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Abstract
Despite significant advances in the treatment of primary cancer, the ability to predict the metastatic
behavior of a patient’s cancer, as well as to detect and eradicate such recurrences, remain major
clinical challenges in oncology. While many potential molecular biomarkers have been identified
and tested previously, none have greatly improved the accuracy of specimen evaluation over routine
histopathological criteria and they predict individual outcomes poorly. However, the recent
introduction of high-throughput microarray technology has opened new avenues in genomic
investigation of cancer, and through application in tissue-based studies and appropriate animal
models, has facilitated the identification of gene expression signatures that are associated with the
lethal progression of breast cancer. The use of these approaches has the potential to greatly impact
our knowledge of tumor biology, to provide efficient biomarkers, and enable development towards
customized prognostication and therapies for the individual.

Breast cancer is one of the most common causes of cancer-related deaths worldwide, largely
due to the recurrence of therapeutically resistant disseminated disease. Despite significant
advances in the treatment of primary cancer, the ability to predict the metastatic behavior of a
patient’s cancer, as well as to detect and eradicate such recurrences, remains the greatest clinical
challenge in oncology. Currently, the majority of lymph node (LN)-negative breast cancer
patients undergo systemic adjuvant therapy because of the inability to accurately determine an
individual’s risk of recurrence. Since only a minority of node-negative patients will actually
develop disease recurrence, there is a critical need to stratify patients with respect to risk of
breast cancer recurrence. While many potential molecular biomarkers have been identified and
tested previously, none have greatly improved the stratification of disease and they predict
individual outcomes poorly. Consequently, few prognostic molecular markers are currently in
clinical use as standard prognostic or predictive factors.

Recent advancements in powerful new high-performance screening technologies have
revolutionized the ways in which researchers can study the pathogenesis of disease. This offers
great potential to improve our knowledge of tumor molecular biology, and to provide pivotal
information for clinical evaluation of breast cancer progression. Micro-arrays have been
employed to identify gross chromosomal changes in breast cancer (Albertson, 2003) and gene
expression patterns that distinguish molecular subtypes of breast cancer, and that are predictive
of metastatic relapse (Sorlie et al., 2001, 2003; van de Vijver et al., 2002; Weigelt et al.,
2003, 2005a). This approach has also been used in animal models of metastasis and signatures
of gene expression are beginning to take shape (Kang et al., 2003; Eckhardt et al., 2005;
Goodison et al., 2005b; Kluger et al., 2005; Minn et al., 2005). The combination of these
approaches could lead to the identification of genes playing a critical role in cancer
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development and progression, which, in turn, will provide more efficient biomarkers, and
ideally result in the avoidance of over- or under-treatment of individual patients through
development towards customized prognostication and therapies. In this review, we focus on
the rapidly evolving signatures of tumor progression, particularly those that correlate with the
occurrence of distant metastases, and discuss some of the expected future developments in the
field.

Gross chromosomal aberrations
The development of cancer is generally believed to require the accumulation of multiple genetic
aberrations. These aberrations range from single nucleotide mutations to cytogenetically
detectable numerical and structural chromosomal alterations (Devilee and Cornelisse, 1994;
Bieche and Lidereau, 1995). While human tissue specimens and immortal breast cancer cell
lines represent an excellent resource for genomic studies, chromosomal alterations have not
been well characterized until relatively recently, largely because of limitations inherent to
conventional chromosome banding techniques. The development of new techniques which
enable the accurate, high throughput analysis of specimens has enabled substantial progress in
this field. Comparative genomic hybridization (CGH), introduced in 1992, has been the
technique of choice for mapping DNA copy number changes in human tumors. The technique
uses hybridization to compare abundance of specific genome sequences in tumor cell DNA
relative to normal reference genomes (Kallioniemi et al., 1994). This opened new avenues in
genomic investigation because it obviated the need to culture cells before their chromosomes
could be analyzed. The latest generation of CGH analysis, array-CGH or matrix-CGH, uses
ordered arrays of genomic DNA sequences and further increases the potential of CGH to
provide insight into chromosomal aberrations present in cancer by enabling single-gene
resolution. Recently developed multi-color chromosome imaging techniques such as spectral
karyotyping (SKY) (Schrock et al., 1996) and multiplex-FISH (M-FISH) (Speicher et al.,
1996) utilize simultaneous visualization of each human chromosome with specific
fluorochrome combinations and enable a far more rapid and detailed karyotypic analysis of
solid tumors and cell lines (Macville et al., 1997; Kawai et al., 2002). The chromosomal
aberrations in the most commonly used human breast carcinoma cell lines have recently been
investigated using these techniques (Kytola et al., 2000; Xie et al., 2002; Watson et al., 2004;
Goodison et al., 2005a; Shadeo and Lam, 2006). Karyotypic analysis has shown breast tumor
cell lines to be either near diploid with simple rearrangements or highly aneuploid with
multiple, complex rearrangements (Morris et al., 1997; Kytola et al., 2000).

