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Expression of FOXP3, a potent gene-specific transcriptional repres-
sor, in regulatory T cells is required to suppress autoreactive and
alloreactive effector T cell function. Recent studies have shown
that FOXP3 is an acetylated protein in a large nuclear complex and
FOXP3 actively represses transcription by recruiting enzymatic
corepressors, including histone modification enzymes. The mech-
anism by which extracellular stimuli regulate the FOXP3 complex
ensemble is currently unknown. Although TGF-� is known to
induce murine FOXP3� Treg cells, TGF-� in combination with IL-6
attenuates the induction of FOXP3 functional activities. Here we
show that TCR stimuli and TGF-� signals modulate the disposition
of FOXP3 into different subnuclear compartments, leading to
enhanced chromatin binding in human CD4�CD25� regulatory T
cells. TGF-� treatment increases the level of acetylated FOXP3 on
chromatin and site-specific recruitment of FOXP3 on the human IL-2
promoter. However, the proinflammatory cytokine IL-6 down-
regulates FOXP3 binding to chromatin in the presence of TGF-�.
Moreover, histone deacetylation inhibitor (HDACi) treatment ab-
rogates the down-regulating effects of IL-6 and TGF-�. These
studies indicate that HDACi can enhance regulatory T cell function
via promoting FOXP3 binding to chromatin even in a proinflam-
matory cellular microenvironment. Collectively, our data provide a
framework of how different signals affect intranuclear redistribu-
tion, posttranslational modifications, and chromatin binding pat-
terns of FOXP3.

regulatory T cell � acetylation � TGF-beta signal

FOXP3 mutations in human CD4� T cells lead to immune
dysregulation, polyendocrinopathy, enteropathy, and X-

linked autoimmunity (IPEX) syndromes (1–4). Mutations in
specific regions of the FOXP3 gene lead to functionally defective
proteins unable to inhibit IL-2, IFN-�, and TNF-� gene expres-
sion (1, 2, 5–7). Recent studies from our laboratory have shown
that the FOXP3 homoligomer is an integral part of a large
ensemble including histone modification enzymes (5, 8). FOXP3
is an acetylated protein, and FOXP3 acetylation is promoted by
the histone acetyltransferase TIP60 within the FOXP3 complex
(5, 8). FOXP3 exerts a defining role in regulatory T (Treg) cell
function and FOXP3 expression levels correlate with the sup-
pressive capability of Treg cells (1, 2, 5, 6). Deacetylase inhibitor
treatment promotes FOXP3 acetylation and the generation and
function of Treg cells in vivo (9). Treg cells may suppress in both
a contact-dependent and -independent manner. Some Treg
suppressive functions are modified by the activities of CTLA-4
and by TGF-�, IL-10, and IL-6 signaling pathways (10–16).

However, the mechanism by which the FOXP3 ensemble is
regulated by extracellular stimuli is unknown. As a primary
antiinflammatory cytokine, TGF-� promotes the differentiation
and function of murine Foxp� Treg cells (17, 18), whereas
TGF-� plus IL-6 combined signals promote the induction of
ROR� and the differentiation of Th17 cells (19–22). These
integrated signals may down-regulate FOXP3 function (19–22).
TGF-�-induced FOXP3 may inhibit the differentiation of Th-17
cells by antagonizing the functions of the transcription factor
ROR�t (23). Although IL-2 is an essential cytokine for the

expansion of FOXP3� Treg cells (24, 25), IL-2 may also antag-
onize the proinflammatory effects of IL-6 acting in combination
with TGF-� (26).

