with modified versions of these networks (see

Figure S1 and Figure S2 in Text S1: Analysis of randomized

network topologies) and with different types of hierarchically

structured graphs, which represent the two topological properties

to different extents. We finally transfer our analysis to more densely

Author Summary

Many complex biological networks are characterized by
the coexistence of topological features such as modules
and central hub nodes. What are the relative contributions
of these structural features to the networks’ dynamic
behavior? We used a computational model to simulate the
general activation and inactivation behavior of excitable
nodes in neural networks and studied the spread of
activity in hierarchically organized networks as well as
specific biological neural networks. We then evaluated the
impact of modules and hub nodes on the network
dynamics by correlating the patterns of node activity with
the network architecture at difference levels of spontane-
ous network activation. Two dynamic regimes were
observed: waves propagating from central nodes and
module-based synchronization. Remarkably, the dynamic
behavior of hierarchical modular networks switched
between these modes as the level of spontaneous
activation changed. We also found that the two dynamic
regimes have different significance in the neuronal
network of C. elegans, where activity is mainly organized
by hub nodes, and the systems network of the cat cerebral
cortex, which is dominated by the network’s modular
organization. Our approach can be used to dynamically
explore the organization of complex neural networks,
beyond the structural characterizations that were available
previously.

Organization of Dynamics in Hierarchical Networks
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Figure 1. Basic graph models representing different combinations of both modular and hub characteristics. The degree of a node (as
an example of a hub characteristic) is indicated by its size, while the grouping of the nodes reveals the modular structure. (A) The Erdös-Rényi (ER)
random graph lacks both hubs and modules; (B) the scale-free Barabási-Albert (BA) graph displays a center of interlinked hubs only; the (C) random
modular graph and the (D) scale-free modular graph consist of planarly linked modules, which are composed of smaller ER graph and BA graphs,
respectively. The hubs in the BA graph version are distributed among the modules. The hierarchical graphs in (E) and (F) are featured by modules
consisting of modules. In contrast to the hierarchical cluster graph in (E), the hierarchical scale-free graph (F) is additionally characterized by a
hierarchical structure of hubs with one hub dominating the center.
doi:10.1371/journal.pcbi.1000190.g001

Organization of Dynamics in Hierarchical Networks
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connected networks and to different hierarchically structured real-

world topologies (see Methods for details on the construction of the

respective references, the dynamic models and the different types of

graph architectures and graph randomization processes). Figures 2

and 3 summarize our strategy of comparing the pattern of

simultaneous excitations (correlation matrix C) with the corre-

sponding topological feature, namely the topological modules (TM,

Figure 2) and the central-node based reference (CN, Figure 3). Both,

the graph and the simulated ‘‘space-time’’ pattern are converted

into matrices giving the pairwise distances and the number of

simultaneous excitations, respectively. The two matrices are

processed further to yield the respective clustering trees, which

then are sorted, color-coded and systematically compared (see

Methods for a detailed description of this procedure.)

Analysis of the Modular Topology
We start our analysis with the modular scale-free network in

order to test the explanatory power of the TM reference. As a first

step we visualize for a single value of f how well the dynamically

detected clusters follow the topological modules. We can map the

clustering tree obtained from the correlation matrix onto the

graph by thresholding it to yield the same number of modules m as

detected topologically and assign colors as labels to the modules.

Figure 4 displays the corresponding graph with the modules

colored exclusively on the basis of the dynamically detected

clusters (DDCs), resulting from a simulation with f = 0.01. In this

case, the dynamic clusters have a large overlap with the modules

found topologically.

As a next step, we analyze the whole range of the parameter f.

This is summarized in Figure 5. The color bar on the left-hand

side represents the color-coded TM reference. The sequence of

color bars from left to right are the color-coded DDC vectors for

increasing values of f. There are three distinct ranges in f

characterized by different patterns of the DDC vectors. Above a

value of f = 0.1 any regularity is replaced by a random distribution

of colors. Here, the random excitation events dominate the

dynamics, thus leading to uncorrelated excitations and to a

formation of unsystematic dynamically detected clusters. For lower

values of f two different forms of node integration into dynamic

clusters can be discriminated. Up to a value of f = 1023 the DDC

vectors are a mixture of homogeneous regions (representing well

detected topological modules) on the one hand (in the bottom part

of each DDC vector in this f range) and regions with smaller scale

homogeneities on the other (top part of the DDC vectors). In this

range the topological modules coincide partly with the dynamic

clusters, but the dynamic integration fails to comply with the

topological hierarchy of the modules. The middle range in f = 0.01

(1023,f,0.1) is characterized by a very high order of the DDC

vectors and an almost perfect agreement with the TM reference.

Besides this systematic dynamic retrieval of the topological

modules the DDC vectors in this f -range are also characterized

by a strong consistency with the hierarchy of the modules on the

level of the whole graph. The separation of the DDC vectors into

two regimes with respect to f (omitting here the noise-driven high f-

regime) is basically driven by the three-state model’s behavior

under spontaneous excitations. As pointed out in our previous

Figure 2. Construction of a color-coded topological reference based on the TM of a network (Top), and formation of a dynamic
clustering tree on the basis of the dynamic model simulation (Bottom). (Top) The distance relations between all nodes are converted into a
distance matrix L. (The color label encodes the distances between pairs of nodes.) The matrix L is then translated into a topological reference tree via
UPGMA clustering (see Methods). The node indices in the graph correspond to the ones in the tree, the circles in the graph representation denote the
modules found in the cluster tree after assigning a threshold (dotted line) which separates the downstream branches. Next, color labels are assigned
(TM reference). (Bottom) The model produces a space-time pattern of excitations (white lines) which is then converted into a correlation matrix C.
(The color labels encode the number of simultaneous excitations.) The matrix C is translated into a clustering tree (from the excitation patterns). The
color labels of the leaves are copied from the TM reference.
doi:10.1371/journal.pcbi.1000190.g002