The most frequent gains detected by CGH in breast tumor cell lines are 1q, 8q, 20q, 7, 11q13,
17q, 9q, and 16p, whereas losses were most common at 8p, 11q14→qter, 18q, and Xq (Kytola
et al., 2000). The comparison of CGH data from cell lines to CGH studies from primary breast
tumors (Nishizaki et al., 1997; Tirkkonen et al., 1998) reveals that the most common gains and
losses are the same. In breast tumor specimens, the most common chromosomal imbalances
detected by CGH are gains of 1q, 8q, 16p, 17q, and 20q and losses involving 8p, 13q, 18q, and
16q (Isola et al., 1995; Ried et al., 1995). Although literally hundreds of articles have been
published describing the pattern of copy number alterations in cancer, very few of the genes
affected have been identified. Consequently, investigators are currently attempting to correlate
CGH data with gene expression. Hyman et al. (2002) combined CGH with cDNA arrays to
analyze breast tumor cell lines and found that a significant correlation does exist between gene
amplification and gene expression across the genome. The same group has focused on the
17q21→q23 amplicon, which includes ERBB2 and is a common region of amplification in
breast cancers with poor prognosis (Kallioniemi et al., 1994; Kauraniemi et al., 2001). These
analyses are examples of the power achieved by combining genomic and expression
approaches, and have identified several genes that are consistently overexpressed in breast
cancer cell lines and advanced breast cancer.
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SKY analysis of breast tumor cell line karyotypes reveals that the chromosomes most
frequently involved in translocations are 8, 1, 17, 16, and 20. These chromosomes contain gene
amplicons, for example, at 8q24, 17q11→q12, and 20q12→q13, that are present in up to 30%
of breast carcinomas (Devilee and Cornelisse, 1994; Bieche and Lidereau, 1995; Tanner et al.,
1996; Barlund et al., 1997). Furthermore, studies using conventional cytogenetics report that
primary and metastatic breast carcinomas contain aberrations of chromosome 8 in up to 40%
of cases (Adeyinka et al., 2000; Popescu and Zimonjic, 2002). Databases that make data from
SKY/M-FISH and CGH studies in cancer available have been created by the NCI (Knutsen et
al., 2005). The SKY/M-FISH and CGH Database
(http://www.ncbi.nlm.nih.gov/projects/sky/) enables investigators to submit and analyze
clinical and research cytogenetic data. The Cancer Chromosomes database integrates the SKY/
M-FISH & CGH Database with the Mitelman Database of Chromosome Aberrations in Cancer
(http://cgap.nci.nih.gov/Chromosomes/Mitelman) and the Recurrent Chromosome
Aberrations in Cancer database
(http://cgap.nci.nih.gov/Chromosomes/RecurrentAberrations).