In the present study, we examined how TCR signaling, TGF-�,
IL-6, and other exogenous stimuli act on Treg cells to modulate
the chromatin binding patterns of FOXP3. TGF-� promotes
chromatin binding and promoter occupancy by acetylated
FOXP3. Unexpectedly, we observed that IL-6 also enhances the
chromatin binding of FOXP3 in the presence of IL-2 signals. This
enhanced chromatin binding of FOXP3 is antagonized by his-
tone deacetylation inhibitor (HDACi) treatment. IL-6, together
with TGF-�, which is known to provide a set of signals resulting
in the generation of proinflammatory Th17 cells, was found to
limit but not completely prevent FOXP3 binding to chromatin.
The limited binding of FOXP3 to chromatin that occurs under
the influence of combined signals of IL-6 and TGF-� can also be
reversed by the HDACi sodium butyrate. Our findings suggest
that although TGF-� and IL-6 signals affect diverse transcrip-
tional events, these cytokines may also alter FOXP3 function at
the posttranslational level by eliciting covalent modifications of
FOXP3 and diminishing FOXP3-chromatin binding in human
CD4�CD25� Treg cells.

Results
Exogenous Signaling Altered the Intracellular Distribution Patterns of
FOXP3. Previous studies identified that FOXP3 is primarily
localized in the nuclei of cells, although we and others have noted
an additional small cytoplasmic pool of FOXP3 (4, 27). We
examined the distribution patterns of FOXP3 in discrete sub-
nuclear compartments after T cell stimulation. A full-length
FOXP3 expression construct, pIPHA2FOXP3a, was transiently
expressed in Jurkat T cells (5, 8), and cell constituents were
separated into nuclear and chromatin fractions based on defined
protocols (28, 29). We noted small amounts of full-length
FOXP3a in the cytoplasm (Fig. 1A Top) and significantly greater
amounts in the nuclear fraction (nucleoplasm) (Fig. 1 A Middle)
after 1- to 4-h treatments of cells with PMA and ionomycin or
with 8-Br-cAMP stimulation. PMA and ionomycin and 8-Br-
cAMP trigger potent signaling mechanisms, which we have
found to induce significant amounts of FOXP3 within cells.

We next examined whether external stimuli can rapidly modify
the level of FOXP3 that is bound to chromatin. Chromatin-
associated FOXP3 was found to increase over time after PMA-
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ionomycin treatment and to a lesser extent with 8-Br-cAMP
treatment (Fig. 1 A Bottom). These results indicate that global T
cell stimulation increases the amount of FOXP3 associated with
chromatin. Increased amounts of FOXP3 in the chromatin
fraction may facilitate its inhibitory role in gene transcription.

To confirm these observations in a physiologically relevant
setting, we followed endogenous FOXP3 distribution in human
CD4�CD25� Treg cells. We found that stimulation with anti-
CD3 and anti-CD28 antibodies promotes redistribution of
FOXP3 from the nuclear fraction (nucleoplasm) (Fig. 1B Upper)
to chromatin in a time-dependent manner (Fig. 1B Lower). This
data in primary cells supports the conclusion that physiologically
relevant T cell receptor signals in human CD4�CD25� Treg cells
can alter the nuclear redistribution of FOXP3 and promote
accumulation of FOXP3 on chromatin.

TGF-� Promotes Acetylated FOXP3 Binding to Chromatin. We re-
ported that FOXP3 binds to the IL-2 promoter in in vitro expanded
human FOXP3� T cells (8). Although TGF-� has been implicated
in the activation of functional FOXP3-expressing T cells, the
molecular process by which this occurs is largely undefined (30). To
examine whether TGF-� affects the ability of FOXP3 to bind
site-specific chromatin, human CD4�CD25� Treg cells were incu-
bated in the presence or absence of TGF-�, and FOXP3 binding to
the IL-2 promoter was determined by chromatin immunoprecipi-
tation (ChIP) assays. Our data indicate that TGF-� treatment
enhances the recruitment of FOXP3 to the IL-2 promoter in human
Treg cells (Fig. 2A, compare lanes 4 and 8). TGF-� treatment also
increased the acetylation level of histone H3 at the IL-2 promoter
(Fig. 2A, compare lanes 3 and 7).

