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Abstract

Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to
tendons via the myotendinous junction (MTJ). In vertebrates, a great deal is known about muscle specification as well as
how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate long muscle
fibers from short cells and the molecular factors that limit elongation are unknown. We show that zebrafish fast muscle fiber
morphogenesis consists of three discrete phases: short precursor cells, intercalation/elongation, and boundary capture/
myotube formation. In the first phase, cells exhibit randomly directed protrusive activity. The second phase, intercalation/
elongation, proceeds via a two-step process: protrusion extension and filling. This repetition of protrusion extension and
filling continues until both the anterior and posterior ends of the muscle fiber reach the MTJ. Finally, both ends of the
muscle fiber anchor to the MTJ (boundary capture) and undergo further morphogenetic changes as they adopt the
stereotypical, cylindrical shape of myotubes. We find that the basement membrane protein laminin is required for efficient
elongation, proper fiber orientation, and boundary capture. These early muscle defects in the absence of either lamininb1 or
lamininc1 contrast with later dystrophic phenotypes in laminina2 mutant embryos, indicating discrete roles for different
laminin chains during early muscle development. Surprisingly, genetic mosaic analysis suggests that boundary capture is a
cell-autonomous phenomenon. Taken together, our results define three phases of muscle fiber morphogenesis and show
that the critical second phase of elongation proceeds by a repetitive process of protrusion extension and protrusion filling.
Furthermore, we show that laminin is a novel and critical molecular cue mediating fiber orientation and limiting muscle cell
length.
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Introduction

Muscle specification and morphogenesis during early develop-

ment are critical for normal muscle physiology. In vertebrates,

most of the musculature is derived from somites [1–3]. Somites are

segmentally reiterated structures delineated by somite boundaries.

As development proceeds, a portion of the somite gives rise to

skeletal muscle fibers that comprise the myotome. The terminal

ends of myotomal muscle fibers attach to somite boundaries,

which then become myotome boundaries. In teleost fishes,

myotome boundaries give rise to the myotendinous junction

(MTJ) [4].

Myotome development is perhaps best understood in amniotes.

Myogenesis in amniotes begins when muscle precursor cells

translocate from the overlying dermomyotome to the myotome

[3]. The first myocytes to translocate come from the dorsomedial

lip, but later in development myocytes translocate from all

dermomyotome borders as well as the central region [5–7].

Time-lapse analysis in the chick embryo has shown that spatial

domains of the somite differ in cell behaviors that generate the

primary myotome [8]. The above studies have elucidated cell

movements that generate the myotome. However, although it is

known that short, mononucleate, muscle precursor cells generate

long, functional multinucleate muscle fibers, it is not known how

this occurs. Interestingly, the early zebrafish and chick myotomes

have been described as containing mononucleate muscle fibers

[8,9]. Our intent in undertaking this study was to utilize the

advantages of the zebrafish system to shed light on early muscle

development in a vertebrate model.

Elucidation of the cellular mechanisms that underlie muscle

fiber development and tendon attachment is critical for a

comprehensive understanding of muscle development. Towards

this end, muscle morphogenesis has been studied in different

model systems. C2C12 myoblasts in culture elongate slightly prior

to differentiation, align with each other, and fuse to generate a

multinucleate myotube [10]. We have called this scenario elliptical
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growth. In grasshopper embryos, the first muscle cells elongate

between attachment sites prior to fusion. These cells extend many

processes in multiple directions while elongating [11]. We have

termed this scenario branching. Elegant studies in Drosophila have

shown that muscle morphogenesis occurs when myoblasts fuse to

generate long, multinucleate myotubes and identified a number of

proteins required for myoblast fusion [12,13]. Extremely exciting

recent studies have shown that there is some conservation of

molecular mechanisms that mediate muscle cell fusion between

Drosophila and zebrafish [14,15]. Interestingly, however, the

primary myotome in chick and zebrafish is mononucleate [8,9].

This suggests that myoblast fusion does not mediate the earliest

stages of muscle morphogenesis in vertebrates, but occurs after

initial muscle fiber elongation. These distinct mechanisms of

morphogenesis in different systems highlight the fact that a

mechanistic study of muscle fiber morphogenesis in vertebrates has

not yet been undertaken. Identification of discrete morphogenetic

steps that mediate muscle fiber morphogenesis in vertebrates is

necessary to provide a framework for future molecular analyses.

Adhesion of muscle fibers to the basement membrane is critical

for muscle function. The basement membrane attaches muscle

fibers to connective tissue that then attaches to the skeletal system;

this attachment is critical for force transduction from muscle to

bone. One major component of the basement membrane is

laminin. Laminin is a heterotrimeric protein composed of a, b and

c subunits that generate at least 15 different isoforms [16]. The

importance of laminins in muscle physiology is evidenced by the

fact that mutations in lama2 result in muscular dystrophies [17–

20]. Recent work has shown that muscle fibers in zebrafish mutant

for lama2 elongate and attach to the MTJ, but at 48 hours post

fertilization (hpf) fibers detach before death, providing novel

insight into roles for lama2 in muscle disease [21].

Significantly less is known about spatiotemporal mechanisms of

basement membrane assembly during early skeletal muscle

development and whether adhesion to the basement membrane

contributes to morphogenesis. Recent data suggest that the

laminin receptor Integrin a6b1 is necessary for both basement

membrane assembly and normal expression of myogenic regula-

tory factors in cultured mouse explants [22]. However, Integrin

a6b1 binds to multiple laminins with distinct affinities [23] and

roles for individual laminin chains during early muscle develop-

ment in vivo have not been identified. In order to determine

whether the basement membrane is critical during early

development for muscle fiber elongation and attachment, it is

first necessary to understand the cellular basis of muscle fiber

elongation and attachment.

The relative simplicity of zebrafish skeletal muscle, where slow

and fast-twitch fibers are spatially segregated, makes it an ideal

model system to study muscle cell elongation and MTJ

morphogenesis. Morphogenesis of the somite boundary into the

MTJ involves three stages: initial epithelial somite boundary

formation, transition and myotome boundary/MTJ formation

[24]. Transition encompasses the lateral displacement of slow-

twitch muscle fibers and the subsequent elongation and differen-

tiation of fast-twitch fibers [25–28]. The initial myotome forms by

26 hpf and contains long muscle fibers attached to the myotome

boundary/MTJ. At this point, the extracellular matrix (ECM)

proteins Fibronectin, laminin and Periostin concentrate at the

MTJ [29–31]. Morpholino-mediated inhibition of Periostin

disrupts MTJ formation [29,32,33], but discrete and mechanistic

requirements for other ECM proteins and their receptors are not

known. In addition, the precise mechanism by which elongating

muscle fibers attach to the MTJ and cease elongation has not been

elucidated.

The purpose of this study was to rigorously and quantitatively

characterize, for the first time in vertebrate embryos, the cellular

events that generate long myotubes from initially short muscle

precursor cells. We focused on fast-twitch fiber morphogenesis in

zebrafish embryos. Our goal was to develop methods with which

discrete functions for proteins involved in muscle morphogenesis

could be identified. Towards this goal, we utilized time-lapse

analysis, genetic mosaic analysis, and three different mathematical

tools including a powerful wavelet-based image analysis formalism

to provide novel insight into cellular and molecular mechanisms

that underlie muscle fiber elongation and subsequent attachment

to the nascent MTJ.