Relatively few studies have explored whether specific cytogenetic abnormalities can be used
to stratify breast tumors with clinical course, namely metastatic relapse. Blegen et al. (2003)
performed CGH on tumors from patients who had early relapse and from patients who remained
free from distant metastases for more than ten years. Tumors in relapse patients showed a higher
average number of chromosomal copy alterations compared to the long-term survivors,
including gains of chromosome 3q, 9p, 11p and 11q and loss of 17p (Blegen et al., 2003). This
aligns well with a CGH study that evaluated 76 LN-negative breast carcinomas (median follow-
up 46 months) and found that a gain of 3q is a stronger predictor of recurrence than grade,
tumor size, and estrogen receptor status (Janssen et al., 2003). In a CGH study of 39 invasive
breast carcinomas with a mean follow-up period of 99 months, Aubele et al. (2002) identified
an independent prognostic value for chromosomal gains on 11q13, 12q24, 17 and 18p. More
recently, an array-CGH study of ER-positive breast cancer tissues reported that the most
significant chromosomal alterations found more often in the group with metastatic recurrence
within five years were loss of 11p15.5→p15.4, 1p36.33, 11q13.1, and 11p11.2 (Han et al.,
2006). Array-CGH was also used by Yao et al. (2006) to show that the overall frequency of
copy number alterations in regions 1q, 8q24, 11q13, 12p13, 17q21→q23, 16p13 and 20q13,
correlated with the advancing nature of the tumors. Amplification of candidate loci was
confirmed by quantitative PCR, and expression level analysis of genes present in these loci
identified many putative target genes (Yao et al., 2006). These CGH results have significant
overlap and indicate that malignant breast adenocarcinomas are characterized by specific
chromosomal copy number changes.

The high divergence of karyotype data makes it difficult to define more specific aberrations
involved in breast cancer etiology or progression, however, the study of copy number
aberrations has proved to lead to the development of useful diagnostic markers. The tight
correlation of amplification of ERBB2 with increased expression of the gene product provides
the basis for the tests that measure the DNA copy number of ERBB2 for predicting response
to Herceptin (Pauletti et al., 1996). Furthermore, combinations of FISH probes for regions of
recurrent copy number aberration in other tumor types have proved useful for monitoring
disease status (Sokolova et al., 2000) and for distinguishing benign from malignant skin lesions
(Bastian et al., 1999).

Tissue-based signatures of breast cancer progression
Large-scale microarray analyses of human tissue specimens are building consensus gene
expression profiles of various tumors, including breast (Sorlie et al., 2001, 2003, 2006; van ‘t
Veer et al., 2002; van de Vijver et al., 2002; Ma et al., 2003, 2004; Weigelt et al., 2003; Hu et
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al., 2006; Sotiriou et al., 2006). Breast cancer is clearly a heterogeneous disease and microarray
analysis has been successfully used to derive distinct patterns of gene expression that correlate
with molecular subtypes of breast cancers. Expression profiles that are associated with
estrogen-receptor status, HER2 (ERBB2) expression, BRCA1 or BRCA2 mutations and with
‘basal type’ or ‘luminal types’ have been identified using unsupervised analyses (Sorlie et al.,
2001; Hedenfalk et al., 2003; Mackay et al., 2003; Kristensen et al., 2005). These breast cancer
subtypes also represent clinically distinct subgroups of patients, with differences in disease
progression and overall survival. For example, ER-positive tumors tend to have the best
outcome, whereas HER2+ tumors have a bad prognosis. The genes which show high variance
across different tumors have been termed ‘intrinsic genes’ and a set of 1300 such genes has
been reported to accurately subdivide the molecular subtypes across multiple array platforms
and independent microarray studies (Hu et al., 2006). Studies using reduced lists of genes are
beginning to be used in independent validation studies, and as few as 40 genes have been used
to stratify subtypes of breast cancer using quantitative PCR assays (Perreard et al., 2006).

In a study conducted in 2002, a supervised classification analysis of DNA-microarray data
predicted prognosis better than clinical prognostic indicators such as grade, stage, and nodal
status. The investigators queried samples from a cohort of young (<53) breast cancer patients
with LN-negative tumors. Reduction of the data identified a 70-gene signature that
distinguished patient groups with good or poor prognosis with respect to the likelihood of the
later development of clinical metastases (van ‘t Veer et al., 2002). Subsequent testing of the
70-gene prognosis gene set in an independent cohort of 295 patients confirmed the accuracy
of the signature, regardless of LN status, in predicting the occurrence of distant metastases
within five years of treatment (van de Vijver et al., 2002). The resulting gene-expression profile
was a far more powerful predictor of the outcome of disease in young patients with breast
cancer than the currently used St. Gallen or NIH consensus criteria based on clinical and
histological characteristics. Importantly, the predictive power of the 70-gene signature was
based upon metastasis to non-lymphatic tissues. More recently, a similar approach identified
a 76-gene signature that was also successfully used to predict distant metastasis in patients with
LN-negative primary breast cancer (Wang et al., 2005). The signature showed 93% sensitivity
and 48% specificity when tested in an independent set of 171 LN-negative patients. As with
the 70-gene signature described above, this signature outperformed the St Gallen criteria.
Another study that included 159 samples obtained from both treated and untreated patients,
with and without LN involvement, derived a 64-gene signature set that identified genes
associated with the occurrence of distant metastasis or death within five years (Pawitan et al.,
2005). Once again, the signature was validated in an independent set of 289 patients and was
found to outperform clinical criteria in the stratification of risk and overall survival.

