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Quantifying sleep fragmentation is central in assessment of 
sleep quality. Traditionally, measures such as the arousal 

frequency and sleep-stage percentages have been used to ap-
praise sleep quality in research and clinical practice. Although 
conventional metrics of sleep structure have provided useful 
insight into the biology of sleep, these parameters explain only 
part of the variance in outcomes such as daytime sleepiness as-
sociated with conditions that fragment sleep.1-3 Furthermore, 
many of the conventional measures provide an overall summary 
of the entire night and unable to capture the temporal evolution 
of overnight events, the frequency of sleep-stage transitions, 
and the time between these transitions. Given the remarkable 
progress in our understanding of the neurobiology of the sleep-
wake switch4 and the underlying neural circuitry responsible 

for transitioning between rapid eye movement (REM) and non-
REM (NREM) sleep,5 adequately characterizing sleep-stage 
transitions is a priority to better define the influence of specific 
factors (e.g., age and sex) on normal sleep structure and orga-
nization. In addition, a careful portrayal of sleep-stage transi-
tions is essential in clarifying the putative mechanisms through 
which conditions such as sleep-disordered breathing (SDB) 
mediate adverse health outcomes.

Several techniques have been used to derive measures of 
sleep quality that complement the repertoire of traditional 
metrics. Power spectral analysis of the sleep electroencepha-
logram (EEG),6 sleep spectrograms based on cardiopulmonary 
coupling,7 and visual identification of cyclical alternating pat-
terns8 in sleep EEG have revealed clinically meaningful chang-
es in the sleep structure in health and disease. Although these 
techniques provide unique insight into sleep continuity, their 
use requires specialized expertise along with an appreciation 
of the associated limitations. With improvements in digital 
technology, many of aforementioned techniques are automated 
and being increasingly incorporated in commercially available 
software.9 A relatively underutilized, but universally available, 
method for assessing sleep continuity is the hypnogram. The 
graphic representation of sleep-stage sequence across the night 
provides a visual depiction of the normal ultradian cycling of 
sleep. While the hypnogram provides a qualitative description 
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objectives: Research on the effects of sleep-disordered breathing 
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tistate survival analysis models were used to quantify the frequency 
and hazard rates of transitioning, respectively, between wakefulness, 
NREM sleep, and REM sleep.
Results: Whereas composite sleep-stage summaries were similar be-
tween the two groups, subjects with SDB had higher frequencies and 
hazard rates for transitioning between the three states. Specifically, 
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NREM sleep and NREM sleep-to-wake transitions, compared with 
subjects without SDB. Multistate survival models revealed that sub-
jects with SDB transitioned more quickly from wake-to-NREM sleep 
and NREM sleep-to-wake than did subjects without SDB.
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multistate analysis of the sleep hypnogram suggests that such meth-
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sleep continuity and whether sleep disruption is associated with ad-
verse health outcomes.
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of sleep structure, quantitative measures based on the hypno-
gram are not as commonly used in research or clinical prac-
tice as are other measures such as the frequency of arousals. 
Visual scoring of arousals is labor intensive, time consuming, 
and fraught with low to modest interscorer and intrascorer reli-
ability. Even when coupled with the distribution of sleep-stage 
amounts, the frequency of arousals is unable to characterize the 
full extent of information embedded within the hypnogram. It 
is certainly plausible that a clinical disorder increases the fre-
quency of sleep-stage transitions but has no material impact on 
the total amount of time spent in each stage or perhaps even the 
number of arousals. Tabulating the number of sleep-stage shifts 
can be helpful10,11 but is insufficient because it describes only 
one dimension of the hypnogram (i.e., number of shifts) while 
neglecting another (i.e., the time spent in a sleep stage before 
transitioning). Methods to describe temporal histories as de-
picted in the hypnogram are common in epidemiologic studies 
but have had limited application in sleep medicine. Although 
event-history models have been previously used in the context 
of examining determinants of sleep latency, such methods have 
not been employed in assessing the sleep-stage transitions and 
quantifying the impact of SDB on sleep structure.12-16 Thus, the 
primary objective of the current investigation was to determine 
whether event-history models are able to quantify sleep frag-
mentation using the overnight hypnogram. Specifically, log-
linear models and multistate survival analysis methods were 
used to model the number and rate of sleep-stage transitions, 
respectively, in a community sample of middle-aged and older 
adults with and without SDB.