We also examined whether the binding patterns of FOXP3 to
chromatin can be inf luenced by TGF-� signals. Human
CD4�CD25� Treg cells mainly express two isoforms of FOXP3,
namely FOXP3a and FOXP3b (5, 31). We cotransfected Jurkat
T cells with HA-tagged FOXP3a and FOXP3b, cultured the
transfected cells for 48 hours, and then stimulated the cells with
or without TGF-� for the indicated time periods. Equal amounts
of total protein from the chromatin fractions were separated and

analyzed by Western blotting. We observed a time dependence
of TGF-� stimulation that promoted FOXP3 acetylation and
chromatin association of FOXP3a and 3b in transfected T cells.
As shown in Fig. 2B, significant levels of chromatin-bound and
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Fig. 2. TGF-� promotes acetylated FOXP3 binding to chromatin. (A) ChIP was
performed by using mIgG, anti-acetyl histone H3 (AcH3), and anti-FOXP3 anti-
bodies with ten million in vitro expanded human CD4�CD25� Treg cells treated
with TGF-� at the indicated time points. The eluted genomic DNA fragment was
amplified with hIL-2 promoter-specific primers. (B) Ten million serum-starved
human HA-FOXP3a- and -3b-transfected Jurkat T cells were stimulated with or
without 1 ng of TGF-� per million cells for indicated time periods. Equal amounts
of protein from chromatin fractions were separated by SDS/PAGE, transferred to
nitrocellulose, and immunoblotted with anti-acetyl lysine-specific antibody (Ac-
K-103, Santa Cruz Biotechnology), followed by reprobing with anti-HA-HRP-
conjugated antibody. Acetylated FOXP3a and FOXP3b proteins are indicated.
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acetylated FOXP3 were apparent between 2 and 4 h after
exposure to TGF-�.

TGF-� Treatment Increases the Level of Acetylated FOXP3 Bound to
Chromatin. To study the pattern of FOXP3 species bound to
chromatin in response to extracellular stimuli, we used DNase I and
Micrococcal nuclease (MNase) treatments to digest chromatin
completely [supporting information (SI) Fig. S1]. MNase treatment
completely digests chromatin in a dose-dependent manner (Fig.
S1A) from both control Jurkat T cells and HA-FOXP3a/b-
transfected T cells with or without various stimuli (Fig. S1B).

We examined the level of both acetylated and total FOXP3
released from chromatin after DNase I and MNase treatments.
DNase I digestion released chromatin-associated FOXP3 (Fig. 3A,
compare lanes 2, 4, and 6 with 3, 5, and 7). As expected, PMA plus
ionomycin or 8-Br-cAMP stimulation increased the amount of
FOXP3 released from the chromatin after DNase I digestion in
HA-FOXP3a/b-transfected Jurkat T cells (Fig. 3A, lanes 3, 5, and
7). MNase treatment released FOXP3 from the chromatin-bound
fraction (Fig. 3B Top, lane 3), and this treatment released more
FOXP3 from the chromatin-bound fraction of TGF-� stimulated
cells compared with unstimulated cells (Fig. 3B Top, lanes 3 and 4).
Nontransfected Jurkat T cells served as a negative control (Fig. 3B
Top, lane 1), and in the absence of MNase, FOXP3 was not released
from chromatin (Fig. 3B Top, lane 2). Posttranslational modifica-
tions of bound FOXP3 species from the released chromatin bound
FOXP3 after MNase treatment were studied and were found to be
acetylated (Fig. 3B Middle, lanes 3 and 4).