A number of studies have investigated the hypothesis that molecular programs of wound
healing might be reactivated in cancer metastasis (Bissell and Radisky, 2001). Chang et al.
identified consistent features in the transcriptional response of normal fibroblasts to serum,
and used this so called ‘wound-response signature’ to reveal links between this phenomena
and cancer progression in a variety of common epithelial tumors, including breast (Chang et
al., 2004). The same group subsequently tested the accuracy of the wound-response signature
in the same 295 patients with early-stage breast cancer used to identify and validate the 70-
gene prognostic signature (van ‘t Veer et al., 2002). It was found that this signature could
identify approximately 90% of patients who developed metastases, independently of clinical
or pathological risk factors (Chang et al., 2005).

The suggestion that the risk of metastasis for breast cancer patients can be predicted by the
gene expression profile of its heterogeneous primary tumor has come as something of a
surprise. The prevailing idea has been that metastatic potential is acquired relatively late in the
multistep process of tumor progression (Fidler and Kripke, 1977), however, the recent
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microarray findings have reopened the debate on this topic by suggesting that the ability to
metastasize to distant sites may be an early and inherent genetic property of breast tumors. An
early study reported the derivation of a gene expression signature that distinguished primary
from metastatic adenocarcinomas. Ramaswamy et al. (2003) compared expression profiles of
a range of 64 primary adenocarcinomas (breast, prostate, lung, colon, uterus and ovary) to 12
unmatched metastases resulting from adenocarcinomas from the same spectrum of sites, but
resected from a variety of end-organs. This comparison identified an expression pattern of 17
genes that best distinguished primary and metastatic adenocarcinomas. Notably, components
of the protein translation apparatus were heavily represented in the 17-gene pan-metastasis
signature. By re-applying this metastasis-associated gene expression pattern to data on 279
primary solid tumors of diverse types, including 78 stage I primary breast carcinomas, it was
found that primary tumors carrying the 17-gene expression signature were more likely to be
associated with metastasis and poor clinical outcome (Ramaswamy et al., 2003). Conversely,
in more recent studies utilizing sets of matched tissue specimens, Weigelt et al. (2003,
2005a) found that gene expression profiles in human primary breast carcinoma are preserved
in the associated distant metastasis, with respect to both subtype profile and poor prognosis
signature, even if metastases develop after a long interval.

In breast cancer, it is the axillary LNs that are most often the first sites in which disseminated
tumor cells can be detected (Stacker et al., 2002) and their presence or absence is currently one
of the most important factors for disease course prediction for breast cancer patients (McGuire,
1987). While prognosis signatures for distant metastasis occurrence have been achieved, the
same research groups have not been able to identify a classifier predicting the LN status of
primary breast tumors. The comparison of gene expression profiles of 15 primary breast
carcinomas and their matching LN metastases revealed no common subset of differentially
expressed genes, and in the analysis of the Dutch 295 primary breast tumor profile dataset, no
classifier predicting LN metastasis could be developed (Weigelt et al., 2005b). However, a
study by Huang et al. (2003) did identify patterns of expression that were associated with the
LN status of 89 Taipei breast cancer patients. These analyses were based on biopsy material
and resulted in a predictive accuracy of approximately 90% for LN metastasis and relapse.
None of the genes implicated in the overall recurrence of disease in this study were common
to the 70-gene prognosis signature of van ‘t Veer et al. (2002), and cross-validation with a
previous US study did not identify significant numbers of overlapping genes, presumably due
to the different racial genetic backgrounds, but the authors concluded that LN metastasis and
disease recurrence are distinct biologically. Collectively, these data suggest that proximal LN
metastasis occurs independently of distant metastasis (Weigelt et al., 2005b), but it remains
unclear whether metastasis to more distant sites proceeds sequentially from LN metastasis or
in parallel via a hematogenous route (Chambers et al., 2000).