MethoDS

Study Sample and covariate Data

The current investigation used data from the Sleep Heart 
Health Study (SHHS), a multicenter study on SDB, hyperten-
sion, and cardiovascular disease.17 Subjects for the SHHS were 
recruited from ongoing cohort studies on cardiovascular and 
respiratory disease. Details regarding the design and methodol-
ogy for recruiting and characterizing study subjects have been 
previously described.18 Approval for the study protocol was 
acquired from the institutional review board of each partici-
pating institution and informed consent was obtained from all 
subjects. The baseline visit included interviewer-administered 
questionnaires to assess prevalent medical comorbidities (e.g., 
hypertension and cardiovascular disease), smoking history, caf-
feine and alcohol consumption, race, sex, and age. Systolic and 
diastolic blood pressure, height, weight, and neck circumfer-
ence were also obtained on the night of the polysomnogram.

To assess the independent effects of SDB on sleep structure, a 
matched subset of the SHHS cohort with and without SDB was 
selected for the current study. Subjects with moderate to severe 
SDB were identified as those with a respiratory disturbance in-
dex that exceeded the 90th percentile of the entire cohort (RDI ≥ 
22.3 events/h). Subjects without SDB were identified as those 
with an RDI below the 25th percentile of the entire cohort (RDI < 
1.33 events/h). Extremes of SDB severity were used to increase 
the likelihood of finding differences in conventional measures 
of sleep structure. Confounding due to demographic factors was 

minimized by matching subjects with and without SDB on age, 
sex, race, and body mass index (BMI). The limits imposed on 
age and BMI were such that no matching pair differed by more 
than 10 years (1 standard deviation of SHHS cohort) of age and 
5 kg/m 

2 (1 standard deviation) in BMI. Other exclusion criteria 
included prevalent cardiovascular disease, hypertension, chronic 
obstructive pulmonary disease, asthma, coronary heart disease, 
history of stroke, and current smoking. Despite having a baseline 
cohort of 6441 subjects, only 60 subject pairs with and without 
SDB (n =120) met the strict inclusion criteria outlined above and 
could be individually matched to each other.

Polysomnography

An overnight sleep study in the subject’s home was conduct-
ed using the Compumedics P-series recording system (Compu-
medics, Australia). The recording montage included the follow-
ing physiologic recordings: EEG (C3-A2 and C4-A1), right and 
left electroocculograms, single-lead electrocardiogram, chin 
electromyogram, measurement of abdominal and thoracic effort 
by impedance plethysmography, oxyhemoglobin saturation by 
pulse oximetry, airflow (oral-nasal thermistor), body position 
(by mercury gauge), and ambient light. All sleep recordings 
were sent to a centralized reading center for visual analysis. 
Details of polysomnographic equipment, hook-up procedures, 
failure rates, scoring criteria, and quality assurance have been 
previously described.18

Sleep-stage scoring was performed by trained technicians 
according to the published guidelines.19 Apneas were identified 
if airflow was absent or nearly absent for at least 10 seconds. 
Hypopneas were identified if discernible reductions in airflow 
or thoracoabdominal movement (at least 30% below baseline 
values) occurred for at least 10 seconds. The RDI was defined 
as the number of apneas or hypopneas, each associated with a 
4% decrease in oxygen saturation, per hour of sleep. Arousals 
were identified as abrupt shifts in the EEG frequency for at least 
3-seconds. In REM sleep, scoring of arousals also required a 
concurrent increase in activity of the chin electromyogram.20 
The arousal index was defined as the average number of arous-
als per hour of sleep. Conventional parameters of sleep struc-
ture included sleep latency, total sleep time, sleep efficiency 
(total sleep time/time in bed), and percentages of NREM and 
REM sleep. Subjects with visually identified poor-quality EEG 
were not eligible for the current analysis. Other exclusionary 
criteria included poor-quality oximetry or respiratory signals 
and inability to visually score sleep.