Results

Three Phases of Fast-Twitch Muscle Cell Elongation
Although the elongation of somitic cells is critical for actin-

mediated contractility that underlies muscle function, the cellular

and molecular basis of elongation in vertebrates is not well

understood. An understanding of how muscle cells elongate is

critical in order to determine mechanistic roles for genes required

in elongation. We used time-lapse microscopy of zebrafish

embryos labeled with BODIPY-Ceramide to outline cells. This

type of time-lapse analysis, where all cells are labeled, provides an

initial framework with which to focus further investigation into

fast-twitch fiber morphogenesis. Fast-twitch muscle cells can be

identified because, in contrast to slow-twitch muscle fibers, they

are not migrating medially-laterally [25]. The transition from a

somite to a myotome is a dynamic process (Figure 1, Movie S1)

with at least three phases. The first phase is short muscle precursor

cells. Second, muscle fibers elongate by extending narrow

protrusions to intercalate between other cells (Figure 1 A2 at

80 min, blue pseudocolored cell). Elongation ends when cells

adhere to the anterior and posterior boundaries. The third phase is

Author Summary

Despite the importance of muscle fiber development and
tendon attachment, this process is incompletely under-
stood in vertebrates. One critical step is muscle fiber
elongation; muscle precursor cells are short and subse-
quent elongation/fusion generates long, multinucleate
muscle fibers. Using a vertebrate model organism, the
zebrafish, we find that single round myoblasts elongate to
span the entire width of the myotome prior to fusion.
Using rigorous and objective mathematical characteriza-
tion techniques, we can further divide muscle develop-
ment into three stages: short precursor cells, intercalation/
elongation, and boundary capture/myotube formation.
The second phase, elongation, occurs via a two-step
mechanism of protrusion extension and filling. Myotube
formation involves boundary capture, where the ends of
muscle fibers anchor themselves to the myotome bound-
ary and stop elongating. We show that the protein laminin
is required for boundary capture, normal fiber length, and
proper fiber orientation. Genetic mosaic experiments in
laminin-deficient embryos reveal that boundary capture is
a cell autonomous phenomenon. Wild-type (normal) cells
capture the boundary appropriately and stop elongating
in laminin-deficient embryos. Although adhesion to
laminin has been implicated in muscular dystrophies
where the attachment between muscle cells and tendons
fails, no early developmental requirements for laminin in
fast muscle morphogenesis have been shown until now.

Dynamics of Zebrafish Muscle Morphogenesis
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myotube formation. Recently elongated cells are long, but

irregularly shaped (Figure 1 A1 green cell at 0 min, A2 blue cell

at 84–168 min, Movie S1). During myotube formation, long cells

with grooves continue to change shape until they form a more

uniformly shaped tube without grooves (Figure 1 A1 green cell at

208 min). An additional time-lapse is shown in Movie S2.

Figure 1. Myoblasts Intercalate between Each Other as They Elongate. (See also Movies S1 and S2.) A) Cartoon depicts the anterior to
posterior progression of myofiber elongation in a 22 somite embryo. A1–A2) Confocal time-lapse sequence showing fast muscle cell elongation in a
single focal plane of a zebrafish embryo vitally labeled with BODIPY-Ceramide. Anterior left, dorsal top, somite number denoted, time elapsed
indicated on panels. The colored cells were pseudocolored to facilitate visualization. By 80 min, the blue cell is beginning to intercalate, intercalation
is complete by 84 min. During this time, the orange and purple cells are elongating. The green cell transits from a long, but irregularly shaped cell
(white arrowhead indicates a groove at 20 min) into a rod-shaped myotube by 124 min. Scale bars: 50 mm.
doi:10.1371/journal.pgen.1000219.g001

Dynamics of Zebrafish Muscle Morphogenesis
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Phase 1: Short Muscle Precursor Cells
A three-dimensional quantification of cell morphology is critical

to distinguish between scenarios of muscle cell elongation

(Figure 2A). We transplanted dextran-filled cells into unlabeled

host embryos and three-dimensionally reconstructed the behavior

of labeled cells through time (Figure 2B). For each time point, the

z-series was three-dimensionally projected and the area, perimeter,

and major axis were measured. Thus two-dimensional parameters

(area, perimeter, and major axis) were obtained from three-

dimensional projections of cells. The analysis of labeled cells in an

unlabeled field of cells allows unambiguous determination of

cellular shape dynamics and quantification of morphometric

parameters. We analyzed cell behaviors in two ways: (1) analysis of

the filament index and (2) analysis of the relative dynamics of area

and perimeter changes through time. As shown below, this

approach supports and extends what was observed in BODIPY-

Ceramide labeled embryos.

The filament index is an excellent mathematical parameter that

describes cell morphology. The filament index is a measure that

quantifies the departure of a shape from a circle (see methods). A

circle has a filament index of 1 and a higher filament index indicates

a larger departure from a circular shape. Short muscle precursor cells

have a low filament index (FI) indicating that their morphology is

close to a circle (Figure 2F, G1, FI = 1.660.6, Table 1).

Short muscle precursor cells extend and retract very short

(,2 mm) filopodia-like protrusions in all directions (Figure 2C,

Movie S3). Small changes in the area, perimeter, and length of

muscle precursor cells reflect the dynamic shape changes of

precursor cells (not shown). However, their overall shape and size

remains consistent.

Phase 2: Elongating Fast-Twitch Muscle Precursor Cells
Elongating cells lengthen towards their attachment site, the

MTJ. Elongating cells have a higher filament index than short

precursor cells (Figure 2F, 2.960.8, Table 1). The filament indices

of elongating cells increase slightly through time (Figure 2G1, G2),

reflecting their departure from a circular shape.

One purpose of this experiment was to distinguish between

possible scenarios of muscle fiber elongation summarized in

Figure 2A. The difference between the fusion and remaining

scenarios is the timing of fusion relative to elongation. In the fusion

scenario, fusion of short myoblasts is the major morphogenetic event

that drives fiber elongation. Fusion of multiple short cells generates a

long, multinucleate myotube in one step as in Drosophila [12]. In the

remaining scenarios, cells elongate prior to fusion. We analyzed

nuclear content of elongating and recently elongated cells and found

that mononucleate fast-twitch cells elongate to the MTJ prior to

fusion (Figure 4F–H, n = 108 cells). Thus, the first fast-twitch fibers

in zebrafish do not fuse prior to elongation.

The remaining scenarios are branching, elliptical growth, and

protrusion (Figure 2A). The difference between the branching

scenario and the elliptical growth/protrusion scenarios is the

amount, size, and direction of protrusive activity. In grasshopper,

the first muscle cells to elongate have extensive protrusions in

many different directions [11]. This is depicted in the branching

scenario (Figure 2A). In contrast, the elliptical growth and

protrusion scenarios depict cells that elongate in a fixed direction.

Both time-lapse analysis and analysis of cell morphology in fixed

embryos indicate that fast-twitch fibers in zebrafish embryos

elongate in a fixed direction and do not exhibit a branching

morphology with multiple protrusions extended in different

directions (Figures 2, 4). Rather, fast-twitch cells extend long

(.4 mm) protrusions along their long axis (Figure 2D, Movie S3).

These results indicate that the branching scenario does not apply

to initial fast-twitch muscle morphogenesis in zebrafish.

The two remaining scenarios differ in the nature of elongation.

The elliptical growth scenario depicts elongation as a continuous

process reminiscent of a balloon filling. The protrusion scenario

suggests that elongation is incremental and proceeds via a 2-step

mechanism: protrusion extension and protrusion thickening.

Time-lapse analysis suggests that fast-twitch cells extend protru-

sions that subsequently thicken (Figures 1, 2). Geometrical models

were developed and used to determine how area and perimeter

would change through time if cells were elongating via the two

different scenarios. The major difference between the two models

is the nature of dynamic changes in area and perimeter during

elongation (see methods for details). Area and perimeter increase

linearly in the elliptical growth model (Figure 3A) and incremen-

tally in the protrusion model (Figure 3 A1). The incremental

nature of growth in the protrusion model is because the perimeter

increases slightly more when the protrusion extends, but the area

increases slightly more when the protrusion thickens (Figure 3 A1).

Therefore the difference between the two models is how area and

perimeter values change as the cell grows: linear changes occur in

the elliptical growth model and incremental changes in the

protrusion model. In all cells examined, the rate of area increase is

higher than the rate of perimeter increase as is predicted by both

models (Figure 3 B3). However, area and perimeter increase

incrementally during fast-twitch muscle cell elongation (Figure 3

B1, B2). Thus, analysis of area and perimeter dynamics supports

the two-step intercalation model.