Linker histone H1 can serve as a marker of excised chromatin
(29, 32). Linker histone H1 proteins released after MNase

digestion were readily identified in the chromatin released from
FOXP3-transfected Jurkat T cells (Fig. 3B). In untransfected
Jurkat cells, MNase treatment released chromatin that contains
linker histone H1 but obviously lacked FOXP3 (Fig. 3B, lane 1).
TGF-� treatment increased the levels of total (Fig. 3B Top, lanes
3 and 4) and acetylated (Fig. 3B Middle, lanes 3 and 4) FOXP3
species released from chromatin after MNase treatment,
whereas the level of control linker histone H1 remained un-
changed (Fig. 3B Lower, lanes 3 and 4). Therefore, these studies
unambiguously identify that TGF-� treatment increases acety-
lated FOXP3 forms directly associated with chromatin.

IL-6 and TGF-� in Combination Negatively Regulate FOXP3 Binding to
Chromatin. Proinflammatory cytokines such as IL-6 modulate
CD4�CD25� Treg function (33, 34). IL-6 and TGF-� together
promote the differentiation of Th-17 cells and suppress the
FOXP3 function (19–22). We have identified and subsequently
used in our experiments a new CD4�CD25� T-lymphoid cell line
that endogenously expresses both isoforms of human FOXP3.
This TCR-expressing, FOXP3�CD4�CD25�, cloned Sezary T
cell line (SZ-4), was originally isolated at the University of
Pennsylvania by Todd Abrams and colleagues (35, 36). The
effect of IL-6 and TGF-� on FOXP3 binding to chromatin was
examined. The interaction of FOXP3 with the chromatin frac-
tion in human SZ-4 cells was analyzed after IL-6 stimulation in
the presence of high-dose IL-2, and it was found that IL-6 and
IL-2 together increased FOXP3 binding to chromatin (Fig. 4B
Top, compare lanes 2 and 3). The increased binding to chromatin
occurs while the total nuclear pool of FOXP3 protein does not
dramatically change (Fig. 4A Top, compare lanes 2 and 3). As
expected, we also found that TGF-� alone is sufficient to
promote FOXP3 binding to chromatin (Fig. 4B Top, compare
lanes 1 and 10). We also studied whether histone deacetylase
inhibitors can modify FOXP3 binding to chromatin. NaB treat-
ment alone or in combination with IL-2 promotes FOXP3
binding to chromatin (Fig. 4B Top, compare lanes 1 and 9 with
lanes 2 and 5).

We examined whether IL-6 signals could modulate human
FOXP3 binding to chromatin in human SZ-4 T cells in the presence
of TGF-�. The data showed that the combination of TGF-� and
IL-6 treatment, but not either TGF-� nor IL-6 alone limits FOXP3
binding to chromatin even in the presence of high doses of IL-2 (Fig.
4B Top, compare lane 6 with lanes 8 or 3). More interestingly, the
decreased binding of FOXP3 to chromatin caused by combinations
of TGF-� and IL-6 could be completely reversed by the histone
deacetylase inhibitor, NaB (Fig. 4B Top, compare lanes 6 and 7).
Increased chromatin-bound FOXP3 may result from redistribution
from the nuclear fraction pool because less FOXP3 was detected in
the nuclear fraction (nucleoplasm) pool (Fig. 4A Top, compare
lanes 6 and 7).

Discussion
We have demonstrated that TGF-� treatment increases the
amount of acetylated FOXP3 protein binding to active chroma-
tin sites, whereas the combination of TGF-� and IL-6 signals
limit FOXP3 binding to these sites in human T cells. Although
portions of the total pool of FOXP3 can exist in diverse nuclear
sites such as within the nucleoplasm, active and acetylated
FOXP3 is preferentially, but not exclusively, bound to chroma-
tin. Histone deactylase (HDAC) inhibitors affect the chromatin
binding pattern of FOXP3. TGF-� and IL-6 cotreatment led to
less FOXP3 associated with chromatin, whereas HDAC inhib-
itors reversed this effect.

The increased FOXP3 level found in the nuclear and/or the
chromatin fractions noted in the short time intervals of our
studies may occur through enhanced translocation or by stabi-
lization of nuclear pools of FOXP3 protein after posttransla-
tional modifications. Perhaps TGF-beta stimulation limits deg-
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20 units of DNase I. The released chromatin-bound proteins in solution were
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radation or acts through some unidentified process that increases
the half-life of the FOXP3 RNA species.

