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The extreme variation in gene content among phylogenetically
related microorganisms suggests that gene acquisition, expansion,
and loss are important evolutionary forces for adaptation to new
environments. Accordingly, phylogenetically disparate organisms
that share a habitat may converge in gene content as they adapt
to confront shared challenges. This response should be especially
pronounced for functional genes that are important for survival in
a particular habitat. We illustrate this principle by showing that the
repertoires of two different types of carbohydrate-active enzymes,
glycoside hydrolases and glycosyltransferases, have converged in
bacteria and archaea that live in the human gut and that this
convergence is largely due to horizontal gene transfer rather than
gene family expansion. We also identify gut microbes that may
have more similar dietary niches in the human gut than would be
expected based on phylogeny. The techniques used to obtain these
results should be broadly applicable to understanding the func-
tional genes and evolutionary processes important for adaptation
in many environments and useful for interpreting the large num-
ber of reference microbial genome sequences being generated for
the International Human Microbiome Project.

comparative genomics � glycoside hydrolases � glycosyltransferases �
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C losely related microorganisms can differ radically in genome
content, particularly if they are adapted to different habitats

(1). For instance, in Escherichia coli, a species in which closely
related strains can have very different lifestyles, only 2,241 of the
9,433 genes observed in 32 sequenced strains were present in all
genomes (2). This variation suggests that gene content plasticity
may play a key role in adaptation to new environments. Evolu-
tionary processes that affect gene content include new gene
acquisition via horizontal gene transfer (HGT), gene family
expansion from duplication, and gene loss from deletion (3).
HGT can increase fitness by allowing microbes to acquire useful
functions from other microbes that live in their environment,
such as antibiotic resistance (4). Gene duplication generates
paralogs that can diverge and acquire new functions (5). Gene
loss occurs when genes do not provide a selective advantage, or
when they are deleterious for a particular lifestyle (6).

The identification of gene families that have recently ex-
panded by duplication or were acquired by HGT in a particular
genome can reveal functions important for an organism’s life-
style (7, 8). Gene families that have independently expanded in
diverse lineages that live in the same habitat may have functions
that are important for shared challenges within that habitat,
rather than for a distinctive niche. Methods that (i) show when
functionally important genes converge in response to shared
habitat and the evolutionary processes that cause this conver-
gence and (ii) can evaluate many such functional gene groups
using information from many genomes will become increasingly
important as more sequenced genomes become available (e.g.,
through the International Human Microbiome Project; ref. 9).

In this report, we show convergence in functional gene rep-
ertoires by determining whether these gene families cluster
genomes together significantly better than a 16S rRNA phylog-
eny. Methods for comparing genomes based on gene content
have been extensively explored for a different application,
namely inferring phylogenetic relationships among genomes:
these methods can either examine the presence/absence patterns
of specific gene families or take the degree of sequence similarity
into account (10). Despite the potentially confounding factors of
HGT and gene duplication and loss, the overwhelming conclu-
sion has been that these phylogenomic methods yield genome
trees that are remarkably consistent with 16S rRNA phylogeny
and that gene content plasticity creates random noise that does
not obscure shared phylogenetic history (10, 11). Although these
phylogenomic approaches can inform development of clustering
methods that seek to detect convergence of functional genes,
they are not directly applicable because they are optimized to
disregard, rather than to detect, genome plasticity by correcting
for HGT, duplication, and parallel gene loss, [e.g., by excluding
gene families with paralogs or that have phylogenies suggestive
of HGT (10, 12, 13)]. Methods to cluster genomes to detect for
convergence of functional gene repertoires have generally fo-
cused on the presence or absence of gene families alone, and not
the degree of similarity between genes or the number of repre-
sentatives in a particular gene family. For instance, Ren and
Paulsen (14) used hierarchical clustering of the ‘‘presence’’ or
‘‘absence’’ profiles of homologues in a set of fully sequenced
genomes (phylogenetic profiling) to explore the evolution of
membrane transport content. The resulting clusters correlated
with both evolutionary history and lifestyle: the obligate intra-
cellular pathogens/symbionts, the soil/plant associated microbes,
and a collection of autotrophs formed clusters despite phyloge-
netic differences (14).