Phase 3: Boundary Capture/Myotube Formation
Boundary capture occurs when elongating muscle cells reach

myotome boundaries and stop extending. The filament index of

cells in the boundary capture/myotube formation phase is

significantly higher than the preceding two phases (Figure 2F,

Table 1). Their filament indices decrease slightly through time

(Figure 2 G1, G2). This decrease reflects the fact that a rod-shaped

cell has a similar perimeter and length, but larger area than a long,

irregularly shaped cell.

Recently elongated cells can be irregularly shaped and of

varying diameters (Figure 2E). The thinner portions of the cell

then thicken until the entire cell consists of a more uniform

diameter (Figure 2E, Movie S3). Note that changes in area and

perimeter of cells in the myotube formation phase are distinct: in

this phase the area increases much more than the perimeter

(Figure 3C, compare C3 to B3). The increase in area without a

substantial increase in perimeter reflects the adoption of a more

tube-shaped, regular morphology in the myotube formation phase.

Taken together, the time-lapse data along with two different

quantitative analyses (area and perimeter dynamics through time

and the filament index) indicates that there are three discrete

morphogenetic phases that generate the first fast-twitch muscle

fibers: short muscle precursor, intercalation/elongation and

boundary capture/myotube formation.

Analysis of Fast-Twitch Muscle Cells in Fixed Embryos
Morphometric analysis of fixed cells corroborates the time-lapse

data. Myotome formation proceeds in an anterior-posterior

progression. Thus, this approach allows analysis of muscle cells

in various stages of elongation within the same embryo. As

observed in live embryos, fixed muscle precursor cells are short

(,5 mm) and have short protrusions (Figure 4A, F, white

arrowheads). Protrusions in fixed cells are also observed to extend

in all directions (Figure 4A). The filament index of live precursor

cells and fixed precursor cells is similar (Figure 4E live cells

Dynamics of Zebrafish Muscle Morphogenesis
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Figure 2. Three Phases of Muscle Morphogenesis: Short Muscle Precursor Cells, Intercalation/Elongation, and Boundary Capture/
Myotube Formation. (See also Movie S3.) Projections of ApoTome micrographs are shown, side views, anterior left, dorsal top. Cells were
pseudocolored to facilitate visualization. A) Cartoon depicting possible scenarios for elongation of myofibers. B) Cartoon depiction of the methods

Dynamics of Zebrafish Muscle Morphogenesis
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1.660.6, fixed cells 1.460.2). The correlation of the length with

perimeter is also similar to live cells (Table 1).

Both the qualitative appearance and the morphometric

properties of fixed cells presumed to have been elongating (those

between 5 mm and 40 mm in fixed embryos) are similar to live

elongating cells. The major axis is very strongly correlated with

perimeter and area in both populations (Table 1). Similar to live

cells, long narrow protrusions are only observed along the major

axis (Figure 4B, G, yellow arrowheads, Movie S4). We also

analyzed the nuclear content of dextran-filled cells during

elongation. A z-series was taken and cells were examined in three

dimensions. No elongating cells contained more than one nucleus

(Figure 4G, n.100 cells).

Cells that were fully elongated but irregularly shaped were

presumed to be in the boundary capture/myotube formation

phase (Figure 4C is a three-dimensional projection of an

irregularly shaped but elongated cell). The filament index of these

cells was also similar to live cells (Figure 4E). Fast-twitch cells in

this phase were mononucleate (Figure 4 H shows one focal plane

of a mononucleate cell that is elongated but irregularly shaped

when examined in three dimensions, Movie S4, n = 108).

Interestingly, all muscle cells that contained multiple nuclei

exhibited a stereotypical tubular shape (n = 57, see Figure 4I).

These data suggest the intriguing possibility that the transition

from an irregularly shaped long cell to a rod-shaped myotube may

involve fusion. Our use of dextran-labeled cells in a field of

unlabeled cells clearly highlights the morphological complexity of

elongating fast-twitch muscle cells and indicates that it is not

possible to unambiguously identify multinucleate cells utilizing a

nuclear marker as well as a marker that denotes all cells (such as

phalloidin). Thus, we do not know the exact timing of muscle cell

fusion or whether fusion contributes to the morphogenesis of

irregularly shaped long fibers into regularly shaped, cylindrical

myotubes. However, it is evident that the first fast-twitch muscle

cells do not fuse in order to elongate.

The filament index of fixed muscle cells, as in live cells, is

significantly different between each phase (data not shown, two-

tailed t-test, p,0.01 for all comparisons). These data support the

time-lapse analyses and provide new tools for analysis of

morphogenetic defects in various mutant/morphant embryos.

Quantification of Anisotropy Indicates that Each Phase of
Muscle Fiber Morphogenesis Is Accompanied by a
Significant Increase in Ordered Structure

The identification of discrete, mathematically distinct phases

provides a paradigm by which muscle morphogenesis in mutant

embryos can be assessed. The above data also indicate that the

morphology of fixed cells is not significantly different than live

cells. However, although obtaining single labeled cells within a

field of unlabeled cells in fixed embryos is easier than time-lapse

analysis, it is not feasible in all model systems. We thus looked for a

different mathematical tool to quantify cellular organization.

Ideally such a tool would allow objective quantification of cellular

structure with an easier experimental preparation such as staining

with phalloidin to outline all cells. Therefore, we adapted and

applied the 2D Wavelet-Transform Modulus Maxima (WTMM)

method [34,35]. This method can be used to quantify the amount

of structure, or order, of objects that do not necessarily have a well

Table 1. Morphometric analysis of muscle cells.

Phase Subcategory N Average slope6SE Major Axis vs. Perimeter R2 Filament Index6SD

Short precursor WT live 12 0.57 1.660.6

WT fixed 31 0.59 1.460.2

Laminin-deficient fixed 8 0.92 1.460.3

Elongating precursor WT live 6 0.9 2.960.8

WT live % change in area 6 2.760.8

WT live % change in perimeter 6 1.860.8

WT fixed 255 0.90

Laminin-deficient fixed 166 0.89 3.061.5

Forming myotube WT live 6 0.31 4.961.1

WT live % change in area 6 1.560.5

WT live % change in perimeter 6 0.260.1

WT fixed 13 0.16 6.060.9

Laminin-deficient fixed 11 0.9 5.162.2

doi:10.1371/journal.pgen.1000219.t001

used. Dextran filled WT cells (red) were transplanted into an unlabeled embryo at the blastula stage, time-lapse data was collected at 20 hpf, then Z-
stacks were three dimensionally projected for morphometric analysis. C) Short muscle precursor cells do not undergo large-scale shape changes. A 21
somite-stage embryo, approximate location of somite 15 at left. The blue cell extends a filopodia-like protrusion (8 min, white arrow) that is then
retracted (30 min, the blue cell is enlarged in the bottom panels). The protrusion in the green cell (red arrow at 0 min) is also retracted by 30 min. D)
Elongating muscle precursor cells extend protrusions along their major axis as they elongate. A 22 somite-stage embryo, somite 18 at left. The yellow
cell extends a long, thin protrusion (white arrow) at 18 min that increases in thickness, resulting in a longer cell. The orange cell extends a protrusion
(red arrow) at 80 min that becomes thicker by 120 min. E) Myotube formation involves the transition from an irregularly shaped cell to a more
homogenously shaped tube. At 0 min, the blue cell with a white arrow is not yet tube-shaped, i.e. part of the cell is significantly narrower than the
other parts (white arrow). Over time, the narrow portion thickens, eventually generating a long tube-shaped myotube (120 min, white arrows in
bottom enlarged panels are in the same location in all panels). F) The filament index is significantly different between the three phases (**, p,0.01).
G1) The filament index of the three phases through time. G2) Average slopes of linear trendlines from data in G1 (*, p,0.05).
doi:10.1371/journal.pgen.1000219.g002