Other posttranslational modifications clearly occur on
FOXP3. For instance, we have found that chromatin-bound
FOXP3 can be phosphorylated on threonine residues (Fig. S2).
Phosphorylation is known to induce cellular compartment tran-
sitions for other transcription factors (37, 38). Although we have
noted acetylation of FOXP3, we are aware and show that histone
modifications are also dominantly affected by acetylation. His-
tone deacetylation is known to repress gene transcription by
facilitating the formation of more condensed and compact
chromatin structures, which are generally inaccessible to tran-
scription factors and transcriptional activators (39, 40).

Our data showed that FOXP3 proteins in primary
CD4�CD25� Treg cells (5) or in FOXP3 transiently transfected
T cells become acetylated after the cells were stimulated with a
variety of extracellular signals. TGF-� treatment enhanced both
the extent of acetylation and FOXP3 chromatin interactions.
This enhanced functional activity of FOXP3 may be relevant to
its covalent modifications and is reminiscent of other regulatory
proteins. Acetylated functional p53 forms also show increased

DNA binding (39, 40). Proinflammatory cytokine signals such as
the combination of IL-6 and TGF-� negatively regulate FOXP3
binding to chromatin, a process that can be reversed by HDAC
inhibitors. Our work also provides a molecular explanation for
how HDAC inhibitors may function. They may directly affect
FOXP3 function by promoting its chromatin binding (Fig. 4B
Top, lane 9), and/or by antagonizing processes induced by
proinflammatory cytokines that limit FOXP3 binding to chro-
matin (Fig. 4B Top, lane 7).

Antibodies specifically recognizing acetylated FOXP3 will be
helpful in defined monitoring of the chromatin bound forms of
FOXP3 and its relevance to suppressor cell function in vivo.
Understanding how FOXP3� Treg cells respond to and integrate
diverse cytokine signals that occur during inflammation (such as
IL-6 plus TGF-�) is clearly needed. Furthermore, it is also
critical to elucidate how proinflammatory cytokine signals them-
selves are tightly regulated, such as by cAMP-elevating immu-
nosuppressive G-protein-coupled receptors, which are now
firmly implicated as one of the major regulators of immunosup-
pression (41, 42). Moreover, the fact that HDACis modulate part
of these signaling events at the chromatin level may provide
insight into how they function to alter immune processes (9).

Materials and Methods
ChIP. ChIP assays were carried out with 5–10 million Treg cells with or without
stimulation by using EZ-ChIP (cat. 17-371, Upstate Biotechnology) according to
the manufacturer’s instructions. After sonication on ice, the chromatin solu-
tion was centrifuged for 10 min at 6,000 � g. mIgG (Upstate Biotechnology),
anti-acetyl histone H3 (Upstate Biotechnology), or anti-FOXP3 (e-Bioscience)
were used for immunoprecipitation of the supernatant. Human IL-2 promoter
primers were used for amplification of a promoter fragment of 419 bp that
was further verified by sequencing (8).