Current limitations and future prospects
Improved prognostic markers are clearly needed in order to better stratify patients with respect
to their risk for developing metastases, and important advances towards this have been made.
However, many limitations with microarray-based tumor classifications exist. The subtype and
prognosis gene sets remain relatively broad and no quantitative information is available.
Subsequent tests based on the qualitative presence or absence of a single gene, or even multiple
genes are unlikely to be accurate enough for clinical assay development. Due to economic
considerations, the number of samples tested to date remains very small relative to the feature
dimensionality present on microarray chips. Consequently, as more data are added the current
signatures can change dramatically, and another round of adjustment to tissue-based signatures
will occur now that arrays that provide complete genome coverage have become available.
Furthermore, studies that assay grossly homogenized tissues define an average gene expression
signature that does not account for variations in tumor complexity, heterogeneity or non-tumor
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cell contributions. Gene expression signatures may reflect genetic and/or epigenetic
phenomena, effects of growing in different tissue environments, or simply the composition of
cell types. These problems have caused some debate regarding the timing of the next phase of
current gene signature clinical testing (Brenton et al., 2005; Loi et al., 2005), but it is clear that
independent validation of these signatures is the next step. Indeed, multi-institutional studies
are being organized (TransBIG in Europe (Tuma, 2004) and NCI PACCT in the US) to facilitate
the evaluation of breast cancer genomic signatures in far greater numbers of clinical specimens.

At this stage, microarray data in itself does not provide definitive answers. The inclusion of a
gene in a prognostic list that is determined by a supervised classification method does not
indicate the importance of that gene in cancer biology, nor does it provide functional insight
into the underlying mechanisms of disease. However, these analyses have provided a wealth
of candidate genes and pathways for further study. In order to investigate the role of these genes
in the mechanisms of metastasis animal models are needed.

Animal models of metastasis
Signatures of breast cancer metastasis

The multistep nature of metastasis poses difficulties in both design and interpretation of
experiments to unveil the mechanisms causing the process. Studies on excised human tissues
are complicated by the variance of genetic background between individuals and by the cellular
heterogeneity of a complex tissue mass. Critical to the experimental analysis of metastasis has
been the isolation of human tumor cell lines and the ability to study their behavior in vivo by
inoculation into immune-compromised mice. Several established human breast cancer cell
lines with varying documented abilities of invasiveness and/or migration in vitro are available,
and some are capable of spontaneous metastasis in vivo, i.e. dissemination from a primary
tumor and proliferation in a distal site (Price et al., 1990). This xenograft model represents an
experimental system in which the role of specific genes can be screened and tested. However,
many breast cell lines, especially those isolated from pleural effusions, are polyclonal in nature
and composed of cell populations that are heterogeneous in metastatic phenotype, thus in order
to use cell lines as models in studies seeking to define genes causing metastasis it is optimal
to isolate single cell progenies from the parental cell line source. Through in vivo selection of
monoclonal cultures of the MDA-MB-435 breast tumor cell line we were able to characterize
a pair of single cell progenies (M4A4 and NM2C5) which differ markedly in their ability to
complete the metastatic process (Urquidi et al., 2002). When orthotopically inoculated into
athymic mice, both cell lines form primary tumors, but only M4A4 is capable of metastasis to
the lungs and lymph nodes (Urquidi et al., 2002; Goodison et al., 2003). These isogenic cell
lines of opposite metastatic propensity constitute a stable and accessible model for the
identification of genes involved in the process of tumor metastasis. We have performed
multiple comparative analyses of these paired cell lines, including cytogenetic analyses and
evaluation of the expression of a number of gene products previously implicated in cellular
transformation and metastasis (Urquidi et al., 2002; Agarwal et al., 2003; Goodison et al.,
2003, 2005a). To further elucidate the extent of the molecular changes associated with
acquisition of the metastatic phenotype in this model, we recently employed a genome-wide
expression profiling approach. Intensity modeling and hierarchical clustering analysis revealed
a subset of 85 genes (>2-fold change) whose expression was statistically correlated with
metastatic phenotype (Goodison et al., 2005b). Some genes in this group have been implicated
in invasion, tumor cell proliferation and/or metastasis previously, but GTPase signaling
components were one of the most-well-represented functional groups. Restoration of the
expression of deleted in liver cancer-1 (DLC-1), a Rho-GTPase-activating protein, in
metastatic M4A4 cells resulted in the inhibition of migration and invasion in vitro and a
significant reduction in the ability of these cells to form pulmonary metastases in athymic mice.
DLC-1 has specific GTPase activating protein functions for RhoA and Cdc42 (Wong et al.,
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2003), members of the Rho family that are consistently overexpressed in breast tumors (Fritz
et al., 1999). The finding that DLC1 can act as a ‘metastasis-suppressor gene’ supports an
influential role for GTPase signaling in tumor progression. Metastasis suppressor genes are
potential candidates for marker development because, by definition, their loss should be
associated with the acquisition of metastatic potential (Shevde and Welch, 2003).