Dynamics of Zebrafish Muscle Morphogenesis
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defined boundary. We used this approach to quantify the

structural organization of cellular lattices during muscle fiber

elongation. The WTMM analysis filters an image with the

gradient of a smoothing function (i.e. a wavelet) at a given size

scale. Places within the image where the intensity variation is

maximal are given by the wavelet-transform modulus maxima (i.e.

the WTMM). Next, the positions of maximal intensity variation

along these maxima chains are identified. These are the WTMM

maxima, or WTMMM. At these nodes, the direction where the

signal has the sharpest variation is calculated. An arrow that points

upward has an angle of p/2 and an arrow that points down has an

angle of 2p/2. The anisotropy factor Fa is then calculated from

Figure 3. Mathematical Analysis of Area and Perimeter Dynamics. A) Geometric modeling of relative changes in area and perimeter that
would result if cells elongated as ellipses, as if they were filling like balloons. Both area and perimeter would increase linearly. A1) Geometric
modeling of relative changes in area and perimeter that would result if cells elongated via a two-step process: protrusion extension and filling. Both
area and perimeter would increase incrementally. B) Area and perimeter dynamics during the elongation phase. B1) Percent change of area (solid
line) and perimeter (dotted line) through time. Enlarged traces are shown in B2. B3) Average slope of linear trendlines. The area increased more than
the perimeter in all cells. C) Area and perimeter dynamics during the myotube formation phase. The growth rate of area and perimeter are different in
the myotube formation phase than the elongation phase. As the cell transitions from being irregularly shaped to a more homogenously shaped
myotube, the increase in area represents the filling in of an initially narrow aspect of the cell. Filling in does not dramatically increase the perimeter,
but does result in an increase in area.
doi:10.1371/journal.pgen.1000219.g003

Dynamics of Zebrafish Muscle Morphogenesis
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the probability density function, Pa(A), of the angles A of the

WTMMM vectors. Fa is defined in such a way that randomness,

isotropy, has a value of Fa = 0. Any value of Fa.0 quantifies the

extent of departure from isotropy. A randomly structured cell

lattice has arrows pointing in all directions and a low anisotropy

factor. The arrows point in all directions because the direction of

maximal intensity variation is random. A more organized cell

lattice will have more arrows pointing in the same direction and a

stronger anisotropic signature. More arrows will point in the same

direction in an ordered cell lattice because the direction of

maximal intensity variation will be the same between multiple

cells. Thus, this formalism objectively provides a quantitative

assessment of morphological structure. A step-by-step explanatory

diagram is presented in Figure 5.

The WTMM analysis was applied for all size scales between

a,4 and a,13 mm (see methods for details on staining and image

preparation). Short muscle precursor cells have a low anisotropy

factor indicating that there is only a small departure from isotropy.

Figure 4. Mathematical Characterization of Fixed Cells Supports Time-Lapse Analysis of Live Cells. (See also Movie S4.) ApoTome
images, side views, anterior left, dorsal top, 22 somite-stage fixed embryos. A–D) Dextran-labeled cells (red), b-catenin staining outlines cells (white).
Rotated 90u projections were stretched<3 fold in the Z dimension due to the relative thinness of the tissue. Scale bars: 50 mm. A) Short muscle
precursor cells are short and extend small protrusions (white arrowheads). B) Long protrusions extended along the major axis of the cell are observed
(yellow arrowheads). C) Irregularly shaped cells that span the entire width of the myotome are observed (yellow arrows). D) Long regularly shaped
myotube. E) Graph showing that the filament indexes for live and fixed cells are similar. F–H) 22 somite-stage fixed embryo, nuclei are stained with
Sytox green, dextran-labeled cells are red, b-catenin in blue outlines cells. Although the nuclear content of cells was analyzed in all focal planes, only
one focal plane is shown for clarity. White arrows point to nuclei. F) Precursor cells are short and have one nucleus (white arrowhead in F4 shows
short protrusion). G) Cells that were elongating when fixed were never observed to contain more than 1 nucleus (yellow arrowhead shows a long
protrusion). H) An elongated cell with 1 nucleus. I) Multinucleate myotube.
doi:10.1371/journal.pgen.1000219.g004

Dynamics of Zebrafish Muscle Morphogenesis

PLoS Genetics | www.plosgenetics.org 8 October 2008 | Volume 4 | Issue 10 | e1000219



Figure 5. The 2D WTMM Method Is Used to Quantify Cellular Structure within a Lattice, and Indicates that Cellular Organization
Increases during Muscle Morphogenesis. A) Description of how the 2D WTMM formalism quantifies structure. The starting image is of
elongating muscle precursor cells stained for b-catenin to outline cells. B) Short muscle precursor cells have almost all WTMMM vector arrows
pointing in random directions, indicating that there is only a small departure from isotropy (isotropy means randomly structured). C) Organization
increases as muscle cells begin to elongate. Note more green arrows pointing either up or down in C than B. D) Organization continues to increase
during the myotube formation phase. E) Organization is readily apparent when myotubes have formed. Note that most of the green arrows are
pointing either up or down indicating high levels of organization. F) Averaged Pa(A) for one particular size scale (a,7 mm) for the myotube stage
(lime green curve), the forming myotube stage (dark green curve), elongating precursor stage (blue curve), short precursor (red curve) as well as for
the isotropic fBm surfaces analyzed for calibration purposes (black curve fluctuating around p/2). Also shown is the flat 1/2p curve that would be
obtained for a purely theoretical isotropic process (flat pointed line at 1/2p). G) The anisotropy factor Fa was averaged over all size scales analyzed. An
indicator of organized structure, it shows significantly distinct values for all stages of developing muscle cells.
doi:10.1371/journal.pgen.1000219.g005
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Organization increases throughout muscle elongation. This

increase in organization through time is visible as the increase in

the proportion of arrows pointing in the same directions (Compare

Figure 5B to 5E). The averaged probability density functions Pa(A)

over all size scales a are shown in Figure 5F and the resulting

averaged anisotropy factors Fa are shown in Figure 5G. Each

phase of muscle development has a significantly higher anisotropy

factor indicating increasing cellular organization through time

(importantly, statistical significance is maintained when only single

size scales are used).

Taken together, all the methods used (time-lapse analysis, area/

perimeter dynamics, filament index, and 2D WTMM) show that

there are discrete phases of fast muscle morphogenesis. Furthermore,

the fact that the 2D WTMM analysis supports the other

morphometric analyses used indicates that this is an exceedingly

valuable tool that can objectively quantify how ordered/structured a

field of cells is without having to isolate or segment individual cells.

lamb1 and lamc1 Are Required for Normal Fast Muscle
Cell Orientation

Thorough knowledge of the cellular mechanisms underlying

muscle fiber elongation provides a framework for elucidating the

molecular basis of muscle cell elongation. We asked if a prominent

basement membrane protein, laminin, is required for muscle

morphogenesis. It is known that a laminin receptor, Integrin a6b1,

is required for normal myofiber development in cultured mouse

explants [22] but the relevant laminin ligands are unknown.

We find that muscle cell elongation in lamb1 and c1 mutants

and morphants is delayed. In zebrafish, slow-twitch fibers migrate

laterally and trigger fast muscle cell elongation [28]. Thus, slow

fiber location is an excellent marker for assaying fast muscle cell

elongation: fast cells medial to slow fibers should be fully

elongated. Although slow muscle fiber migration is disrupted in

lamb1 and c1-deficient embryos (Figure S1), some slow fibers

migrate laterally. However, fast muscle cells medial to migrating

slow fibers are short in lamb1 or lamc1 mutants and morphants

(Figure 6B, C, and data not shown, n = 6 grumpy/lamb1 mutant

embryos, 16 lamb1 morphant embryos, 5 wi390/lamc1 mutant

embryos and 10 lamc1 morphant embryos).