Statistical Analysis

To characterize nocturnal event histories in the sleep hypno-
gram, two distinct methods were employed: multistate survival 
analysis and log-linear models. Multistate survival models de-
scribe a finite number of states together with all possible transi-
tions that can occur between those states.21,22 The movement of 
subjects between states is governed by a set of transition rates 
(or hazard rates) that can be modeled using proportional haz-
ards regression.23 In the context of modeling overnight stage 
transitions, sleep was represented using three states: wake, 
NREM sleep, and REM sleep (Figure 1). The multistate vari-
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ant24 of the proportional hazards regression model that depicts 
the dynamics of sleep-stage transitions for subject i can be writ-
ten as follows:

log λs(t|xi) = log λo(s)(t) + βs * xi + covariates

Here, the strata index s indicates the type of sleep-stage transi-
tion (e.g. NREM-to-REM, Figure 1), λo(s)(t) is the distinct base-
line hazard rate for each type of sleep-stage transition, xi is an 
indicator variable for disease status (SDB versus no-SDB), and βs 
is the regression coefficient for strata specific log(transition rate) 
comparing those with SDB compared to those without SDB.25 
Due to the fact that a subject can cycle through all three states 
several times during the night, six different types of transitions 
are distinguished, and each of these transitions can occur more 
than once. To estimate rates of transitioning in the multistate 
model, the data must be structured in a person-period format 
taking into account all possible competing transitions.26 For ex-
ample, a NREM sleep duration that transitions into REM sleep 
would be expanded to two data records: NREM-to-REM transi-
tion (observed record) and NREM-to-wake transition (censored 
record). The designation of the former as “observed” and the lat-
ter as “censored” indicates the occurrence of the NREM-to-REM 
transition during a period of risk for either transition (see appen-
dix). A stratified extension of proportional hazard models was 
fitted with the PHREG procedure in SAS (SAS Institute, Inc., 
Cary, NC). The robust sandwich variance estimator was used 
to account for intrasubject correlation, and ties were handled as 
proposed by Efron.27 The stratified proportional hazards model 
was used because it can incorporate several states (e.g., wake, 
NREM, and REM) between which transitions may take place at 
distinct hazard rates. The STRATA specification of the PHREG 
procedure allows model fitting when the hazard functions across 
groups can be assumed to be parallel for a particular transition 
type but not across the different types of transitions. Thus, the 
stratified proportional hazards model accommodates the require-
ment that the baseline hazard rates for the six different transitions 
shown in Figure 1 are not necessarily similar.

To model the frequency of transitions as a function of group 
status, Poisson log-linear models were employed.28 Poisson log-
linear models, a specialized case of generalized linear models, 
are commonly used to model contingency tables. In the con-
text of modeling the frequency of sleep-stage transitions, there 

are two distinct groups that can each repeatedly experience six 
possible transition types. The basic concept of the log-linear 
modeling involves fitting a model to the observed frequencies 
contained within the 2 × 6 contingency table. The model is pa-
rameterized for row and column effects as follows:

log (Fab) = µ + φa
G + φb

S + φab
GS + covariates

In the above equation, log(Fab) is the log of the expected cell 
frequency for cell ab in the contingency table; µ is an intercept 
(the referent cell’s mean natural log of expected frequency); φa

G 
and φb

S represent the main effects of group status and transition-
type, respectively; and φab

GS estimates the interaction between 
group and transition-type effects. Generalized estimating equa-
tions were used to account for the interdependence among the 
cells.29,30 As opposed to the multistate approach, which models 
events over time and accounts for censoring, the structure of 
the data for log-linear analysis is only concerned with the num-
ber of the transitions observed. The coefficients produced by 
this model and linear combinations thereof were appropriately 
transformed to render estimates of relative frequencies of par-
ticular sleep-stage transition types as a function of group status 
(SDB versus no SDB). The log-linear analysis was conducted 
using the GENMOD procedure in SAS. Both the multistate and 
log-linear models included the matching variables age, sex, 
race, and BMI. All p values are for 2-sided tests.