A similar methodological approach was used by Kang et al. (2003) to study breast tumor cell
homing to specific organ sites. The investigators were able to derive monoclonal lines from
the MDA-MB-231 breast tumor cell line that had differing degrees of ability to form tumor
deposits in murine bone. The experimental system was necessarily different to that used in a
lung metastasis model, in that cells need to be inoculated directly into the heart in order to get
sufficient cell numbers to the arterial side of the murine body and to the skeleton. Using
comparative microarray analyses of the parental MDA-MB-231 cell line and a variant selected
for bone colonization, the investigators identified a bone metastasis gene expression signature
of 102 genes. Interestingly, in line with our lung metastasis model, DLC-1 was found to be
downregulated in breast cell populations which were highly metastatic to bone (Kang et al.,
2003) suggesting that some signaling pathways may be pivotal to metastatic efficiency
regardless of the target organ. Transfection of combinations of genes confirmed some of these
genes (IL11, OPN/SPP1, CTGF and CXCR4) as being functionally involved in the efficiency
of MDA-MB-231 cell bone colonization. Both IL11 and CTGF are known to be activated by
TGFβ, suggesting a potential prometastatic role for this cytokine in bone. The same group
continued to derive monoclonal lines from MDA-MB-231 and test their propensity to colonize
other organs. Comparison of transcriptional profiles of cell populations highly or weakly
metastatic to the murine lung resulted in a 54-gene lung metastasis signature (Minn et al.,
2005). This gene set was distinct from the bone metastasis signature overall (Kang et al.,
2003), but some genes were common to both MDA-MB-231 models, including MMP1 and
CXCR4 (Minn et al., 2005). The MDA-MB-231 lung metastasis signature gene set was also
compared to expression profiles obtained from a cohort of 82 therapeutically excised primary
breast carcinomas from patients with known metastatic status. This revealed that expression
profiles in the primary tumors from patients with subsequent lung metastases, but not bone
metastases, correlated to some extent with the lung metastasis signature (Minn et al., 2005).