Organization of Dynamics in Hierarchical Networks
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work [36], the model displays a transition in the distribution

patterns of excitations from a global (spike) to a more local (burst)

regime with an increasing rate of spontaneous excitations f. While

a spike (low-f regime) is able to reach most of the system

(depending on the excess of nodes in the excitable state S), the

burst (higher-f regime) is characterized by one or more excitation

spots which propagate through the system on a localized level due

to a more balanced distribution of the states S and R (Video S1 in

Text S1 illustrates the propagation of excitations on a modular

graph architecture during the burst regime). Consequently, the

DDC vectors separate rather precisely at the position where the

burst dynamics outbalances the spike dynamics. In this sense the

burst dynamics provides a suitable tool for the dynamic retrieval of

topological modules.

Analysis of the Hub Dominance
The results for f,1023 suggest that another form of dynamic

integration of nodes takes place beyond the module level. Groups

of nodes which belong to different topological modules (see e.g. the

blue and red labels in Figure 5) are placed in close dynamic

proximity (that is, they are integrated into the same dynamic

cluster). For testing this new principle of dynamic integration we

repeat this simulation with a non-modular scale-free BA graph (see

Methods) and the CN reference discussed in Figure 3. In Figure 6

the BA graph representation has been color-coded according to

the dynamically detected clusters (with a preset value of 7 clusters,

which determines the threshold applied to the corresponding

clustering tree) at f = 1025. One observes a rather clear ring-like

arrangement of colors around a central node which is one of the

hubs in the graph. This distribution of the dynamic clusters around

a central node h (displayed in black) confirms our hypothesis that

another topological feature is shaping the distribution of

excitations in this low-f regime.

Studying the agreement between the CN reference and the

DDC vectors for the BA graph over a whole range in f leads to the

Figure 3. Construction of a color-coded topological reference which is based on the location of the CN in the network (top row),
and computation of the dynamic clustering tree is carried out as described in Figure 2 (bottom row). (Top row) The central node h
(inner circle in the graph representation) displays the highest betweenness centrality B (see Methods: betweenness). It is surrounded by modules of
equidistant nodes (from h). The nodes of the resulting distance vector are re-sorted according to their distance to h.
doi:10.1371/journal.pcbi.1000190.g003

Figure 4. Graph representation of the modular scale-free
network. The nodes are colored according to the dynamic clustering
tree (resulting from a simulation with f = 0.01) after assigning a
threshold for 5 modules (the number of topological modules). The
dynamic clustering agrees with the topological modules almost
completely.
doi:10.1371/journal.pcbi.1000190.g004

Organization of Dynamics in Hierarchical Networks
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result shown in Figure 7. The CN reference (left-hand side) clusters

all nodes t according to their distances d to the central node h with

d = Lht. Up to a value of f = 1023 all equidistant nodes assemble

more or less in the same dynamic cluster and even the distance

order is maintained (except for d = 1 and d = 2). Above f = 1023 the

homogeneity of the DDC vector drops rapidly finally reaching a

random composition. Again this decrease of dynamic order is

accompanied by a decrease of the spike regimes in the overall

dynamics. The recurrent simultaneous excitations which lead to

the observed pattern are caused by global properties of the graph’s

topology. We assume that such networks are able to channel the

excitations produced by random events into their centers, which

are composed of one or a few nodes displaying the highest

betweenness centrality (as given by the number of shortest paths

leading to the node; see Methods). From there, the excitation

waves pass through the rest of the system reaching all equidistant

nodes (seen from the center) at about the same time and thus

integrate them dynamically. The dynamics in Video S2 in Text S1

contains several spike events which demonstrate the typical

propagation of excitations in a BA graph. In addition Figure S5

illustrates the consistency between the sequential arrangement of

ring-shaped modules (as seen from the central node) and the

chronology of excitations showing the fraction of simultaneous

excitations within each of these modules at the same time.

Analysis of Hierarchical Network Topologies
An integration of both topological properties (modularity and

hub dominance) into one system has been accomplished via the

introduction of the hierarchical scale-free graph [10,28]. We

expect from the previous discussion that both levels of dynamic

organization are present in such a network. As other network

designs exhibit hierarchical properties as well, we contrasted

different types of hierarchical graphs, also considering densely

connected graph structures which, for instance, characterize many

Figure 5. Dynamically detected cluster (DDC vectors) for 1026,f,1 (right) re-sorted and colored according to the TM reference
(left), as described in Figure 2. The region of the image displaying the highest consistency between the TM reference and the DDC vectors
(1023,f,0.1) marks the range, where the dynamics is able to exploit the given topological modules rather precisely. In this range of f the distribution
patterns of excitations are dominated by burst regimes (as discussed in [36]. The pattern formation for f.0.1 is strongly influenced by random firing
events, while for f,1023 the modular boundaries are followed only partly by the dynamics, hinting at another form of correlation between dynamics
and topology, which acts on a larger topological scale.
doi:10.1371/journal.pcbi.1000190.g005

Organization of Dynamics in Hierarchical Networks
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neuronal systems. To allow for the analysis of highly connected

networks we extended our dynamic model with the additional

node degree-dependent parameter v (which regulates the

excitability of a node, i.e. the number of excitations needed in

order to trigger a firing event; see Methods for the exact definition

of v).

All hierarchical networks introduced here share a hierarchical

fashion of linking the modules, but some of them lack the hubs and

the scale-free degree distribution. One would expect that such

graphs are not able to produce consistent ring-like excitation

patterns as observed in the BA graph. In the following we will

investigate how these topological properties determine the

distribution pattern of excitations. We checked, however, that

this general phenomenon does not depend on the exact method of

generating a particular topological property.