Cell Fractionation. Ten million cells were stimulated with PMA (50 ng/ml) and
1 �M ionomycin combination or 1 ng/ml TGF-� per million cells, or 1 mM
8-bromo cAMP for indicated time periods in the presence of 500 nM TSA, 10
�M MG-132, 10 mM nicotinamide, 10 mM Na-butyrate, and 1 mM Na3VO4.
Cells were collected after centrifuging at 300 � g for 5 min and washed with
cold PBS containing all of the above inhibitors. Cells were fractionated ac-
cording to previously established methods (28, 43) with some modifications.
In brief, cells were lysed in 10 mM Hepes buffer (pH 7.6), 10 mM KCl, 1.5 mM
MgCl2, 0.34 M sucrose, 10% glycerol, 1 mM DTT, and 0.1% Nonidet P-40 in the
presence of all above inhibitors supplemented with 1 mM PMSF and protease
inhibitor mixture (Roche) and were incubated on ice for 10 min. Nuclei were
isolated by centrifuging at 800 � g for 5 min at 4°C. The supernatant fraction
was further clarified by centrifuging at 10,000 � g for 15 min and was called
cytoplasmic extract. Isolated nuclei were washed once with cytosolic buffer
and lysed in buffer containing 3M EDTA, 0.2 mM EGTA, 1 mM DTT, and all
above mentioned protease, phosphatase, and HDAC inhibitors, incubating on
ice for 30 min. After centrifugation at 800 � g for 5 min, the supernatant
fraction (nuclear fraction) and the insoluble pellet (chromatin fraction) were
collected. The chromatin fraction was washed once with nuclear extraction
buffer and was finally dispersed and boiled with Laemmli sample lysis buffer.

DNase I Digestion. Nuclei were resuspended in 40 �l of DNase I buffer with or
without 20 units of DNase I and incubated on ice for 30 min with shaking,
followed by the addition of 20 mM EDTA. The supernatant was collected by
centrifuging at 800 � g for 5 min. 10% of the DNase-I-digested material was
directly lysed by boiling with SDS-sample lysis buffer. The lysates were sepa-
rated in 8% SDS/PAGE, transferred to nitrocellulose membrane, and immu-
noblotted with anti-HA-HRP conjugated antibody.

MNase Digestion. The chromatin fraction was washed two times with 500 �l of
MNase digestion buffer containing 10 mM Hepes (pH 7.9), 10 mM KCl, 1.5 mM
MgCl2, 0.34 M sucrose, 10% glycerol, 1 mM DTT, 1 mM PMSF, protease inhibitor
mixture (Roche), 500 nM TSA, 5 mM Na-butyrate, 5 mM nicotinamide, and 1 mM
Na3VO4, by centrifugation at 800 � g for 5 min. The pellet was dispersed in 100
�l of MNase buffer with or without 10 units of MNase (Roche) and was incubated
at room temperature for 30 min with shaking, followed by the addition of 1 mM
EGTA. After centrifugation at 800 � g for 5 min, the supernatant fraction was
analyzed for nuclease-mediated released protein. Equal protein amounts of
material were separated by SDS/PAGE, transferred, and immunoblotted with
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Fig. 4. IL-6 plus TGF-� down-regulates FOXP3 binding to chromatin that
could be reversed by HDACi sodium butyrate. Ten million FOXP3� SZ-4 T cells
were stimulated in the presence or absence of HDACi (10 mM sodium bu-
tyrate) along with 20 ng/ml IL-6, 5 ng/ml TGF-�, and 50 U/ml IL-2 as indicated
for 4 h in 10% FBS containing RPMI-1640 medium supplied with 10 U/ml IL-2.
Cells were washed with cold PBS containing all inhibitors and fractionated
into cytoplasmic, nuclear, and chromatin fractions. Equal amounts of proteins
were separated by 8% SDS/PAGE, then transferred to nitrocellulose mem-
brane. Both the nuclear fraction (A) and chromatin fraction (B) were immu-
noblotted successively with antibodies against FOXP3 (221D), Ku-70 (Santa
Cruz Biotechnology, sc-17789), and �-actin (Sigma).
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anti-HA-HRP conjugated antibody. In certain experiments as shown in Fig. S1,
afternucleasedigestion,genomicDNAwas isolatedafterRNaseAandproteinase
K treatment by using a QIAamp DNA mini kit for genomic DNA purification
(Qiagen). Extracted genomic DNA after MNase digestion was quantitated and
was separated on a 1.2% agarose gel.

SI Text. Fig. S1 shows that the chromatin fraction contains DNA which can be
digested by MNase treatment. Fig. S2 shows stimulation dependent phos-
phorylation of FOXP3 in human Treg cells.
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