Another variation on clonal models of metastasis has been characterized by Lev et al. (2003).
This model consists of a more aggressive metastatic clone (GILM2) derived from the weakly
metastatic GI101A human breast cancer cell line which metastasizes to the lung and lymph
nodes when inoculated orthotopically (Hurst et al., 1993). Microarray-based comparison with
the parental line identified a list of 106 genes that were differentially expressed (>2.5 fold) in
the highly metastatic GILM2 variant (Kluger et al., 2005). Immunohistochemical confirmation
in human breast tissue specimens of the expression of three markers, heat shock protein 70
(HSP70), chemokine ligand 1 (CXCL1), and secretory leukocyte protease inhibitor (SLPI),
revealed that the expression of all three genes was correlated with lymph node involvement,
and the expression of HSP70 and CXCL1 was associated with decreased overall patient
survival. Interestingly, we have identified and functionally proven the role of SLPI in an
invasion-independent model of metastasis (Sugino et al., 2004). A wholly murine model of
spontaneous breast cancer metastasis to multiple sites has been characterized and used to
identify genes involved in metastatic progression. Several syngeneic tumor lines with a
spectrum of metastatic phenotypes were isolated from a spontaneous mammary tumor in a
BALB/cfC3H mouse (Lelekakis et al., 1999). When inoculated orthotopically, the resulting
primary tumors are either nonmetastatic or produce spontaneous metastases to lymph node,
lung and/or bone (Eckhardt et al., 2005). To identify metastasis-related genes, the investigators
grouped the expression profiles of a weakly meta-static group and compared these with the
profiles of a highly metastatic group using mouse cDNA arrays. A metastasis signature of 216
genes was derived, of which 125 were known genes. A significant proportion of genes
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belonging to extracellular matrix protein families had elevated expression in the highly
metastatic tumors. The role of one of these genes, POEM (nephronectin), was further
investigated using RNA interference technology, and decreased POEM expression in 4T1
tumors significantly inhibited spontaneous metastasis to the lung, kidney and bone. POEM is
a secreted ECM molecule that has been reported to be involved in kidney morphogenesis and
the development of bone (Brandenberger et al., 2001; Morimura et al., 2001), and so it is logical
to assume that the expression of POEM by the tumor cells in the murine model is critical for
the establishment of metastases in these organs.

While genetic studies of clinical specimens will continue to be informative, they provide only
a snapshot of a complicated disease state, and there are few experimental opportunities in such
analyses. Thus, the study of breast cancer progression requires experimental models for the
investigation of the links between genetic profiles and a more aggressive tumor phenotype.
Animal models provide a powerful resource for the identification and investigation of genes
essential in distinct steps of the metastatic cascade, in site-specific homing, in complex tumor-
host interactions, and enable the identification of targets that are optimal for therapeutic
perturbation. The unique advantage of the clonal metastasis models described above is the
ability to profile cells of opposing metastatic phenotype that originate from a common genetic
background. The human origin of the cells and the spontaneous acquisition of the distinct
phenotypes make them optimal for investigations into genetic changes that correlate with
metastatic sufficiency. Investigators can alter the expression or activity of single, or multiplexes
of candidate genes in the clonal lines with known metastatic characteristics and monitor which
specific mechanisms are perturbed by comparison with isogenic controls. Many of these
candidate genes will come from tissue-based analyses, such as those described above. There
are certainly limitations regarding extrapolation from studies in a murine host to the human
clinical situation, perhaps particularly acute when investigating tumor-stroma interactions, but
in vivo functional analyses can distinguish which genes are essential in tumor progression, and
better delineate pathway and signaling network interactions in tumor cells, and thus may in
turn aid the prioritization of genes in prognostic signatures. In this way the two fields can
overlap and mutually benefit.

Signature overlap
Given the differences in experimental design used in the production of the nine signatures
described in this review, the presence of specific genes in multiple tissue or model signatures,
or better yet, in both, might implicate pathways or mechanisms for further research focus. The
nine signatures contain a total of 683 non-redundant genes for which a unique gene identifier
(Entrez Gene ID) is available to all signatures, and of these, 47 genes were found to appear in
at least two of the nine signatures. The details of the distribution of these signature intersect
genes is depicted in Table 1. Grouping genes by cellular location revealed that the most
prevalent (34%) localization was extracellular. This is a common theme revealed in metastasis
studies due to the complex interactions that need to occur with the secondary tissue
environment and the requirement for extracellular matrix remodeling during the development
of metastasis. This was reinforced by the fact that 23% of common genes were localized to the
plasma membrane. The majority of genes were common to only two signatures, just a few
appeared in three signatures.

The overlap between tissue-based studies was weak (signature gene range 17–83). Only five
genes appeared in two signatures resulting from tissue-based microarray studies (Table 1).
There was no overlap between the 17-gene metastasis signature of Ramaswamy et al. (2003)
with any other tissue-based study. Of the microarray studies discussed in this review, those
performed by van ‘t Veer et al. (2002) and Wang et al. (2005) are the most aligned in many
ways. While there were many differences between the studies with respect to population,
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clinical information availability, platform, and statistical treatment, both studies evaluated
lymph-node negative samples and the platforms had thousands of genes in common, yet only
one gene, cyclin E2 (CCNE2), was common to both signatures. Three genes (LOC51203,
PRC1 and L2DTL) of the 64 genes in the study by Pawitan et al. (2005) were present in the
70-gene prognostic signature identified by van ‘t Veer and colleagues, and one gene
(MLF1lP) was present in both the Pawitan and the Wang signatures.