We tested four different hierarchical networks, i) the hierarchi-

cal scale-free graph [10,28], ii) a variant of the hierarchical scale-

free model (which permits the construction of densely connected

graphs), iii) the fractal modular network [23], and iv) the

hierarchical cluster network [21]. We generated 10 networks of

each graph type, simulated the dynamics, and computed Qdyn from

the resulting dynamic clustering trees, as before. Densely

connected networks were simulated with a threshold of k = 0.1,

as described in Methods.

In the following the results are limited to the hierarchical scale-

free graph [10] and the mapped fractal graph [23] as both other

results agree well with their respective counterparts. Figure 8

displays Q
Rð Þ

dyn averaged over all networks as a function of f for the

TM reference (blue n) and the CN reference (red #). In the

hierarchical graph (Figure 8A) the dynamic detection of the

topological modules based on the TM reference works very well

for high values of f. Increase and decline of Q
TMð Þ

dyn depend on the

transition from spike dynamics to burst dynamics and on the

increasing noise intensity f, respectively (Figure S3 displays the

corresponding time series of the excitation density rF for three

different values of f). This increase is accompanied by decreasing

values of Q
CNð Þ

dyn for the CN-dependent results which display their

maximum in the low f-regime. Here, the high values of Q
CNð Þ

dyn

indicate a strong dominance of the hubs and their importance for

the formation of the excitation waves. Indeed, this graph structure

facilitates the emergence of both forms of dynamic organization.

This observation, that certain types of hierarchical graphs can host

both dynamic patterns with the rate of spontaneous excitations

inducing a switch from one to the other, will be discussed in detail

elsewhere.

In the mapped fractal graph (Figure 8B the absence of hubs

prevents the generation of ring-like excitation patterns (as seen in

the low values of Q
CNð Þ

dyn ) with the effect that the range of

dynamically detected topological clusters (Q
TMð Þ

dyn ) enlarges towards

low values of f.

By an adjustment of the dynamic model the consistency to the

more sparsely connected networks demonstrates that (i.e. by

rescaling the excitability; see Methods) it is still possible to retrieve

both dynamic regimes even in densely connected graph architec-

tures, similarly to the more sparsely connected networks. Rescaling

the excitability (by requiring more than one excitation in the

neighborhood for exciting a node) thus provides a consistent

extension of our original dynamics to higher connectivities.

Analysis of Biological Neural Topology
Compared to metabolic reaction networks or protein-protein

interaction networks, the architecture of many neuronal systems is

characterized by a high density of connections [13,39,40]. We

studied neuronal networks of two organisms at two fundamentally

different levels of organization, namely the cortical systems

network of the cat and the cellular neuronal network of the

nematode C. elegans.

First, we analyzed the cortical network of the cat, which has a well-

characterized topology [8,13] and has been the basis of previous

dynamical simulations [16,41,42]. We focused at connectivity at the

systems level, which is more reliably established than cellular cortical

connectivity. At the systems level, all the neurons of a cortical area are

integrated into a single node. This coarse-graining approach scales

the cortical network representation down to n = 55 nodes and 238

directed edges and 327 undirected edges which originate from 892

cortico-cortical connections.

Second, we considered the cellular neuronal connectivity of the

nematode C. elegans, which has also been studied extensively. Due

to the fixed number of nodes, the neuronal network of C. elegans

serves as an excellent neuronal model system [43]. This version of

the cellular neuronal network of C. elegans contained n = 277 nodes

and 1731 directed edges and 187 undirected edges.

The connection density of the cat cortex representation is

comparatively high (z = 0.3), while the connection density of the

neuronal network of C. elegans is about tenfold smaller (z = 0.028).

Therefore, we decided to use the modified DE model for the cat

cortex with k = 0.15 and p = 0.1 and the original DE model for C.

elegans with p = 0.01. We analyzed both networks in the range of

1026,f,1. The TM references consist of 4 modules (cat) and 8

modules (C. elegans), respectively. The four modules in the cat

systems network correspond to those previously identified by other

clustering approaches [13], and represent sets of visual, auditory,

sensory-motor and fronto-limbic cortical areas. The diagrams

(Figure 9 top) display the analysis of the dynamic modularity Q
Rð Þ

dyn

for both topological references. The diagrams on the bottom show

corresponding curves with highlighted markers on the top. They

display the TM-dependent DDC vectors for the Cat (Figure 9A

bottom) and the CN-dependent DDC vectors for C. elegans

(Figure 9B bottom).

Figure 6. Network representation of the BA graph. The nodes are
colored according to the dynamic cluster tree (resulting from a
simulation with f = 1025) after assigning a threshold for 7 modules
(the maximal distance to the hub). Most of the dynamically detected
clusters are arranged in a ring-like fashion around the central hub
highlighted in black.
doi:10.1371/journal.pcbi.1000190.g006

Organization of Dynamics in Hierarchical Networks
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Examining the relation between topology and dynamic

properties independently of the organism, both networks show

certain characteristics of a hierarchical scale-free network [10,28],

that is, the typical differences in the dynamic dominance of

modular and hub features for different levels of spontaneous

activation (as indicated in the f-dependent course of Qdyn in Figure 9

top), which implicate the existence of a complex hierarchical

structure. However, both organisms also exhibit great differences

in their dynamic regimes.

For low levels of spontaneous excitation in the cat cerebral

network (Figure 9A top), the CN and TM references are equally

well related to the network’s dynamic behavior. The strong

correlation between dynamics and the modular topology is

reflected in a high consistency between the TM reference and

DDC vectors in the high f-regime (Figure 9A bottom) also

indicated in Figure 9A top in Q
TMð Þ

dyn , while there seems to be only

a marginal influence of hubs. If we exchange the TM reference by

the modules previously identified for the cat cortical network [13],

the general features of Qdyn(f) remain intact (in particular the clear

peak in f; see Figure S4).