ReSultS

A matched sample of 60 subjects with and without SDB was 
identified from the SHHS cohort. As expected, the two groups 

Table 1—Characteristics of Subjects With and Without Sleep-
Disordered Breathing (SDB)

Variable SDB No SDB p valuea

Demographic
 Age, y 62.7 ± 10.8 62.3 ± 10.6 0.31
 Male, no. (%) 38 (63.3) 38 (63.3) 1.00
 White, no. (%) 52 (86.7) 52 (86.7) 1.00
 BMI, kg/m2 30.7 ± 5.2 29.2 ± 4.5 < 0.0001
Polysomnographic
 RDI, events/h 34.0 ± 12.1 0.63 ± 0.4 < 0.0001
 Total sleep time, min 353.3 ± 59.5 362.9 ± 56.3 0.38
 Sleep latency, minb 20.5 ± 15.7 22.1 ± 18.5 0.69
 Sleep efficiency, % 81.9 ± 10.3 83.0 ± 9.2 0.98
 Sleep stage, %c

  1 6.5 ± 4.5 5.7 ± 3.5 0.21
  2 58.6 ± 10.5 57.3 ± 11.8 0.52
  SWS 15.6 ± 11.6 16.0 ± 12.5 0.86
  REM 19.2 ± 7.2 21.0 ± 5.6 0.09
 Arousal frequency,
   events/h 28.0 ± 12.0 13.7 ± 5.7 < 0.0001

Data are presented as mean ± SD unless otherwise indicated.
aGroup differences by sleep-disordered breathing (SDB) status 
were determined by the Wilcoxon signed-rank test for categorical 
variables and paired t test for continuous variables.
bDenotes the latency to the first onset of sleep.
cStage 1, stage 2, slow-wave (SWS), and rapid eye movement 
(REM) sleep are expressed in percentage of total sleep time. SWS 
represents the combination of sleep stages 3 and 4.

Figure 1—A schematic of the six possible transitions between 
wake, REM [rapid eye movement], and non-REM [NREM]). λpq 
is the hazard rate of making the transition from stage p to stage q.
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and second half, respectively, of each subject’s total sleep time, 
as opposed to using a global arbitrary cutpoint. Log-linear and 
multistate models were then reconstructed for each segment of 
the sleep period (Table 3). Analyses by segment of the night 
showed that those with SDB had higher rates of awakening 
from both NREM and REM sleep in both segments. Transi-
tion frequencies for wake-to-NREM sleep and NREM sleep-
to-wake were significantly higher in SDB subjects regardless 
of segment of night, confirming the overall-night results. It was 
also found that subjects with SDB had a higher transition fre-
quency for wake-to-REM sleep and REM sleep-to-wake in the 
first but not in the second half of the sleep period. Finally, mul-
tistate analyses showed that, compared with the first half of the 
sleep period, subjects with SDB also displayed a greater pro-
pensity for sleep fragmentation, with significantly higher rates 
of wake-to-NREM sleep and REM-to-NREM transitions in the 
second half of the sleep period.

DiScuSSion

The primary objective of the current study was to investigate 
whether characterizing sleep through log-linear and multistate 
analyses would demonstrate differences in sleep structure be-
tween subjects with and without SDB. Using a matched sample of 
middle-aged and older adults recruited from the general commu-
nity, the current investigation demonstrates that, in the absence of 
confounding medical conditions, conventional measures of sleep 
structure were similar between those with and without SDB de-
spite being at the extremes of health and disease, respectively. In 
contrast, log-linear and multistate models showed notable differ-
ences in sleep structure between the two groups. Subjects with 
SDB were noted to have a greater number and higher rates of 
sleep-stage transitions than those without SDB, suggesting that 
the occurrence of apneas and hypopneas during sleep can alter 
the duration spent in distinct sleep stages throughout the night 
without altering the overall summaries of sleep-stage amounts or 
total sleep time. In addition, the present study also indicates that 
the propensity to transition from one stage to another is different 
between the first and second half of the sleep period.