The methods we describe below account for similarity be-
tween gene sequences and family number to show convergence.
This approach is illustrated using two classes of carbohydrate
active enzymes in human gut-associated microbes, glycoside
hydrolases (GH) and glycosyltransferases (GT). GH catalyze the
hydrolysis of glycosidic bonds between sugar resides or between
a carbohydrate and non-carbohydrate moiety and are important
for the degradation of complex plant polysaccharides in the gut
(7). GT catalyze the transfer of sugars from activated donor
molecules to specific acceptors and are important for the
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formation of surface structures recognized by the host’s immune
system (15) and enabling microbes to colonize the gut (16).
Previous comparisons of the sequenced genomes of several
human gut-derived Bacteroidetes have revealed plasticity in
their repertoires of both GTs and GHs; GTs were significantly
enriched in horizontally transferred genes and GHs were among
the most markedly expanded paralogous groups (17, 18). We
applied clustering methods to genome sequences from (i) 36
human gut-derived microbes representing four bacterial phyla
(the Firmicutes and Bacteroidetes, whose members predominate
in the distal intestine, as well as the Actinobacteria and Pro-
teobacteria), and two members of Archaea, plus (ii) 31 phylo-
genetically related organisms that do not live in the gut, and show
that clusters based on GH and GT gene repertoires group
gut-associated genomes together better than does a 16S rRNA
phylogeny.

Results
Methods for Clustering Isolates Based on Functional Gene Repertoires.
The four methods for gene content-based clustering of genomes
described here (Table 1) are optimized to detect genome plas-
ticity due to different evolutionary forces. The first two methods
are adapted from the unweighted and weighted UniFrac method
that we described for comparing microbial communities (19–21).
Unweighted UniFrac measures the distance between two col-
lections of sequences as the percent of branch length in a
phylogenetic tree that leads to one collection or the other but not
both (Fig. 1). Sequence collections with phylogenetically related
sequences will have lower UniFrac values than those with
phylogenetically distinct sequences. Likewise, weighted UniFrac
accounts for phylogenetic relatedness between sequences and
also for the number of times a sequence is observed (19, 20) (Fig.
1).

A major difference in using UniFrac to cluster genomes, as
opposed to microbial community comparisons based on 16S
rRNA genes, is that phylogenetic trees from multiple gene
families must be evaluated, rather than a single phylogenetic tree
from one gene. For instance, the GH and GT sequence collec-
tions in the Carbohydrate-Active Enzymes database (CAZy)
(22) currently consist of members of 112 and 91 distinct protein
families, respectively. To integrate these data, we can create a
separate phylogenetic tree for each gene family and concatenate
these trees to a single root (Fig. 1). Protein families can differ
dramatically in the rate of evolution of their sequences, and
‘‘fast-evolving’’ sequences will produce trees with longer
branches than ‘‘slow-evolving’’ sequences (23). Since this rate
heterogeneity can bias the UniFrac results toward relationships
found primarily in the fast-evolving protein families, we normal-
ize the trees before concatenation by dividing the branch lengths
by the maximum root-to-tip distance (Fig. 1).

The other two methods that we used to create distance
matrices between genomes are weighted and unweighted count
methods (Table 1). In the weighted count approach, the differ-
ence between two genomes is the sum of the absolute value of
the difference in gene counts for each gene family. The un-
weighted count approach is the same, except the gene families

are scored with 0 or 1 depending on whether the gene families
are present or absent in each genome: this approach is related
to the phylogenetic profiling method used by Ren and Paulsen

Table 1. The four different techniques for making genomic distance matrices

UniFrac Counts

Unweighted Accounts for presence/absence of gene family
members and their phylogenetic relationship.
Sensitive to gene acquisition and loss.

Accounts only for presence/absence of gene family
members. Sensitive to gene acquisition and loss.