On the other hand, the dynamic behavior of the cellular

network of C. elegans is for all but the highest levels of activation

dominated by the distance to a central node (Figure 9B).

Betweenness analysis revealed two nodes in direct neighborhood,

which display the highest node degrees of the neuronal network,

and which may serve as an initial point of circular excitation

waves. Nodes 52 (AVAL) and 53 (AVAR) display the highest node

betweenness (and the highest node degrees). The distance between

both nodes is 1, as they are mirror-symmetric versions of the same

neuron, AVA, on the L and R sides of the nematode’s body.

Figure 7. Dynamically detected clusters (DDC vectors) for 1026,f,1 (right) re-sorted and colored according to the CN reference
(left), as described in Figure 3. In this reference, the nodes sharing the same color have the same distance d to the central node h (see Figure 3
top row). Up to a value of f = 1023, the equidistant nodes are almost completely integrated dynamically according to this topological reference. In this
f-regime the dynamics is characterized by excitation waves (spikes), which cover the whole system and which emerge from h preferentially and
independently of the location of the accidentally excited node. The increasing scattering of colors for higher values of f indicates a change of the
dynamic regime, the spike dynamics is increasingly replaced by burst dynamics.
doi:10.1371/journal.pcbi.1000190.g007

Organization of Dynamics in Hierarchical Networks
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Figure 8. Levels of dynamic organization in different graphs with a hierarchical distribution of modules. The dynamic modularity Qdyn

for both the TM reference (blue n) and the CN reference (red #) is depicted as a function of the rate of spontaneous excitations f. (A) The hierarchical
scale-free graph displays properties of both, the modular and the BA graph. Thus, the two levels of dynamic integration are visible within the same
network for the respective values of f. The transition between these two levels corresponds to the transition from spike to burst dynamics. (B) The
mapped fractal graph from [54] lacks a scale-free degree distribution and, consequently, hubs, which is reflected in low values of Q

CNð Þ
dyn . The absence

of ring-like excitation patterns also explains the extension of the high-value range of Q
TMð Þ

dyn towards low values of f.
doi:10.1371/journal.pcbi.1000190.g008

Figure 9. Levels of dynamic organization in two different neuronal networks. The highlighted curves (bigger symbols; top row) correspond
to the respective DDC vector results (bottom row). (A) The dominance of modular elements in the cortical network of the cat is reflected by a distinct
increase of Qdyn for the TM-dependent results in the high-f regime (blue n; top) as well as by the homogeneous clustering of the DDC vectors (TM-
dependent results; bottom), while central node effects seem to play only a marginal role (see the slight superelevation in the low-f regime [red #];
top). (B) By contrast, the cellular network of C. elegans displays a strong dependency on two adjoining central nodes which dominate the dynamics in
a wide range of f. The drastic increase of the CN-dependent results for Qdyn in the low-f region (red #; top) reflects the high order of the DDC vectors
(CN-dependent results; bottom) with a conserved distance ranking of the topologically detected node clusters. Even here, there exists a noticeable
but comparatively subordinate influence of the module-based excitation patterns (blue n; top).
doi:10.1371/journal.pcbi.1000190.g009
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Discussion

Overview
The current paper presents some aspects of a pattern-based

computational approach for linking network topology and

dynamics. This approach proved useful in probing the functional

organization of complex biological networks. The comparison of

topological features and simulated network dynamics demonstrat-

ed that features such as central hub nodes and network modularity

can strongly and systematically shape a network’s dynamic

behavior. Moreover, in hierarchical modular networks, where

multiple of these features were present, the network dynamics

exhibit a functional switch for different levels of spontaneous

network activation between the dynamic organization through a

central node or through modular features.

The method also reveals the dynamic impact of different

topological characteristics in biological neural networks. In

particular, the dynamics in the cellular neuronal network of C.

elegans appears organized by the topological distance to a central

hub node, whereas the dynamic behavior of the cat cerebral

cortical network appears more strongly influenced by network

modularity. Both topological features, however, contribute to the

organization of the networks synchronization dynamics. Given the

restricted size of the biological networks, the functional implica-

tions of the features would have been difficult to derive from a

conventional analysis of the networks’ degree distributions. These

findings have implications for understanding the relationship of

network topology and dynamics in complex neural networks, as

detailed in the following sections.

Model Limitations
The presented approach draws on a simple dynamic model for

describing excitable elements. This model only represents node

activation, inactivation, as well as a refractory period, with discrete

time steps. Given the complex dynamic behavior of neurons and

neuronal systems, the model may appear overly simplistic.

However, we believe that the model captures essential features

of excitable elements, such as the principal activation cycle of

neurons. Moreover, at the moment it is far from clear how much

detail is required to realistically describe the interaction of

excitable elements in networks. A good starting point for analyzing

such pattern-formation aspects also in more sophisticated models

could be built upon the parallel to a recent simulation study of the

cat cortical network, which uses a more sophisticated population

oscillator model to describe the activity of individual cells within

the cortical areas [16]. This study led to a similar finding of a

modular dynamic organization that strongly followed the modular

topological organization. There are also precedents for the

successful application of highly simplified models of cortical

networks. For example [41] used a simple spreading model to infer

basic properties of the relationship between node lesions and

network activity in the thalamo-cortical network of the cat.

Similarly, [42] replicated epileptiform steady-state activation

patterns in the cat cortical network with the help of a simple

thresholded spreading model. In addition, in the present work the

model parameters were varied over a wide range; however, the

different simulations resulted in similar principal behavior.

Topology and Dynamics of Neural Systems
When applied to biological neural networks, our approach

revealed that the dynamic behavior of neural networks may be

coordinated via different topological features. While activity in the

neuronal network of C. elegans is shaped by excitation spreading

from central hub nodes, the dynamic behavior of the cat cortical

network is largely dominated by the network’s modular organi-

zation. Moreover, the cortical network may switch from modular

to hub dominance for low levels of spontaneous activation.