The finding that SDB disrupts sleep continuity is not unex-
pected. It is well established that apneas and hypopneas often 
terminate with a brief EEG arousal. Recurrent arousals lead to 
state instability with recurrent to-and-fro transitions between 
different sleep stages. Event-related arousals from sleep are not 

were similar with respect to age, sex, and race (Table 1). How-
ever, a small but statistically significant difference was noted 
in the BMI between subjects with and without SDB. Restrict-
ing the matching limits in BMI to less than 5 kg/m2 or age to 
less than 10 years to improve the degree of matching led to 
a significant decrease in the overall sample size. Thus, BMI, 
age, and other matching covariates were included in all mul-
tivariable models. Subjects with SDB had a mean RDI of 34.0 
events per hour (median: 30.6, interquartile range: 26.4-39.1), 
whereas those without SDB had a mean RDI of 0.63 events per 
hour (median: 0.67, interquartile range: 0.32-0.91). As expect-
ed, the overall arousal frequency was higher in SDB subjects, 
compared with healthy subjects (no SDB). Surprisingly, despite 
obviously large differences in disease severity (i.e., RDI), con-
ventional measures of sleep structure such as total sleep time, 
percentage of total sleep time in each sleep stage, and sleep ef-
ficiency were similar between the two groups (Table 1).

The transition frequencies of wake-to-NREM sleep and 
NREM sleep-to-wake were significantly higher in subjects with 
SDB (Table 2). Log-linear models revealed that SDB conferred 
a 26% and 32% increase in propensity of wake-to-NREM 
sleep and NREM sleep-to-wake transitions, respectively. The 
higher relative frequency of these two transition types sug-
gests that SDB can disrupt sleep continuity with oscillations 
between NREM sleep and wakefulness. The log-linear model 
also showed that SDB increases the number of transitions from 
wake-to-REM sleep. Multistate models examining the hazards 
of each sleep-stage transition type revealed that there was an 
increase in the rate of wake-to-NREM sleep and NREM sleep-
to-wake transitions (Table 2), confirming the findings of the 
log-linear analysis. The adjusted hazard rate ratios of wake-to-
NREM sleep and NREM sleep-to-wake transitions were 1.10 
(95% confi dence interval� 1.02, 1.20) and 1.50 (95% confi -confidence interval� 1.02, 1.20) and 1.50 (95% confi -� 1.02, 1.20) and 1.50 (95% confi -confi-
dence interval: 1.30, 1.74), respectively. In addition, multistate 
models demonstrated an increase in the rate for REM sleep-to-
wake, depicting those with SDB having a 2.26 (95% confidence 
interval: 1.51, 3.40) times greater likelihood of transitioning 
from REM sleep to wakefulness than those without SDB.

Recognizing the overnight heterogeneity in the distribution 
of NREM and REM sleep and in the frequency of sleep-stage 
transitions over the course of the night, analyses were per-
formed dividing each subject’s total sleep period into two seg-
ments. Accounting for differences in total sleep time, the first 
and second segments of sleep were determined as the first half 

Table 2—Results from Log-Linear and Multistate Models for Sleep-Stage Transitions in SDB for the Entire Night

Sleep-stage Log-linear analysis Multistate analysis
transition Frequency of transitionss RRb HRb

 SDB No SDB RR 95% CI p value HR 95% CI p value
Wake → NREM 1725 1368 1.26 1.07, 1.48 0.005 1.10 1.02, 1.20 0.02
NREM → Wake 1579 1200 1.32 1.11, 1.56 0.001 1.50 1.30, 1.74 <0.0001
NREM → REM 346 351 1.02 0.81, 1.29 0.85 1.04 0.68, 1.57 0.87
REM → Wake 358 324 1.17 0.91, 1.50 0.21 2.26 1.51, 3.40 <0.0001
REM → NREM 160 134 1.20 0.90, 1.59 0.20 1.57 0.89, 2.77 0.12
Wake → REM 175 114 1.42 1.02, 1.96 0.04 0.86 0.49, 1.50 0.60

aFrequency of transitions comparing subjects with sleep-disordered breathing (SDB) to those without SDB (No SDB).
bResults are adjusted for age, sex, race, and body mass index. RR refers to relative ratio and HR refers to hazard ratio; CI, confidence interval; 
REM, rapid eye movement NREM, non-REM.
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jor strength. Furthermore, the finding of similar conventional 
sleep-stage summaries in subjects with and without SDB in our 
sample highlights the importance of characterizing the tempo-
ral evolution of sleep with methods that capitalize on distinct 
dimensions (i.e., frequency and rate) of an event. Availability 
of sleep recordings in the home is an additional strength be-
cause home-based studies limit the potential of the “first-night” 
effect on sleep structure that is common with in-laboratory 
polysomnograms.31-33 Finally, the use of a well-characterized 