Weighted Accounts for relative abundance of gene family
members and their phylogenetic relationship.
Sensitive to gene acquisition, loss, and duplication.

Accounts only for relative abundance of gene
family members. Sensitive to gene acquisition,
loss, and duplication.

Fig. 1. Methodologic approaches. Schematic of genomic UniFrac that can be
applied to a ‘‘forest’’ of trees. 1) First we use NJ to generate a phylogenetic tree
for each gene family. In this example, we are comparing three genomes that
are colored red, blue, and yellow using two gene families. 2) Trees are joined
by addition to the same root with a branch length of zero. The trees are first
normalized by dividing the branches by the maximum root to tip distance to
correct for differential rates of evolution in the different gene families. 3)
Pairwise UniFrac distances are calculated between all possible combinations of
genomes using both unweighted and weighted UniFrac. For each pair, all
sequences not from either genome are first removed. Unweighted UniFrac
distances are the fraction of branch length that leads to one genome or the
other (yellow and blue branches) but not both (gray branches). Paralogous
genes (circled in red) do not heavily affect the results because they introduce
little unique branch length. Weighted UniFrac weights each branch by the
differential representation of its descendants in the two genomes (repre-
sented by line thickness; gray branches carry no weight). The blue genome will
look more different from the yellow because of the paralogs. 4) The final
genome cluster is made by applying the NJ algorithm to the UniFrac distance
matrix. It takes only one switch between Non-gut (N) and Gut (G) to describe
the distribution of states on the tree. 5) Determining if genome clusters group
gut genomes together better than phylogeny. If the ancestral state was N, it
would require more changes to explain the distribution of states in the 16S
rRNA phylogenetic tree than in the genome cluster, suggesting convergence.
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(14). The distance matrices from the unweighted and weighted
UniFac and count measures were used to create genome clusters
by applying the neighbor-joining (NJ) algorithm (24). We chose
NJ, rather than clustering methods that produce an ultrametric
tree (in which all tips are equidistant from the root) such as
UPGMA (25), because it allows for variation in the rates of
evolutionary change. The rate of change of gene content varies
substantially among organisms, especially as they adapt to
different environments (1), although models describing these
changes are still in their infancy (preventing likelihood or
Bayesian approaches to cluster building). For comparison, how-
ever, we also applied UPGMA to the distance matrices.

The four clustering techniques differ in the degree to which
they are sensitive to underlying processes of genome evolution
(Table 1). Thus, comparing the results can suggest which pro-
cesses, such as HGT or parallel gene duplication/loss, underlie
the adaptation. For instance, the unweighted UniFrac test
should be particularly sensitive to convergence due to HGT,
because HGT will cause the input tree to have more closely
related sequences than expected from phylogeny. It will also be
sensitive to gene loss, because genomes that have members of the
same gene family will have additional shared branch length.
However, unweighted UniFrac will not be sensitive to parallel
expansion of families by duplication, because it is a qualitative
measure, and the addition of identical or near identical se-
quences will have little to no effect on the results (20) (Fig. 1).
In contrast, weighted UniFrac accounts for the number of
representatives a gene family has in a genome and should be
sensitive to gene family expansion as well as HGT (Fig. 1). If
there is parallel expansion of each organism’s original copy of a
gene (as opposed to a horizontally acquired copy), genome
clustering by lifestyle should be best observed with the weighted
counts method. Like unweighted UniFrac, the unweighted
counts method is sensitive to gene acquisition and loss, but we
expect that unweighted UniFrac would be more sensitive to
HGT because highly similar genes from a recent HGT event will
share much more branch length than genes whose original
version of the gene is present in both genomes.