Fast-twitch muscle cells belatedly elongate in lamb1 and c1-

deficient embryos and the filament index of cells in all three phases is

similar to control embryos (Table 1). However, fast muscle cells

frequently appear misoriented in lamb1 and c1-deficient embryos

(Figure 6E, note the abnormal angle of cells that are not aligning in a

parallel array, data not shown). Application of the 2D WTMM

method indicates that myotubes in lamc1-deficient embryos are

significantly more disorganized than in control embryos. Elongated

myotubes in control embryos form an organized array as indicated

by the strong polarization of the yellow arrows (Figure 6 G3). The

arrows tend to point either up or down resulting in high peaks at p/2

and 2p/2 (Figure 6K lime green line) and a higher anisotropy factor

(Figure 6L). In contrast, arrows in lamc1-deficient embryos are far

less polarized (compare Figure 6 H3 to G3). The peaks at p/2 and

2p/2 are lower than in wild-type embryos (Figure 6K lime green

line) and the anisotropy factor is significantly lower (Figure 6L).

Thus, application of the 2D WTMM formalism quantitatively

supports the qualitative perception that muscle fibers are disorga-

nized in laminin-deficient embryos.

The next question that follows is when does the anisotropic

signature in laminin-deficient embryos become different from wild-

type embryos? No overt morphological differences between control

and laminin-deficient cells in the short precursor phase are visible to

the eye (Figure 6I, J). However, there is a slight but significant

difference between the anisotropy factors (Figure 6L). The difference

between anisotropy factors increases at every phase of muscle

morphogenesis. These data indicate that laminin is required for

cellular organization as early as the short precursor phase. Thus,

subsequent myotube disorganization may reflect both early and late

requirements for laminin during muscle morphogenesis.

Laminin Is a Molecular Cue that Stops Fiber Elongation
It has been proposed that muscle fibers elongate until they reach

a small patch of ECM that functions to capture elongating muscle

cells and prevent them from extending into the next myotome

[24]. However, it is not known which of the many ECM

components of the MTJ are required or if multiple proteins are

required. We find that both lamb1 and lamc1 play a role in MTJ

morphogenesis. Some fast muscle cells in lamb1 and lamc1 mutants

and morphants do not stop elongating at the MTJ (Figure 6 F1

white arrowhead, note that the muscle cell extends a long, thin

protrusion across the boundary). The MTJ is visible in 48 hpf wild-

type (WT) embryos as a dark line devoid of filamentous actin

(Figure 7A, white arrow). In wi390/lamc1 mutant embryos, some

muscle fibers inappropriately cross the MTJ and are approxi-

mately twice as long as their counterparts that did not cross the

boundary (Figure 7 A1 red arrowhead). These cells are

multinucleate (data not shown), indicating that boundary capture

is not required for fusion. The crossing of a boundary by a few

muscle fibers results in an asymmetrical myotome: some of the

myotome has longer fibers while the majority of fibers are an

appropriate length (Figure 7 A1). Fast fibers in gup/lamb1 mutants

also cross MTJ boundaries (Figure 7 A2 red arrowhead). At 48

hpf, some boundaries were crossed within every laminin-deficient

embryo examined. Generally, 16–24% of boundaries were crossed

(average % of boundaries crossed: WT, 0%, n.100; gup/lamb1,

20% crossed, n = 12 embryos, 3 experiments; wi390/lamc1, 22%

crossed, n = 9 embryos, 1 experiment; lamb1 MO, 24% crossed,

n = 26 embryos, 5 experiments; lamc1 MO, 16% crossed, n = 18

embryos, 3 experiments).

Boundary Capture as a Cell Autonomous Phenomenon
Our data show that lamb1 and c1 play a role in boundary

capture of elongating muscle fibers, but the mechanism of capture

is not yet known. A dense network of polymerized laminin may

function as a physical barrier that stops elongating muscle fibers.

Interestingly, however, laminin polymerization can trigger chang-

es in the organization of the matrix, ECM receptors and

cytoskeletal components [36]. Cell-autonomous changes in

cytoskeletal organization upon laminin binding provide an

alternate hypothesis: that signaling that results from laminin

binding may mediate boundary capture in a cell-autonomous

fashion. We hypothesized that WT cells transplanted in laminin-

deficient embryos might be able to secrete small amounts of

laminin that would facilitate their capture and reduce the

likelihood of elongating through the boundary. To test this, cells

from dextran-injected control embryos were transplanted into

lamc1 morphant hosts. Control cells were less likely than lamc1

morphant cells to cross the boundary (Figure 7C, D). Only 6

percent of control cells crossed boundaries (19/311 cells) whereas

25% of morphant cells crossed boundaries (407/1631 cells).

Control cells undergo boundary capture even when adjacent to

lamc1 morphant cells crossing boundaries (Figure 7 B1, B2 note

that the red control cell, white arrowhead respects the boundary,

but adjacent morphant cells cross the boundary, red arrowhead).

These data not only provide the first evidence that laminin plays a

role in ceasing initial myofiber elongation, but the cell autonomous

rescue of boundary integrity by WT cells suggests that boundary

capture is mediated at the single cell level.
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Figure 6. lamininb1 and c1 are Required for Normal Fast Muscle Cell Elongation. Panels A–C are confocal images and D–J are ApoTome
micrographs. Panels A–C are side views, anterior left, dorsal top of 18 somite-stage embryos stained with F59 (white) to denote slow-twitch muscle
and phalloidin (red) to outline fast muscle cells. Panels labeled 1 are lateral sections from a z-series and panels labeled 2 are medial sections from the
same z-series. A) In WT embryos, fast-twitch muscle cells medial (A1, white arrow) to migrating slow-twitch fibers (A, green arrow) have elongated. B)
Although some slow-twitch fibers do migrate in gup/lamb1 mutant embryos, not all fast muscle precursor cells have elongated (B1 white arrowhead:
short cell, B green arrow: slow-twitch muscle fiber that has migrated laterally). C) Not all fast muscle precursor cells medial to migrating slow fibers
have elongated in lamc1 morphant embryos (C1 white arrowhead: short cell, C green arrow: slow-twitch muscle fiber that has migrated laterally).
Panels D–E are projected views of dextran filled cells (red) and b-catenin that outlines cells (blue). D) Elongated fibers in a WT embryo, note the
organized, parallel array of fibers. E) Elongated fibers in a lamc1-deficient embryo, white arrowhead denotes a fiber that is not parallel. F–F2) A
dextran-filled cell in a lamc1 morphant embryo extends a thin protrusion across the MTJ. White arrows denote the MTJ, white arrowhead denotes
thin protrusion extending across the MTJ. F59 denotes slow muscle in blue and dextrans are red. Panel F1 is a single focal plane from a z-series,
panels F and F2 are projections. Scale bars F: 50 mm, F1: 20 mm. G–H) Cells in the myotube phase are less organized in lamc1 morphant embryos than
in control embryos as shown by more randomly oriented WTMMM vector arrows. Panels numbered 3 are higher magnification views. I–J) Although
differences in cellular structure are not obvious to the eye (compare I1 and J1), lamc1 short precursor cells are less organized than control cells as
shown by more randomly oriented WTMMM vector arrows. Panels numbered 3 are higher magnification views. K: The WTMMM vector angle pdfs are
displayed for all stages (color coded per panel L), the isotropic fBm surfaces (black curve fluctuating around p/2), and the flat 1/2p curve that would
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Discussion

A mechanistic understanding of the cellular basis of muscle cell

elongation and tendon attachment is critical to elucidate

underlying molecular mechanisms that mediate morphogenesis.