all equal because there is much interindividual and intraindi-
vidual variation in whether an apnea or hypopnea leads to a 
shift between sleep stages or a transition to wakefulness. The 
results of the current study illustrate that conventional measures 
of sleep structure tend to collapse a temporally evolving pro-
cess and limit the ability to reach inferences regarding secular 
trends across groups. Nevertheless, composite summary mea-
sures provide useful and necessary information because know-
ing if the total time spent in a stage is similar across groups 
assists in distinguishing whether sleep is actually more frag-
mented or the greater frequency of transitions is simply a result 
of differences in total sleep time. In addition to characterizing 
transition frequencies and rates, event history methods, as em-
ployed herein, also afford modeling of directionality of transi-
tions. For example, a state change from wake-to-NREM sleep 
is clearly distinct from the transition of NREM sleep-to-wake.
Moreover, the methods of multistate survival analysis allow the 
dynamic notion of competing risks to be applied to the evolu-
tion of sleep, in which a transition from one to any of the other 
states is possible. Such distinction of state evolution of sleep 
is not possible with sleep-stage percentages or arousal counts 
because markedly differing sleep profiles can be congruent on 
these measures. Even counting the number of sleep-stage transi-
tions is insufficient because it does not describe the time or rate 
of a particular type of sleep-stage transition. As shown in Figure 
2, the percentages of NREM and REM sleep across different 
hypnograms can be similar, whereas overt differences can exist 
in the number and the rate of sleep-stage transitions. Log-linear 
and multistate models quantify these differences that are often 
visually apparent in the hypnogram.

There are several strengths of this study that merit discus-
sion. The exclusion of medical comorbidities and matching on 
race, sex, BMI, and age minimized the concern for confound-
ing and permitted a thorough assessment of the independent ef-
fects of SDB on sleep structure. Given that SDB is commonly 
associated with substantial medical comorbidity, identifying a 
sample of matched subjects free of such conditions is a ma-

Table 3—Results from Log-Linear and Multistate Models for Sleep-Stage Transitions by Segments Of Night

Sleep-stage transition Log-linear analysis Multistate analysis
  Frequency of Transitionsa RRb HRb

  SDB No SDB RR 95% CI p value HR 95% CI p value
First segment of night
 Wake → NREM 764 611 1.26 1.07, 1.48 0.005 1.09 0.99, 1.20 0.08
 NREM → Wake 712 553 1.30 1.10, 1.54 0.002 1.46 1.20, 1.78 0.0002
 NREM → REM 145 149 1.07 0.87, 1.32 0.53 1.16 0.71, 1.90 0.56
 REM → Wake 125 96 1.38 1.05, 1.81 0.02 2.77 1.55, 4.93 0.001
 REM → NREM 69 72 1.05 0.80, 1.37 0.73 1.05 0.56, 1.96 0.88
 Wake → REM 63 32 1.87 1.29, 2.72 0.001 1.05 0.37, 3.00 0.92
Second segment of night
 Wake → NREM 961 757 1.26 1.02, 1.55 0.03 1.12 1.01, 1.24 0.03
 NREM → Wake 867 647 1.33 1.06, 1.67 0.01 1.53 1.27, 1.86 <0.0001
 NREM → REM 201 202 1.01 0.76, 1.33 0.96 0.96 0.58, 1.62 0.89
 REM → Wake 233 228 1.06 0.81, 1.37 0.68 2.08 1.29, 3.35 0.003
 REM → NREM 91 62 1.19 0.85, 1.68 0.31 2.37 1.12, 5.02 0.02
 Wake → REM 112 82 1.15 0.82, 1.6 0.43 0.79 0.41, 1.52 0.48

aFrequency of transitions comparing subjects with sleep-disordered breathing (SDB) to those without SDB (No SDB).
bResults are adjusted for age, sex, race, and body mass index. RR refers to relative ratio and HR refers to hazard ratio; CI, confidence interval; 
REM, rapid eye movement NREM, non-REM.