Selecting Gut and Related Non-Gut Microbes. Our analysis included
67 microbial genomes: of the 36 obtained from the human gut,
21 were part of an ongoing project to sequence 100 cultured
representatives of major phylogenetic lineages in the normal
distal human intestinal microbiota [Human Gut Microbiome
Initiative HGMI; http://genome.wustl.edu/sub�genome�
group.cgi?GROUP � 3&SUB�GROUP � 4], and 15 came from
other projects [supporting information (SI) Tables S1 and S2].
To identify phylogenetically related non-gut isolates with se-
quenced genomes, we made a NJ 16S rRNA phylogenetic tree of
organisms in the HGMI genome sequencing pipeline and com-
pleted microbial genomes deposited in GenBank as of March 19,
2008, and culled sequenced isolates that were related to the 36
gut isolates (Fig. 2A). To determine the environmental distri-
bution of these relatives and to verify that they were not found
in the guts of any vertebrate hosts, we used metadata about the
isolates deposited in NCBI (http://www.ncbi.nlm.nih.gov/
genomes/lproks.cgi), publications describing the isolate, and the
titles of culture-independent environmental surveys that deposited
near identical (�98% sequence identity) 16S rRNA sequences in
GenBank’s ENV database (see SI Methods and Table S2).

Clustering Isolates Based on GH and GT Gene Repertoires: Results.
Table S3 and Table S4 summarize CAZy annotations for the GH
and GT family members. 2,370 genes from 29 GT families and
3,537 genes from 84 GH families were present in the included
genomes. Each of the four clustering methods was used to group
the genomes based on these data. To quantify the recovery of
phylogenetic relationships, we calculated the fraction of nodes in

the phylogenetic tree that were shared by the GT/GH-based
‘‘genome cluster’’ (26). We assessed whether gut genome clus-
tering was significant by determining the fraction of the time that
the number of Fitch parsimony changes was lower when the gut
and non-gut states were assigned randomly. The 16S rRNA
phylogeny itself clusters gut genomes together better than
chance expectation; a minimum of 13 changes between gut and
non-gut are required to explain the distribution of these states on
the 16S rRNA tree (Fig. 2 A, red dots). This number is less than
chance (22 changes for the same tree with random state assign-
ments), because organisms that live in the gut tend to be
phylogenetically related. Since a significant result with this test
could be due to the recovery of phylogenetic relationships alone,
we also compared the genome clusters with the phylogeny by
measuring the fraction of bootstrapped 16S rRNA trees that had
less than or equal parsimony counts than the genome cluster.
Functional groups that have few informative characters (i.e., few
gene families or ‘‘fast-evolving’’ gene families with few informa-
tive characters) may cluster genomes by habitat no better than
phylogeny, even if some convergence has occurred, due to lack
of statistical power. However, a significant result provides strong
evidence for convergence because it must recapture both phy-
logenetically-related gut clustering and habitat-related devia-
tions from phylogeny.

The UniFrac methods outperformed the count methods in
both the clustering of gut genomes and the recovery of phylo-
genetic relationships (Table 2). For the GTs, both the un-
weighted and weighted UniFrac methods clustered gut organ-
isms significantly better than phylogeny (P � 0.001), with 10 and
9 versus 13 parsimony changes. The unweighted and weighted
UniFrac methods also recovered 48% and 43% of the nodes in
the 16S rRNA tree respectively. In contrast, neither the un-
weighted nor the weighted count method clustered gut genomes
significantly better than phylogeny (12 and 15 parsimony changes
respectively), and they only recovered 5–11% of the nodes in the
16S rRNA tree (Table 2). The UPGMA results were similar to
the NJ results but generally did not cluster gut genomes as well
(Table S5).

Although some of the weighted UniFrac clustering was con-
sistent with phylogeny (e.g., the clustering of the gut Bacte-
roidetes), there are remarkable examples where gut organisms
cluster together despite major differences in phylogeny (Fig. 2B).
For instance, diverse gut Actinobacteria, including two species in
the genus Bifidobacteria and the distantly related Colinsella
aerofaciens, cluster together rather than with the three non-gut
Actinobacteria that occupy an intermediate position in the 16S
rRNA tree (compare A and B in Fig. 2). The gut Actinobacteria
cluster with Firmicutes related to members of Clostridia Clusters
IV, which are all gut organisms, rather than with the non-gut
Actinobacteria, which are located in completely different parts
of the tree (Fig. 2B, red arrow). Additionally, the one non-gut
species representing Clostridium Cluster IV, Clostridium ther-
mocellum, groups with non-gut Firmicutes related to Clostrid-
ium Cluster I (Fig. 2B; red arrow). Also, the predominant gut
archaeon Methanobrevibacter smithii clusters with another gut
archaeon Methanosphaera stadtmanae, rather than with the
non-gut Methanobacterium thermoautotrophicum as it does in the
16S rRNA tree (Fig. 2 A and B).