The current analysis applies to network dynamics with

spontaneous node activations, as observed in tonic neural activity,

but without explicit external (sensory) input. This description

corresponds to the experimental case of so-called resting state

connectivity, a type of functional connectivity that persists in the

absence of specific external stimulation. Resting state networks

have been studied intensively over the last years and have been

considered as default frameworks of neural dynamics [44]. Resting

state connectivity can be derived experimentally from time-series

correlations between large-scale brain regions, such as cortical

areas. The regions’ activity is estimated from different functional

imaging techniques (e.g., EEG, fMRI); and typically, the coupling

occurs at very low frequencies, around or below 0.1 Hz [45]. The

slow-frequency coupling may be a reflection of faster electrophys-

iological coupling among distributed neuronal populations [17].

Experimental resting state data are currently available for cortical

networks in humans and non-human primates, but not for the cat

cortical network studied here. However, the present theoretical

findings largely agree with what is known from the available

experimental data. For instance, resting state data for human and

primate cortical networks at the systems level show a strongly

modular organization [46,47]. Earlier experimental findings,

based on activity spreading after local cortical disinhibition, also

suggest that primate cortical areas co-activate, in groups that

closely match the known topological clusters [15]. In addition,

previous theoretical studies also support the conclusion that the

dynamic organization of large-scale cortical networks in the

absence of external stimuli is strongly shaped by the networks’

modular structural connectivity [16].

However, it was also suggested that hub-like areas exist in

cortical networks which possess a relatively large number of

connections and which can be identified implicitly from the

networks’ behavior after simulated node lesions [8,24,48]. The

leading central nodes identified here for the cat cortical network by

node betweenness, multimodal areas 35 and AES, are also among

those suggested previously by degree and lesion impact [8,24]. For

low rates of spontaneous activation, the cortical dynamics became

somewhat more strongly correlated to hub distance than network

modules. This dynamic switch characterizes the cortical connec-

tivity as a complex hierarchical network and indicates the

possibility that particular cat cortical areas act as hub-like nodes

for the organization of low-noise dynamic regimes. This point still

needs to be investigated in more detail. Importantly, only coarse

large-scale activations can be resolved with the current neuroim-

aging techniques. Nonetheless, it is clear that cortical networks

have a multi-level modular organization (forming clusters of sub-

clusters of excitable nodes [21], with modules spanning from

cellular cortical circuits and columns to clusters of strongly

interlinked areas). Therefore, it can be speculated that, once data

for additional scales of cortical networks are available, switches of

the dynamic behavior between different topological features

become more clearly apparent.

In contrast to the cortical network the dynamic behavior of the

C. elegans network was dominated by central node distance for all

levels of spontaneous activation. Experimental findings also

indicate that neuronal dynamics in C. elegans are coordinated by

central pattern organizers [49,50] rather than through network

modules. Indeed, the pair of AVA neurons, which have the highest

degree and highest node betweenness in the C. elegans network, and

which therefore may be considered as network hubs, have been

implicated as a component in a central pattern generator
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responsible for locomotion control [49]. Specifically, AVA is

thought to be responsible for backward movements. The present

results suggest that this node may also have a more general

function in coordinating dynamic activity in the nematode nervous

system.

The finding of dynamic organization through network modules

in large-scale cortical networks, versus organization through few

central nodes in cellular neuronal networks, makes intuitive sense.

Given the small size of its nervous system, the functional

specialization in C. elegans occurs at the level of individual cells,

which exert their roles globally across the network. On the other

hand, specialization in the mammalian cortex arises for whole

brain regions (e.g., visual cortex, sensory-motor cortex) comprising

several cortical areas which are closely cooperating within modules

to perform the various aspects of their functional subdivision.

Conclusions and Outlook
When studying dynamics on networks, the synchronization

behavior of each single node is a suitable indicator to estimate the

dynamic scope provided by a graph’s topology. Different forms of

synchronization require different structural properties. By the

application of a simple excitable medium (the DE model) we were

able to generate two distinct forms of synchronization via the

regulation of a single dynamic parameter, the amount of

spontaneous excitations f. This noise level f also defines the

(length) scale on which a specific dynamic process will predom-

inantly be situated. Consequently the (larger-scale) wave-like

propagation (consistency with CN reference) is dominant at lower

levels of f, while the local module-based synchronization

(consistency with the TM reference) is situated preferentially at

higher f.

Via comparison to two different topological references repre-

senting the elementary graph properties modularity and hub

dominance the dynamic results were attributed to the respective

synchronization behavior. In the burst range of f, networks

exclusively featuring modular properties with decentralized hubs

display synchronization behavior predominantly within their

communities as indicated by the consistency to a module-based

topological reference. If a graph is dominated by one or a few hubs

in its center (a feature of the BA graph) a global (ring-like)

synchronization phenomenon is visible due to the formation of

excitation waves which reach the whole system from the graph’s

center. In contrast to our modularity definition it is more difficult

to decide whether a node is the center of a graph or not. Here, we

used the betweenness centrality (B) definition, but the results

indicate that B does not alone account for the unifying topological

quantity for different networks. The analysis of different hub

categories [10,11,12] and their involvement in organizing the

dynamics [24] is an important next step of the study described

here. We did not do this so far, because it would require simulating

substantially larger networks to obtain reliable results. We would

also like to point out that the prototypes of pattern formation we

identify, might serve as minimal models of the brain activity

regimes reported by Izhikevich and Edelman in their model of

mammalian thalamocortical systems, which emerge spontaneously

as a result of interactions between architectural features and the

dynamics [51]. An important challenge for the future will be to

activate modeled neural networks more selectively with patterns

representing functional inputs, and to observe the interactions of

stimulus-related activity with default activity.