Figure 2—Differences in results obtained from survival and log-
linear analysis of sleep-stage transitions illustrated using 3 hypo-
thetical hypnograms. Total time recorded and time in rapid eye 
movement (REM) sleep are equivalent among the three hypno-
grams, demonstrating the limits of information gained by relying 
on composite summary measures alone to capture differences in 
sleep structure. Number of transitions from non-REM (NREM) 
to REM allow for a quantitative distinction to be made between 
profiles A and B and between A and C but not between B and 
C. Time to transition from NREM to REM provides a fuller de-
scription of profiles, enabling a quantifiable distinction among the 
three hypnograms.
*Differences detectable with log-linear modeling
†Differences detectable with multi-state survival analysis
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cohort recruited from the general-community cohort minimizes 
potential biases that are often inherent in clinic-based samples.

Despite these strengths, the current study has several limita-
tions. First, a simplified approach for the assessment of transi-
tion frequency and rate was used that did not include distinct 
stages of NREM sleep. The decision to limit classification to 
wake, NREM sleep, and REM sleep was driven by the need to 
answer the question of whether event-history methods provided 
any additional insight into the macrostructure of sleep. In light 
of the robust findings from modeling the three states, further ap-
plication of these methods to the assessment of sleep structure 
with distinct NREM sleep stages represents a logical extension. 
Second, because both of the methods employed in our analyses 
are based on visually scored sleep stages, poor reliability of scor-
ing could impact the derived inferences. As observed by others, 
scoring of stage 1 sleep was least reliable in the SHHS. However, 
if stages are recoded as wake, NREM sleep, and REM sleep, as 
was needed for the log-linear or multistate analyses, interscorer 
comparisons in the SHHS yield kappa statistics in the range of 
0.87 to 0.90.34 Third, stratification by sleep-stage transition type 
and further by segments of the sleep period diminishes the power 
to detect differences, especially if particular transition types oc-
cur infrequently (e.g., wake-to-REM sleep). However, the cur-
rent analyses set the stage for future work with the entire SHHS 
cohort that will provide sufficient power to identify potential de-
terminants of sleep-stage transitions. Fourth, a distinct feature of 
the proportional hazards model is that it leaves the underlying 
hazard for a specific type of transition unspecified. Although this 
is a major strength of the proportional hazards model, knowing 
the hazard rate in the reference group is sometimes desirable. Im-
plementation of parametric models can provide these reference 
hazards and represent yet another extension of the current work.35 
Finally, the methods proposed herein characterize the continu-
ity of sleep using 30-second epochs and thus cannot fully depict 
events (e.g., arousals or periods of microsleep) that occur within 
the epoch. Nonetheless, event-history methods can be applied to 
sleep stages that are scored using a shorter epoch period (e.g., 4 
seconds) to better describe sleep microstructure.

The major implication of this study is that the characteriza-
tion of sleep structure in SDB and other sleep disorders is bet-
ter served by encompassing new quantitative characterizations 
along with the classical measures, particularly to aptly test 
hypotheses regarding the function and health-related effects 
of normal and abnormal sleep. Within this broader scope, un-
derstanding various dimensions of sleep continuity may carry 
significance with regard to predicting the relationship between 
sleep and general health. In light of findings of the current study, 
the newly suggested approaches of examining sleep structure 
could provide a more thorough understanding of how comor-
bidities affect sleep, as well as how normal sleep function, in 
turn, fulfills a crucial role in health and disease.
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APPenDix

The following table illustrates the data expansion necessary 
for multistate survival analysis. On the left, a data record of 1 
state change is shown. Subject i transitions from non-rapid eye 
movement (NREM)-to-rapid eye movement (REM) sleep. To 

convert this record to a person-period format, the record would 
be expanded to 2 records that reflect all possible transitions 
from NREM sleep. These include a NREM-to-REM transition 
(observed) and NREM-to-wake transition (censored).

id Transition type Duration of  id Transition type Duration of Observed (1) or
  state, min    state, min Censored (0)
i NREM → REM 24.3 → i NREM → REM 24.3 1
    i NREM → Wake 24.3 0
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