Comparison of Clustering Methods Suggests that the Convergence of
GT Genes in Gut Bacteria Is Due to HGT and Parallel Gene Loss. The
GT weighted and unweighted UniFrac clusters were very similar;
the unweighted UniFrac cluster had one more gut/non-gut
parsimony change (Table 2) but the same clustering patterns
between phylogenetically disparate gut organisms noted for
weighted UniFrac (data not shown). This indicates that the
presence/absence of phylogenetically similar GTs alone was
largely sufficient to observe the pattern but that it may have been
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slightly enhanced by parallel gene family expansion. Weighted
UniFrac clustered gut genomes slightly better, even though the
introduced noise caused a smaller fraction of nodes to be shared
with the 16S rRNA tree (Table 2). However, parallel gene
expansion was not a major cause of the GT convergence: the
weighted count cluster grouped gut organisms together the worst
of all of the methods used and substantially worse than the 16S
rRNA tree, requiring 15 gut/non-gut changes. Although the
unweighted count method is sensitive to the same factors as

unweighted UniFrac (HGT and parallel gene loss), it was clearly
not as powerful as the unweighted UniFrac method for detecting
GT convergence since the gut clustering was not significantly
better than phylogeny.

Unweighted UniFrac also Detects Significant Convergence of GH Gene
Repertoires in Gut Genomes. Unweighted UniFrac of the GH gene
families also clustered gut organisms together significantly better
than phylogeny (P � 0.001), with 8 versus 11 parsimony changes

Fig. 2. Clustering of the 67 gut and non-gut associated microbes included in this study. (A) 16S rRNA-based phylogenetic tree that is the majority rule consensus
of 1,000 bootstrapped NJ trees (see SI Methods). Gut microorganisms are highlighted in red. Sequenced genomes from the HGMI are marked with an asterisk.
Red dots denote the 13 internal nodes where Fitch parsimony counted a gut/non-gut switch (see Fig. 1). Higher-level taxonomic categories are noted with both
text and shading. (B) The GT weighted UniFrac cluster. Higher-level taxonomic categories are shaded as in A and gut organisms are colored red. The red box
highlights interdivision clustering between gut Actinobacteria and Firmicutes. Red arrows show where related, non-gut organisms (non-gut Actinobacteria and
C. thermocellum) cluster instead. (C) The GH unweighted UniFrac cluster. Shading and text colors are as described for B. The red boxes and arrows highlight
habitat related clustering (the gut Mollicute E. dolichum clusters with a gut Actinobacteria instead of with its relative Acholeplasma laidlawii and the non-gut
Lactobacillus brevis clusters with O. oeni instead of its relative from the gut L. salivarus). (D) The GH weighted count cluster. Gut organisms are in red text and
members of the Bacteroidetes are highlighted in blue.
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(note that the number of parsimony changes in the 16S rRNA
tree is lower for the GHs than for the GTs; this is because the
GH analysis excludes the Archaea since neither of the gut
Archaea had any annotated GHs). Weighted UniFrac per-
formed worse than unweighted UniFrac, with 10 parsimony
changes needed to explain the distribution. Although this is still
less than in the 16S rRNA phylogeny, the result is not significant
when accounting for the uncertainty in the topology of the 16S
rRNA tree (Table 2). Unweighted UniFrac again recaptured
phylogenetic relationships better than weighted UniFrac (42%
vs. 33% of the 16S rRNA tree recovered). The recovery of
phylogeny was slightly worse for GHs than for GTs, indicating
that GH genes generally have a less strong phylogenetic signal,
either due to fewer phylogenetically informative positions in the
aligned sequences of families or a greater tendency for con-
founding factors such as gene loss or gain. As with the GTs, the
unweighted and weighted count methods did not recover phy-
logenetic relationships as well as the UniFrac methods, sharing
10% and 12% of the nodes with the phylogeny respectively.
Although both count methods clustered gut genomes worse than
phylogeny, all of the clusters were better than expected by chance
alone (Table 2), which may indicate a role for gut-related
clustering for the count clusters since they recapture phylogeny
so poorly.