We show here the first quantitative analysis of individual fast muscle

cell elongation in a living vertebrate embryo. Three broad phases

of morphogenesis underlie the transition from a somite comprised

of short muscle precursor cells to a myotome comprised of

elongated muscle fibers. First, short muscle precursor cells exhibit

dynamic protrusive activity, but do not undergo large-scale shape

changes. The second phase, intercalation/elongation, occurs via a

repetitive two-step process of protrusion extension and filling and

requires lamb1 and c1 to proceed efficiently. The third phase

encompasses boundary capture as well as shape changes that

generate a more regularly shaped myotube. Although myotubes

do form in laminin-deficient embryos, they are significantly less

organized than in wild-type embryos. We find that both lamb1 and

c1 are required for boundary capture and thus provide the first

molecular insight into boundary capture at the MTJ. Taken

Figure 7. Laminin Plays a Role in Boundary Capture of Elongating Muscle Fibers. ApoTome micrographs, side views, anterior left, dorsal
top of 48 hpf embryos. A–A2) MTJ boundaries are sometimes crossed in lamb1 and lamc1-deficient embryos. The MTJ in WT embryos is visible as the
dark line of no phalloidin staining in between myotomes (A, white arrow). In both lamb1 and c1 mutants, MTJs are observed (A1–A2, white arrows),
but sometimes a portion of an MTJ is crossed by a muscle fiber (red arrowheads, A1–A2). Scale bar: 50 mm. B–B2) Cell autonomous rescue of
boundary crossing by control cells in lamc1 morphant embryos. White box in B1 indicates the higher magnification view in B2. Transplanted control
cells do not cross the MTJ boundary (white arrowheads, only 19/311 transplanted control cells crossed MTJ boundaries in lamc1 morphant embryos
compared to 402/1631 morphant cells). The red arrowhead indicates morphant cells that cross boundaries. Scale bars: 20 mm. C–D) Graphs showing
boundary crossing by control cells and morphant cells.
doi:10.1371/journal.pgen.1000219.g007

be obtained for a purely theoretical isotropic process (flat pointed line at 1/2p). Note the stronger (higher) peaks in control embryos. L) The
anisotropy factor of muscle cells in laminin-deficient embryos is significantly lower than in control embryos at all four stages of muscle
morphogenesis (p,0.01). These results indicate that even though differences in organization as far back as the precursor stage are not obvious
visually, they are unequivocally more disorganized than in controls when the anisotropic value is determined.
doi:10.1371/journal.pgen.1000219.g006
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together, these data indicate that muscle morphogenesis is

spatiotemporally complex and involves interactions between

muscle fibers and the basement membrane during elongation

and attachment to the MTJ. It is not yet known if there is some

conservation between morphogenetic mechanisms underlying

early morphogenesis between vertebrates. Given recent data

indicating that the zebrafish somite has a dermomyotome and is

thus more homologous to amniotes as previously thought [37–39],

it is tempting to speculate that the morphogenetic mechanisms

described here may apply to higher vertebrates as well.

Three Phases of Early Fast Muscle Morphogenesis
Both qualitative and quantitative assessments of early muscle

development are critical to facilitate identification of molecular

mechanisms that underlie morphogenesis. We find that the three

phases of early fast muscle morphogenesis are qualitatively and

quantitatively different. These stages are short muscle precursor

cells, elongating muscle cells and myotube formation. Short

muscle precursor cells have a low filament index and extend and

retract short (,2 mm) protrusions in all directions. Elongating fast

muscle cells extend long protrusions along the axis of elongation

and have a higher filament index. Long muscle cells forming

myotubes have an even higher filament index indicating yet a

further departure from a circular shape. Thus, we provide a novel

paradigm whereby morphometric analysis can distinguish different

phases of early muscle development.

Mathematical Modeling and Time-Lapse Analysis Indicate
that a Repetitive Two-Step Mechanism Underlies Fast
Muscle Cell Elongation

It is not known how the first fast-twitch muscle cells elongate

during vertebrate development. We utilized an experimental

approach to distinguish between potential scenarios (Figure 2A).

C2C12 myoblasts in culture elongate prior to differentiation and fuse

to generate a multinucleate myotube [10] that we termed the

elliptical growth scenario. The first muscle cells to elongate in

grasshopper embryos (muscle pioneers) exhibit a morphology similar

to that of pathfinding neurons [11], we have called this the branching

scenario. During Drosophila embryogenesis, muscle cells elongate via

fusion [12,13] and zebrafish homologues of genes required for

muscle cell fusion in Drosophila are also required for normal muscle

development in zebrafish [14,15]. It has also been proposed that

zebrafish muscle cell elongation may be similar to notochord/neural

plate cell intercalation [24], represented by the protrusion scenario.

Time-lapse analysis indicates that elongating cells extend local

protrusions along their long axis (Figure 8C, D). Protrusions are

extended in the direction of elongation and between other cells.

Protrusions then thicken, resulting in elongation of the cell.

Repetition of protrusion extension/thickening results in an elongated

muscle cell. Mathematical modeling of expected changes in area and

perimeter supports the protrusion model of morphogenesis. Thus,

we show that a novel two-step mechanism underlies elongation of the

first fast muscle fibers in a vertebrate model system, the zebrafish.

Muscle Cell Fusion
Muscle development is perhaps best understood in Drosophila,

where muscle morphogenesis is accomplished via fusion of founder

cells (FCs) with fusion competent myoblasts (FCMs) [13]. Recent 3-

D imaging has demonstrated that there are two phases of fusion and

suggests that the spatial relationship of FCs and FCMs influences the

frequency of fusion events [12]. Exciting recent studies using

zebrafish suggest that molecular events underlying muscle cell fusion

in vertebrates may be at least partially conserved [14,15,40]. In the

future it will be important to understand the cellular basis of fusion as

well. In this regard, we show that elongating/recently elongated

muscle cells possess complex 3-D shapes. Thus, a comprehensive

analysis of cell behaviors underlying muscle cell fusion during

zebrafish development will require development of multiple markers

that label entire muscle cells such that fusion can unambiguously be

analyzed. Genetic mosaic approaches such as those used previously

[41] will facilitate analysis of both the timing of fusion as well as

identifying what cells fuse.

Attachment to Laminin Is Necessary for Timely Fast
Muscle Cell Elongation

We show that lamb1 and c1 are required for efficient fast muscle

cell elongation and proper organization. Application of the 2D

WTMM method indicates that even in early stages of muscle

development where organizational differences are not visually

obvious, anisotropic signatures reveal unequivocally the morpho-

logical discrepancies between laminin-deficient and control embry-

os. This emphasizes the strength of the 2D WTMM method. This

novel use of the 2D WTMM method will give researchers an

invaluable tool to rigorously and quantitatively distinguish subtle

differences in cellular morphology and organization.

We do not know why fast muscle cell elongation is delayed in

lamb1 and c1-deficient embryos. Elongation may be delayed

because fast cells are less organized than in controls. It is also

possible that fast cells in lamb1 and c1 mutant/morphant embryos

do not elongate efficiently because slow muscle cells do not

migrate efficiently. Although WT slow fibers can rescue elongation

in mutant embryos that do not have slow muscle fibers [28], it is

unknown if disrupted slow muscle migration and/or morphology

may delay fast muscle cell elongation.

A third model is that adhesion to laminin may play a role in

generation of traction forces that allow muscle cells to elongate.

Muscle cells extend protrusions as they elongate and these

protrusions likely attach to other cells or the ECM. Attachment

would provide a mechanism for cells to stabilize an extended

protrusion and continue elongation. Interestingly, adhesion to

laminin via the Integrin a7b1 receptor promotes migration of

C2C12 and MM14 cells in culture [42]. Elongating fast muscle

cells in zebrafish do not migrate per se, but future studies will

address whether adhesion to laminin during fast muscle cell

elongation in zebrafish promotes efficient protrusion extension and

thickening. These studies would be facilitated by identification of

the relevant laminin receptor (there are multiple laminin receptors)

such that genetic mosaic analysis could readily be used.

Fast muscle cells do belatedly elongate in the absence of

laminin. It is possible, even likely, that elongating muscle cells may

utilize different modes of adhesion to the substrate and/or other

cells. Thus, if one mode of adhesion is disrupted, muscle cell

elongation would be delayed, but not entirely inhibited. Our

results indicating that muscle cell elongation is delayed, rather

than inhibited, are similar to the finding that myofiber formation is

delayed, but recovers in mouse knockouts of the cell-cell adhesion

protein CDO [43]. Taken together, these results suggest that

muscle cells elongate by extension of protrusions that adhere both

to other cells and the ECM. If one mode of adhesion is disrupted,

cells are delayed in their elongation, but utilize the alternative

mode of adhesion to eventually elongate (Figure 8C, D).