In summary, by using a simple dynamic model we could

determine a ‘‘network equivalent’’ of pattern formation, where

patterns are represented by correlations between topology and

dynamics. Specific topological features give rise to and regulate

quantitatively certain elementary forms of patterns. We believe

that this correspondence is not restricted to the specific dynamics

considered here. The recent findings on synchronization of phase

oscillators [52,53] show similar matches between topology and

dynamics as the results reported for an excitable system. In this

light a comparison of these systems in detail (our discrete excitable

three-state model and the continuous phase oscillator model)

would be very interesting and could point towards common links

between topology and dynamics far beyond individual dynamical

systems. It is particularly interesting that the authors employ phase

oscillators and their synchronization properties also to determine

functional groups in the neural system of C. elegans [54].

Methods

Simulated Network Topologies and Network
Modification

Overview. This work is based on a variety of network

architectures, topological parameters, and dynamic techniques.

The basic artificial network types and methods presented in the

first part best suit our objective to rule out the individual impact of

modularity and hub dominance on dynamic pattern formation.

The second part deals with hierarchically structured networks and

with real-world topologies, that is, biological neural networks,

which will be analyzed concerning both topological properties.

The third part contains the analysis tools to probe the networks

topologically and dynamically.

Scale-free network. This basic network type is constructed

via preferential attachment following the Barabási-Albert (BA)

model [1]. The generation of this network starts with a small set

(we use n0 = 2) of completely connected nodes. Then, new nodes

are added to the graph and connected with mA edges (we use

mA = 1.25) preferentially to the nodes with the highest degrees

(details on the BA algorithm for non-integer values of mA are given

in [36]). A typical network of this type is shown in Figure 4. It

consists of n = 250 nodes, m = 313 edges, and a connectivity of

z = 0.01 (with z = 2m/(n22n)). The nodes in this network are

hierarchically distributed in the following sense: during the growth

process the hubs are more likely connected to each other than to

other nodes, thus forming the center of the graph, while the nodes

with small degrees contribute to the periphery for the most part.

Scale-free modular network. This network type consists of

several modules of approximate identical size. We used a

modification of the community model [4,55] to generate graphs

with 5 modules (n = 250, m = 496, and z = 0.016 [n = 250, m<515,

and z<0.0165 for the analysis of the randomized topologies]).

According to the BA graph generation rule, each module starts

with a small number of fully connected nodes (n0 = 2). All further

nodes are attached preferentially with mA = 2 edges until the

average size of each module is reached. At last, each module pair is

connected with mE = 1 (mE = 3 for the analysis of the randomized

topologies) random edge on the average. In contrast to the BA

graph, the hubs are distributed among the modules.

Randomized network topologies. We use a systematic

randomization process to modify an existing network topology in a

directed way. In this procedure two linked pairs of nodes are

randomly selected and rewired (i.e. the two edges are reassigned

among the four nodes) as long as neither network fragmentation

occurs nor double or self-edges form. In the course of the first

variant of this randomization procedure (process 1), the

topological modularity Qtop (determined as described, e.g., [4,56])

of a graph is reduced by randomly selecting pairs of nodes in

different modules and cross-linking them, thus increasing the

amount of inter-modular edges. To avoid the formation of a
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hierarchical structure we ensured cross-linking between nodes with

a degree ks,median(kN) with N = (1,2,3,..,n). During the other

variant of the randomization procedure (process 2), the influence

of the hubs, specified by the betweenness centrality B, is reduced

by first selecting an edge connecting two nodes with

B.0.4?max(BN) and then selecting a second edge with

B.0.2?max(BN). The BA graph exhibits only a small amount of

nodes with betweenness values above this threshold. The

elimination of the most important edges ensures a drastic

degradation of the central hub significance with increasing

randomization depth.

Hierarchical scale-free network. Hierarchical scale-free

graphs [10,28] have been introduced to account for both, hub

dominance and modular clustering. The graph generation is based

on a fractal algorithm which uses multiplication and cross-linking

of existing graph structures to produce a deterministic scale-free

network with self-similar elements. Compared to a BA graph, the

degree kh of the central node h of the hierarchical graph is notedly

high (kh = (23+3it+1)/2 with it denoting the number of iterations in

the generation rule). Such a network would still display an

unbalance in both levels of dynamic organizations. To reduce kh

we added the probability g for an edge to form between h and the

respective other node during the generation process. Starting with

a set of 4 completely connected nodes and applying the rules in [2]

one would yield a graph with n = 256 nodes and m = 780 edges

after 4 iterative steps. For g = 0.5 the resulting networks possessed

m<650 edges.

Fractal modular network. The fractal modular network

displays some basic properties of the hierarchical scale-free

network, but its fractal connection scheme disagrees completely.

This network has been introduced by Sporns et al. [23] for the

analysis of the cerebral cortex which is also characterized by

multiple hierarchical levels. We constructed a mapped fractal

graph with six hierarchical levels according to the following

parameter constellation. We preset parameter Es which in

principle regulates the connectivity of the graph to a value of

Es = 2. Starting with a complete graph of 8 nodes (mS = 3 and

nS = 8) the resulting graph comprises n = 256 nodes and m = 3456

edges (for details on the generation of the mapped fractal networks

see Sporns et al. 2006 [23]; the index S denotes the variables which

are used in [23]).

Biological Neural Network Data
We applied the analysis approach to two sets of neural network

data at different scales of organization. The first data set describes

systems level connections between different areas of the cat

cerebral cortex, and is based on a global collation of cat cortical

connectivity (892 interconnections of 55 areas). This collation was

developed from the data set described in Scannell et al. (1995) [57]

and forms part of a larger database of thalamo-cortical

connectivity of the cat [39]. The database was created by the

interpretation of a large number of reports of tract-tracing

experiments from the anatomical literature.