Unweighted UniFrac clustered phylogenetically disparate gut
organisms, although the deviations from phylogeny are not the
same as for the GTs (Fig. 2C). For instance, with the GHs,
Lactobacillus salivarus clusters with other gut Lactobacilli rather
than with the non-gut Lactobacillus brevis, which instead clusters
with the non-gut Oenococcus oeni. Similarly, the gut Mollicute
Eubacterium dolichum and a gut Actinobacteria (Collinsella
aerofaciens) cluster together rather than with their relatives,
indicating that these phylogenetically disparate organisms may
occupy more similar niches in terms of carbohydrate utilization
than would be predicted by phylogeny alone. Non-gut members
of three of the main groups of Clostridia in the analysis (related
to Clusters I, IV, and XIVa) also cluster together rather than
with their gut relatives. This may be related to the shared
environment of these species, which are all prevalent in soil
(Table S2).

Before performing these analyses, we expected that the
weighted clustering methods might cluster gut genomes better
based on GHs because a substantial expansion of GH families
had been observed in gut Bacteroidetes (7, 17). However, since
there are no non-gut isolates interspersed among the gut Bac-
teroidetes in the 16S rRNA tree, improved gut genome clustering
could only be observed if a gut-associated member of a different
phylum experienced the same type of gene expansion. The
comparatively poor performance of both weighted clustering
techniques indicates that this is not the case, and that different
phyla do not undergo expansion of the same gene families. The
expansion of GHs in gut genomes, however, is evident from the

long branches among gut Bacteroidetes in the weighted count
cluster (Fig. 2D). Interestingly, the clustering pattern reveals that
two soil organisms may have similar expansions of their GH
repertoires as the gut Bacteroidetes: Flavobacterium johnsoniae,
a Bacteroidetes species characterized by the ability to use a wide
variety of naturally occurring complex glycans, such as chitin,
cellulose, and lignin (27, 28), and the Firmicute Clostridium
phytofermentans, which performs anaerobic fermentation of
cellulose to acetate and ethanol (29). The fact that this change
was not detected by unweighted or weighted UniFrac indicates
that HGT did not play a role in this association, but rather that
soil and gut microbes independently expanded their own versions
of genes within the same families to address similar challenges
in different environments.

Discussion
Comparison of genome clusters from the four methods described
here reveal that diverse gut microbes had a convergence of
carbohydrate-active genes and that HGT and parallel gene loss,
as opposed to parallel duplication, are likely to be important for
this convergence. This is consistent with previous studies show-
ing that gene duplication has a minor impact on gene content
variation between related genomes compared to HGT and gene
loss (30). The unweighted count method did not perform as well
for GHs and GTs as it did in a previous study of membrane
transport proteins (14), indicating that these gene families are
not as stably inherited vertically. Therefore, it is notable that the
UniFrac methods were still sufficiently powerful to detect
convergence and recover phylogenetic relationships.

The four clustering methods are better suited for detecting the
convergence of functional gene repertoires than the techniques
that have been described for phylogeny. For instance, clustering
genomes with unweighted UniFrac is similar to the superalign-
ment (12) and supertree (13) phylogenomic methods: it clusters
genomes based on phylogenetic information from multiple pro-
tein families, but is influenced more by parallel gene loss and can
either account or correct for paralogy by using the weighted and
unweighted versions respectively. The unweighted UniFrac
method can also be further explored for phylogenomics as it has
some interesting advantages for this application: it is insensitive
to paralogs and allows ‘‘missing’’ genes. Therefore, it can use
most of the information in a set of genomes, and build individual
gene trees using parameters that are specific for each gene
family, allowing normalization of evolutionary rates.