Laminin Participates in Boundary Capture of Elongating
Muscle Cells

One fundamental process during embryonic development is

boundary formation. Some of the first work describing boundary
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formation was done by Jacobson and colleagues [44–46], where

they showed that cells that reach the notoplate/neural plate

boundary remain on the boundary permanently in both axolotl

and newt embryos. This phenomenon was referred to as trapping.

Keller and colleagues have since expanded upon this model and

termed it boundary capture [47]. Recent work demonstrated that

laminin plays a critical role in boundary capture during notochord

morphogenesis in the ascidian Ciona savignyi [48]. We have

Figure 8. Model of Muscle Morphogenesis in WT and laminin Mutant Embryos. A–A1) Cartoon of WT embryo showing the three phases of
muscle elongation. In the oldest/most anterior somites, myotubes have formed and are attached to the MTJs. The transition region contains cells
intercalating by extending protrusions that are subsequently filled. Muscle precursor cells exhibit protrusive activity in all directions. A1: Magnification
of a somite in panel A showing proteins concentrated at the MTJ and boundary capture of recently elongated cells. B–B1) Cartoon of laminin mutant
embryo at the same age as WT embryo in panel A showing the same three phases of muscle morphogenesis, but with a developmental delay. Cells in
yellow are aberrantly long and have invaded into neighboring myotomes. B1: Magnification of two somites in panel B that depicts a model of how
boundary crossing could occur in laminin mutant embryos. If laminin is absent, there may be randomly spaced locations at the MTJ devoid of
proteins that function in boundary capture. Elongating muscle cells would invade the MTJ at these locations. C) Cartoon model showing the two-step
mechanism of elongating. We show that adhesion to the matrix is required for normal elongation and hypothesize that cells also utilize cell-cell
adhesion to generate traction forces needed for protrusion extension and filling. D) Model accounting for developmental delay in muscle
morphogenesis that occurs in laminin mutants. Cartoon depicting a laminin mutant cell undergoing two-step elongation via protrusion extension
and filling. Lack of the cell-matrix adhesion protein laminin results in less traction and therefore slower extension and/or filling.
doi:10.1371/journal.pgen.1000219.g008
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previously demonstrated that the MTJ captures elongating muscle

fibers, but it was not known what ECM components were relevant

[24]. It was also not known if the cessation of muscle fiber

elongation is cell autonomous or mediated by community effects.

Here we show that laminin is one component of the MTJ that

stops elongating fibers. This result, combined with the work of

Veeman et al., suggests that roles for laminin in boundary capture

may be conserved, at least within chordates. We also show that

wild-type cells in lamc1 morphant embryos have a reduced ability

to cross the MTJ. The fact that wild-type cells are less able to cross

the MTJ, but do not rescue their lamc1-deficient neighbors,

suggests that boundary capture is a cell autonomous process.

These data also suggest that MTJ breakdown in lamb1and c1-

deficient embryos is a local event caused by the failure of

elongating muscle fibers to stop when they reach the MTJ. We do

not currently know why 75% of elongating muscle cells in lamb1

and c1-deficient embryos do stop elongating, but 25% do not. We

hypothesize that the MTJ boundary is not homogenous. In this

scenario, the absence of laminin would leave ‘‘holes’’ in the MTJ

and muscle cells would elongate through these holes (Figure 8B,

B1). Future experiments will be directed towards identifying

additional molecular cues involved in boundary capture.

Methods

Zebrafish Husbandry
Zebrafish embryos were obtained from natural spawnings of

adult fish kept at 28.5uC on a 16 h light/8 h dark cycle and were

staged according to [49].

Immunocytochemistry
F59 was utilized to visualize slow fibers as previously described

[25,50]. Alexa Fluor 488 and 546 phalloidin and Sytox green were

obtained from Molecular Probes. We used the H2A:GFP

transgenic line of zebrafish to visualize nuclei [51]. A ‘‘scatter’’

label of cells filled with fluoro-ruby dextrans (Molecular Probes)

was obtained by microinjecting embryos at the 512–1000 cell

stage with dextrans into the yolk cell close to the margin.

Antibodies used were: mouse monoclonal anti-myosin (F59)

(Devoto, et al. 1996, generous gift of Frank Stockdale) 1:10, mouse

monoclonal anti-b-catenin (Sigma) 1:500 and Alexa-Fluor 488,

546 and 633 conjugated goat anti-mouse and goat anti-rabbit

secondary antibodies (Invitrogen) 1:200.

Imaging
Images were acquired using a Leica SP2 confocal microscope

and a Zeiss ApoTome running on a Zeiss Axio Imager Z1. All

mathematical analyses were done on images acquired on the

Apotome using a 206 lens, NA 0.8, yielding a resolution of

1.5 pixels / mm. Images were linearly processed in Adobe

Photoshop and collated in Adobe Illustrator.

Morpholinos
Morpholino-modified antisense oligonucleotides (MOs) were

synthesized by Gene-Tools, LCC. The morpholinos used were

previously described and recapitulate the mutant phenotypes [31].

Time-Lapse Analysis
Embryos were vitally stained and imaged with the fluorescent,

lipophilic dye BODIPY-Ceramide (Molecular Probes, Eugene, OR)

using the procedures outlined by [52,53]. Time-lapse recordings

were made using a scanning laser confocal microscope (Leica SP2,

Heidelburg, Germany). Time-lapse analysis with transplanted

dextran-filled cells was performed utilizing the Zeiss ApoTome.

Morphometrics
To measure properties of dextran-filled cells, the z-series of the

cell was projected such as to visualize the cell three-dimensionally.

Cells were then segmented with ImageJ and the perimeter, area

and major axis were measured. The major axis as determined by

ImageJ is the longest length of the best fitting ellipse. The filament

index was also calculated [54]:

F~
PD

4A

where P, D and A are the perimeter, diameter and area

respectively. For this study, the diameter was taken to be equal

to the major axis. Note that a circle has a filament index F = 1 and

an object having a value of F larger than 1 quantifies its departure

from a circular shape. A two sample T-test was performed using

SYSTAT. * denotes p,0.05 and ** denotes p,0.01.

Mathematical Modeling
In order to quantitatively characterize the morphology of muscle

fiber growth, two geometrical models were developed. For simplicity,

both the elliptical and protrusion models start with a unit circle (with

radius = 1). For both models, when the cell is growing we assume that

it does so only in the major direction and that the semi-minor axis

stays constant, and for mathematical simplicity (and without any loss

of generality), is equal to 1. Therefore, we have

A~pa and P~2p

ffiffiffiffiffiffiffiffiffiffiffiffi
a2z1

2

r

The growth ratios for the area and perimeter of both models can be

defined analytically. For the elliptical model, the growth ratio for the

area at time t, Âelliptical(t), is equal to the major axis at time t, which

grows continuously:

ÂAelliptical tð Þ~a tð Þ:

The perimeter growth ratio at time t, P̂elliptical(t), is given by

P̂Pelliptical tð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a tð Þ2z1

2

s

For the protrusion model, the cell grows in a two-step manner,

expanding a thin protrusion of relatively small area DA and

perimeter DP at time t, and then filling the area until the cell

becomes an ellipse at time t+1. Therefore, the growth ratio for the

area of the protrusion model will depend on whether it is growing a

protrusion or filling that protrusion. For simplicity, we assume that

the cell is growing a protrusion if t is even and it is filling the area

opened by protrusion when t is odd:

ÂAprotrusion tð Þ~a tð Þ, if t is even or ÂAprotrusion tð Þ~a t{1ð ÞzDA,

if t is odd

Similarly for the perimeter of the protrusion model cell:

P̂Pprotrusion tð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a tð Þ2z1

2

s
, if t is even or P̂Pprotrusion tð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a t{1ð Þ2z1

2

s
zDP, if t is odd:
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Since DA is relatively small with respect to the area of the whole cell,

the extension of a protrusion will not significantly increase the area of

the cell. Conversely, since DP is relatively large with respect to the

perimeter of the whole cell, the perimeter of the cell will significantly

increase. The evolution of the area and perimeter as a function of

time for both models is shown in Figure 3A, A1.