The second data set represents cellular neuronal connectivity of

the nematode C. elegans (277 neurons and 2,105 synaptic

connections). This data set was adapted from Achacoso and

Yamamoto (1992) [43]. That compilation is largely based on the

dataset of White et al. [58] in which connections were identified by

electron microscope reconstructions. The previously presented

connectivity data [43] was modified in the following way. Neurons

of the pharyngeal ring, for which there was no internal connection

information, were removed from the network, leaving 280

neurons. In addition, three neurons (AIBL, AIYL, and SMDVL)

were removed, because of lacking spatial information. Eventually

277 neurons were included in the analysis. The size of the global

and local C. elegans datasets analyzed here was comparable to that

used in previous studies. For example, studies of the small-world

properties [37] or characteristic motifs [12] of C. elegans considered

282 and 187 neurons, respectively. Both chemical and electric

synapses (gap junctions) were included as connections in the

analysis.

Topological References
In order to understand how topological properties and dynamic

observations are related, we will address our quantification

schemes for topology and dynamics separately at first.

We determine two topological references which are both based

on the pairwise distances of all nodes within a network. Let the

distance Lst be the shortest path connecting node s with node t The

first reference is based on the topological modules (topological

module reference, TM, see Figure 2 top). It is computed from the

distance matrix L = Lst which is then analyzed with a standard

hierarchical clustering method. We tested single-linkage, com-

plete-linkage and average-linkage approaches and found basically

no differences between these methods for the task at hand. In the

following, we used UPGMA (Unweighted Pair Group Method

with Arithmetic mean) clustering, that is, the pair-wise combina-

tion of nodes or groups of nodes with minimal distance which is

determined by the arithmetic means of the respective groups. The

relative positions of the nodes which are the leaves of the

topological reference tree obtained in this fashion are a condensed

representation of all distance relations within the network. A

similar way of analyzing the module structure uses the topological

overlap [14]. The modules predicted with this method can be

recovered from the topological reference tree by horizontally

cutting the tree at a certain hight. The tree fragments resulting

from this thresholding procedure serve as module predictions. In

principle one has to analyze the dependence of the module

predictions on threshold variation or conversely one can

determine the threshold by prescribing the number of modules

m. Assigning a label (e.g. a color) to each node within a particular

module leads to the final result, the TM reference, for which

agreement with the distribution patterns of excitations can be

checked.

The second topological reference is based on the central node h

of the network (central node reference, CN, see Figure 3 top).

Although many properties can in principle contribute to the

centrality of a node, we will here select node h to be the one

displaying the highest node betweenness B [59–61]. The distances

between h and all other nodes form a distance vector. All nodes

with the same entry in the distance vector (e.g. equidistant nodes

from h) are taken to form a cluster, representing this topological

reference (CN clusters). Resorting the distance vector accordingly

yields the color-coded CN reference. Here, the number of clusters

m is given by the maximal distance from node h.

Dynamic Models
Dynamics were simulated on the graph architectures using the

discrete excitable (DE) model described in the introduction. We

used 35000 update steps (first 10000 updates were discarded) with

the following parameter constellation: the rate of spontaneous

excitations f was varied in the range of 1026,f,1 to systematically

study the impact of noise on the formation of the excitation

patterns; recovery probability p was set to a constant value of

p = 0.1; the initial condition was a random equipartition of the

states E and T. This parameter constellation will be used in all of

the studies presented here.

Organization of Dynamics in Hierarchical Networks
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In the basic DE model highly connected networks are in

principle characterized by burst dynamics. Indeed, spikes emerge

at very low values of f even here, but with a sufficiently high

simulation time they are outbalanced by burst dynamics. We

solved this problem by introducing parameter v in our excitable

model system. This threshold depends on the degree ks of a node S

and determines the number of excitations necessary to turn a

susceptible node into the excited state. In this variant all incoming

excitations are stored in node S until vs = ks?k (with a minimum

value of v = 1) is reached.

Comparison between Topological and Dynamic
Organization

In order to allow for a direct comparison with topology, we base

our analysis of the dynamics on pairwise node comparisons: for

each pair of nodes we count the number of simultaneous

excitations sst in the given time interval. Properly normalizing

these quantities to arrange between 0 and 1 (s̃st) and converting

the corresponding matrix into a distance matrix C = Cst = 12s̃st

leads to the correlation matrix C which represents the distribution

patterns of excitations for a given graph and a given parameter

constellation of the DE model. We aimed at understanding to

what extent a selected topological reference is capable of

explaining the patterns in the correlation matrix. To this end,

the matrix can now be converted into a clustering tree (again by

using UPGMA: see Topological references). The idea is now to

rearrange the branches in the tree to best fit a given reference

vector. The corresponding sequence of nodes constitutes the final

result for the dynamics, namely the vector of dynamically detected

clusters (DDC vector). The reference of the sorting vector can be

any of the two topological references discussed above. Figures 2

and 3 summarize our analysis strategy. For the sorting we use an

alignment algorithm which switches two neighboring branches at

any position in the tree (obtained from the excitation patterns) as

long as the similarity to the topological reference is increased. The

decisive factor concerning the comparison of a pair of branches is

the individual module composition of the respective leaves

indicated by the mixture of (color) labels. A similar technique for

the comparison of clustering trees has been introduced in [62].