The UniFrac methods outperformed the count methods, both
for detecting convergence and for recovering phylogenetic re-
lationships between genomes. Thus, accounting for the related-
ness between gene family members in genome comparisons
utilizes more of the data and has increased power. However, the
count methods can occasionally detect relationships that the
influence of sequence relatedness may obscure, such as parallel

Table 2. Comparison of GT and GH clustering results to the 16S rRNA phylogeny

Cluster type
Fraction

shared nodes
Cluster

parsimony count
16S rRNA

parsimony count
Probability better
than phylogeny

Probability better
than chance

GT UniFrac UW 0.48 10 13 �0.001 �0.001
GT UniFrac W 0.43 9 13 �0.001 �0.001
GT Count UW 0.11 12 13 0.20 �0.001
GT Count W 0.05 15 13 1.0 0.002
GH UniFrac UW 0.42 8 11 �0.001 �0.001
GH UniFrac W 0.33 10 11 0.18 �0.001
GH Count UW 0.10 12 11 0.98 �0.001
GH Count W 0.12 14 11 1.0 0.001

UW, unweighted; W, weighted.
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expansion of non-horizontally acquired genes as shown here for
GHs in gut and soil Bacteroidetes.

In this analysis, we specifically looked for convergence in gene
families with functions already believed to be important in the
gut. The significant clustering of gut microbes based on these
functions supports the notion that the level of gene family
convergence can predict functions important for adaptation to
shared challenges for a given lifestyle. Convergence should not
be as strong, however, for functions that are important only for
a particular niche within a habitat for which there is strong
competition. This work paves the way for genome-wide adap-
tation of the techniques to provide an unbiased look at which of
all of the types of functional genes converge the most in gut
genomes. As the UniFrac approaches require the computation-
ally intensive steps of sequence alignment and phylogenetic
reconstruction, successful genome-wide application to the grow-
ing set of available genomes will require further exploration of
how fast, approximate methods impact the results.

The degree of gene repertoire convergence and correlation
with 16S rRNA phylogeny also indicates how informative surveys
of 16S rRNA gene sequences are for describing specific functions
in human gut samples. It will be interesting to apply these
techniques to other features of carbohydrate metabolism (e.g.,
nutrient sensors, carbohydrate binding proteins, transporters,
fermentation pathways), for a more detailed look at how pre-
dictive 16S rRNA sequences are likely to be for important
functions in the gut. This will aid in the interpretation of the large
16S rRNA datasets being generated in the International Human

Microbiome Project and other efforts that seek to understand
how the gut microbiota changes with diet, age, and disease.

Finally, the power of comparative genome analysis for under-
standing how microbes adapt to the gut habitat is greatly affected
by the availability of genome sequences for phylogenetically
related microorganisms that do not inhabit the gut. Therefore,
the International Human Microbiome Project should profit from
sponsoring efforts to sequence non-gut organisms that (i) inter-
sperse deep branching lineages for which only genome sequences
from gut dwellers are available, and (ii) live in a diverse set of
habitats so that clustering of gut organisms does not appear as
an artifact of convergence in organisms from another heavily
represented environment.

Methods
Implementation of the Genome Clustering Methods. For each GH and GT family
with �3 sequences, a multiple sequence alignment was made using MUSCLE
(31). To exclude low-quality alignment regions, positions at which �25% of
the sequences had a gap were removed. NJ trees were made from these
alignments using ClustalW (32). Each tree was normalized by dividing the
branches by the maximum root-to-tip distance and concatenated to a single
tree root. The NJ algorithm and UPGMA were applied to the distance matrices
from all four methods to produce the genome clusters. All computations were
performed with the Python programming language using PyCogent (33) and
the UniFrac Python API (19).
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