Characterizing Anisotropy with the 2D WTMM Method
Preparation of images. Embryos were stained with b-catenin

to outline all cells and fixed at 20 hpf. This stage is ideal because

anterior, older somites have formed muscle but posterior somites

have not. Thus, all the phases of muscle morphogenesis are

represented within single embryos. Images representing all phases

were obtained utilizing a Zeiss Axioimager equipped with an

Apotome as mentioned above. Each image and focal plane was

evaluated and the phase (short precursor, etc.) determined. The

phase that was identified represented most cells within a focal plane.

Because muscle cell elongation is an exceedingly dynamic process,

cells within different focal planes within the same z-series are

sometimes at different phases of elongation. Each image was then

cropped into 2566256 pixel sub-images. This cropping is necessary

to eliminate other tissues in the embryos such as residual yolk

platelets and neural tissue. Cropping was also necessary because fast

muscle cells in the dorsal and ventral halves of somites angle slightly

towards the middle. We thus flipped all ventrally derived panels so

that the WTMMM vector angles for dorsal and ventral halves would

not cancel each other out within a single sub-image. At least 10

images for at least 5 different embryos were analyzed for each phase.

The 2D WTMM method is a multifractal image analysis

formalism introduced in [34], where the different dilations of the

analyzing wavelet reveal quantitative roughness information at every

length scale considered. By considering two wavelets that are,

respectively, the partial derivatives with respect to x and y of a 2D

smoothing Gaussian function, the Wavelet Transform is thus the

gradient vector of the analyzed image smoothed by dilated versions

of the Gaussian filter. A very efficient way to perform point-wise

regularity analysis is to use the Wavelet Transform Modulus

Maxima (WTMM) [55,56]. At a given scale a, the WTMM are

defined by the positions where the Wavelet Transform Modulus is

locally maximum in the direction A of the gradient vector. When

analyzing rough surfaces, these WTMM lie on connected chains

called maxima chains [34], as shown in Figure 5, green lines. One only

needs to record the position of the local maxima of the gradient

along the maxima chains together with the angle A at the

corresponding locations. At each scale a, the wavelet analysis thus

reduces to store those WTMM maxima (WTMMM) only (red dots

in Figure 5). They indicate locally the direction where the signal has

the sharpest variation.

An image having an anisotropic signature means that the

intensity variation in the image will differ according to the

direction considered. Such images having an anisotropic signature

can be easily characterized from the directional information

provided by the continuous 2D Wavelet Transform [35]. This is

done by considering, at all size scales a, the probability density

functions (pdfs), Pa(A), of the angles, A, associated to each

WTMMM vector. A flat pdf indicates unprivileged random

directions of sharpest intensity variation (i.e. isotropy), while any

departure from a flat distribution is interpreted as the signature of

anisotropy. For the present study, a strong anisotropic signature is

interpreted as a strongly structured cell lattice.

Anisotropy Factor
In order to obtain quantitative information from the angle pdfs

Pa(A), they are compared to a theoretical flat distribution

representing an ideal isotropic signature (see Figure 5F). The

anisotropy factor, Fa, defined for each value of the scale parameter a,

is given by the area between the curve corresponding to the

observed pdfs and a flat distribution:

Fa~

ðp
{p

Pa Að Þ{ 1

2p

����
����dA:

Therefore Fa has been defined in such a way that a theoretically

isotropic surface will have a value of Fa = 0, while any value greater

than 0 quantifies a departure from isotropy.

Construction of Simulated Isotropic Surfaces for
Calibration Purposes

Following the standard procedures presented in [34,35],

fractional Brownian motion (fBm) isotropic surfaces were gener-

ated. Two-dimensional fBm’s are processes with stationary zero-

mean Gaussian increments that are statistically invariant under

isotropic dilations. They are therefore expected to reproduce quite

faithfully the isotropic scaling invariance properties.

Genetic Mosaic Analysis
WT embryos were injected with 10,000 MW dextrans

(Molecular Probes). Cells were removed at the sphere stage and

placed into hosts that had been injected with lamc1 MOs. Hosts

were grown up until the appropriate stage, stained with phalloidin

and the number of transplanted control cells that crossed MTJ

boundaries was compared with the number of lamc1 morphant

cells that crossed MTJ boundaries.

Supporting Information

Figure S1 Somite Boundary Shape, Slow Muscle Migration and

Fast Muscle Elongation are Disrupted in lamininb1 and c1-

deficient Embryos. All panels are ApoTome images at the 18

somite stage. Side views, anterior left, dorsal top, except panels

numbered 4 that are transverse views, lateral left, medial right.

Panels 2–4 are higher magnification views of the embryos shown

in panels numbered 1. Panels numbered 1 and 2 are single focal

planes from a Z-series and show phalloidin staining that outlines

all cells. Panels numbered 3 and 4 are projections of the entire Z-

series of panels numbered 2. In these panels, F59 expression

denotes slow-twitch muscle fibers. All panels (A1–C1, A2–C2) are

from approximately the same anterior-posterior and medial-lateral

position in control and morphant embryos. A1–C1) WT control

embryos contain robust, chevron shaped boundaries. lamb1 and

lamc1 morphants have rounder, flatter shaped boundaries. Note

that intial somite boundaries, albeit less chevron-shaped, do form

in lamb1 and lamc1 morphant embryos. A2–C2) Whereas fast

muscle cells are elongating in control embryos (A2, white arrow),

fast-twitch muscle cell elongation is disrupted in both lamb1 (B2,

white arrowhead) and lamc1 (C2, white arrowhead) morphant

embryos but some elongation does occur (white arrows). A3–C3/

A4–C4) Myosin organization in slow-twitch muscle fibers is

disrupted in lamb1 and lamc1 morphant embryos. In control

embryos, the projected (panels numbered 3) and rotated transverse

views (panels numbered 4) show organized slow-twitch fibers that

have migrated laterally (muscle pioneers: red asterisk). Slow-twitch

fiber organization, spacing, and migration, are disrupted in lamb1

and lamc1 morphant embryos.

Found at: doi:10.1371/journal.pgen.1000219.s001 (7.8 MB TIF)
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Movie S1 Time-lapse confocal microscopy using BODIPY-

ceramide to outline cell borders suggests that cells intercalate

during elongation. Side views, anterior left. Colored cells were

tracked in Image J and pseudocolored in Adobe Photoshop. The

purple cell initiates elongation as does the orange cell. The blue

cell elongates through time, extending a thin protrusion between

the orange and green cells eventually reaching the anterior

boundary. The long but irregularly shaped green cell becomes a

rod shaped myotube through time.

Found at: doi:10.1371/journal.pgen.1000219.s002 (2.0 MB

MOV)

Movie S2 Time-lapse analysis of three-dimensional projections

from ApoTome micrographs shows the three phases of morpho-

genesis. Short dextran-filled cells exhibit protrusive activity as they

begin elongating. Elongating cells initially extend long protrusions

that subsequently grow, resulting in the elongation of the cell.

Green arrowheads denote extensions. Cells in the myotube

formation phase are initially irregularly shaped but become rod

shaped myotubes through time.

Found at: doi:10.1371/journal.pgen.1000219.s003 (1.0 MB

MOV)

Movie S3 Three-dimensional shapes of fixed cells in different

phases of morphogenesis. Part 1: A lateral-medial Z-series of a

long yet irregularly shaped dextran-filled cell with one nucleus.

Part 2: Rotation of a three-dimensional projection of a partially

elongated dextran-filled cell in a fixed embryo showing an

extension. Part 3: Rotation of a three-dimensional projection of

myotube in a fixed embryo.

Found at: doi:10.1371/journal.pgen.1000219.s004 (2.7 MB

MOV)

Movie S4 Time-lapse analysis of live cells.

Found at: doi:10.1371/journal.pgen.1000219.s005 (1.5 MB

MOV)
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