A Measure of Dynamic Modularity
For computation of our new quantity assessing the match

between topology and dynamics, the dynamic modularity Qdyn, we

compare two clustering trees, one coming from topology (with the

clusters in the tree matching the modules in the graph), the other

coming from the dynamics (more specifically: the matrix of

simultaneous excitations). Cutting the first tree at a certain height

(given by the module number, which is a parameter in our

analysis) yields a set of modules, which we label by colors. Copying

these node labels in the topological tree to the dynamic tree, and

sorting for as many matching colors as the tree structure allows,

permits us to quantify the color matches and mismatches between

the two trees. Our null model is randomly distributing color labels

on the graph (i.e. a sorting task of the dynamics tree to a random

topological reference). As all these quantities depend strongly on

the numbers of nodes in each module (or reference class), we

normalize them to these sizes. In practice, this normalization is

only important when we have very different sizes of modules in a

graph. In this way we can assess whether the matching between a

topological feature (here: the modules) and the dynamics

(represented by the matrix of simultaneous excitations) is higher

(or, in principle, even lower) than expected at random.

The same holds for the other topological reference, the CN

reference, where the labels are provided not by a clustering tree,

but by the distance from the central node. The possible values of

Q
Rð Þ

dyn for a topological reference R lie between zero and unity with

Q
Rð Þ

dyn~1 indicating the strongest agreement to the topological

reference. Values below unity hint at a deviating distribution of

nodes in the dynamic cluster tree.

Qdyn fð Þ~ hsim fð Þ
htop

For both the topological reference and each DDC vector the

distribution values h are determined via comparison of the

scattering of nodes p belonging to the same topological module i

(as indicated by the color) with a null-hypothesis of this color

distribution which is the average standard deviation (in l = 1,000

realizations) of the same amount of nodes randomly scattered over

the whole network size n. The resulting quotient is normalized to

the size of each module nmod.

hsim fð Þ~1{
Xm

i~1

std psim i,fð Þð Þ
1
l

Pl
j~1 std prand i,f ,jð Þð Þ

: nmod ið Þ
n

htop~1{
Xm

i~1

std ptop ið Þ
� �

1
l

Pl
j~1 std prand i,jð Þð Þ

: nmod ið Þ
n

Supporting Information

Figure S1 Computation of the average dynamic modularity

,Qdyn. as a function of the topological modularity Qtop for different

network realizations of the modular scale-free graph. Depicted are

the TM results (blue g) which have been averaged over the range of

0.01,f,0.1 and the CN results (red #), averaged in the respective

range of 1026,f,1025. The modular graphs (n = 250, m<515 with

mE = 3) were randomized in several steps producing networks with

similar graph statistics but a decreased modularity. (A) Average

randomization path of 10 different randomizations of the same

network. The strong correlation between the TM dependent values

of ,Qdyn. and the topological modularity Qtop proves the

assumption that this level of dynamic organization has to be

regarded as a consequence of the particular exploitation of modular

network structures via burst dynamics. The respective exploitation

via spike dynamics remains small and comparatively constant. (B) A

similar behavior is also true for different network realizations and

their respective randomization paths. These networks display the

same correlation between ,Qdyn. and Qtop. One randomization

path from (A) has been highlighted.

Found at: doi:10.1371/journal.pcbi.1000190.s001 (0.87 MB EPS)

Figure S2 Computation of the average dynamic modularity

,Qdyn. as a function of the hub dominance B̃ for different network

realizations of the BA graph. Corresponding to Figure S1A and

Figure S1B, different BA graphs and their randomized versions have

been examined. (A) The randomization procedure causes a decrease

of the hub dominance and, accordingly, a reduction of the CN-

dependent values of ,Qdyn.. These results confirm the assumption

that the whole graph structure and the central node in particular are

responsible for the emergence of ring-shaped excitation waves, whose

regularity is more and more dis-

turbed with increasing randomization steps. (B) The randomization

versions of the different networks are separated across the decreasing

curve, but show nevertheless the same correlation as in (A).

Found at: doi:10.1371/journal.pcbi.1000190.s002 (0.89 MB EPS)
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Figure S3 Sections of time series of the excitation density rF of

the hierarchical scale-free graph (see Methods) for different rates of

spontaneous excitations f. (From top to bottom) Increasing

parameter f induces a change of the dynamic behavior from spike

dynamics to burst dynamics with a transition region of f displaying

a mixture of both dynamic regimes.

Found at: doi:10.1371/journal.pcbi.1000190.s003 (0.74 MB EPS)

Figure S4 Dynamic organization within the modular structure

of the cortical network of the cat for two different definitions of the

individual module composition. The curve indicated by the blue

triangles corresponds to the TM-dependent results obtained from

a UPGMA cluster analysis of the graph’s distance information

(using a threshold for 4 modules; see also Figure 9A). Similar

results (green curve; errors are of the size of the other results) were

obtained from simulations using a different TM-reference

consisting of 5 modules which have been identified in a work of

Hilgetag et al. (2000). The additional module contains three nodes

which could not be assigned to the remaining modules.

Concerning the individual composition, both references display a

high consistency (75%).

Found at: doi:10.1371/journal.pcbi.1000190.s004 (0.74 MB EPS)

Figure S5 Average fraction of excited nodes within each module

resulting from previous excitations in a simulation of the scale-free

(BA) graph in the spike-regime (p = 0.1 and f = 1024). In the

presence of excitations within the BA graph at a given time t the

respective module (which is the concentric arrangement of nodes

resulting from the CN-reference) with the strongest excitation

density rF, i.e. the biggest fraction of excited nodes compared to its

module size, has been identified. As a function of this module (the

numbers on the abscissa denote the distance of the modules to the

central node) the distribution of excitations over all modules has

been computed for the following time step t+1 and depicted on the

ordinate as the module-specific fraction of excited nodes. Based on

the central node and the resultant concentric modules there is an

apparent propagation of the excitations in the spike-regime from

the center of the graph to its periphery including an average

module-specific excitation of 45 to 65 percent of the respective

nodes.

Found at: doi:10.1371/journal.pcbi.1000190.s005 (0.67 MB EPS)

Text S1 Supporting Information

Found at: doi:10.1371/journal.pcbi.1000190.s006 (1.30 MB ZIP)
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