Although there are clear differences between studies, including selection of patients according
to different inclusion and exclusion criteria, different gene expression platforms, and
mathematical analysis of the data, thousands of genes were common to all studies and the
overall goals were similar. The lack of convergence of breast cancer prognostic signatures to
date makes it difficult to discern which signatures are the most accurate and optimal for
prognosis and/or potential therapeutic development going forward.

There was significantly more overlap between model signatures (signature gene range 85–143)
than that observed between tissue signatures. A total of 42 genes were found to be present in
at least two model-based signatures. Although each model was derived from a different original
tumor source, the clonality of the models represents a far simpler situation than that found in
excised tumors consisting of complex mixtures of tumor and non-tumor cell components. The
largest overlap (ten genes) was between the MDA-MB-231 bone and lung metastasis
signatures. This is likely due to the fact that both signatures are derived from the same parental
cell line, MDA-MB-231. However, there was also significant overlap (seven genes) between
the MDA-MB-435 model and the GILM2 model. There was also considerable overlap (five
genes) between the MDA-MB-435 model and the MDA-MB-231-bone signature, and this is
in line with our recent observations that the M4A4 metastatic counterpart of the MDA-MB-435
model is also aggressively metastatic to bone when inoculated via an intra-cardiac route (article
in preparation).

Even though there was a relatively high intersection between the model signatures, there are
major differences between the five models described in this review. The MDA-MB-231 model
is a xenograft model of ‘experimental’ metastasis involving the injection of human breast tumor
cells directly into the circulatory system of immunocompromised mice, resulting in metastases
in specific organs. This model has been valuable for analyzing the final stages of metastasis,
and can identify genes that regulate the colonization of specific tissues (Kang et al., 2003;
Minn et al., 2005), but does not encompass the initial stages of metastasis. Conversely, the
MDA-MB-435 and the GILM2 model are xenograft models of ‘spontaneous’ metastasis
involving the formation of a primary tumor in an orthotopic site, in this case breast, from which
the cells must disseminate naturally. These spontaneous metastasis models recapitulate all of
the steps of metastatic efficiency, from escape from the primary tumor to the establishment of
distant metastases, and perhaps mimic more accurately the progression of breast cancer
observed clinically. However, the MDA-MB-231, MDA-MB-435 and the GILM2 models
involve human tumor cells forming tumors in a mouse host and, therefore, may not best mimic
important tumor-host interactions. The 4T1 mouse model has the advantage of being syngeneic
and so may provide more insight into such interactions, but on the other hand, the genes
identified as being associated with the tumor cell phenotype may not be functionally equivalent
in human cells. Rather than being a hindrance to forming converging hypotheses of metastasis,
the testing of candidate metastasis genes across these models with their inherent differences
will provide powerful validation of specific gene functionality.

A total of seven genes were found to be common to at least one tissue-based signature and one
model-based signature (Table 1). Three to four such intersect genes were present in each of
the tissue-based signatures, except for the 70-gene signature of van ‘t Veer et al. which had no
intersect with any model signature. All model signatures were represented in the tissue vs.
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model intersect. A total of four genes were present in at least three signatures. Three of these
(HLA-DPB1, ARHGDIB and C14orf139) were present in two model signatures and one tissue
signature, whereas the CTGF gene was present in three model signatures but no tissue
signature.

Chromosomal location and alignment with CGH studies
Alignment of the genes in the signature intersect list with chromosomal location reveals that
they are randomly spread across the genome with extremes being an absence of any genes on
chromosome 5, and seven genes being located on chromosome 6. Yet, per chromosome the
intersect genes appear to be tightly clustered in many cases. For example, five of the seven
genes on chromosome 6 are located within 6p22→ p21, both genes on chromosome 7 are
located at 7q22, and all three genes on chromosome 11 are located at 11q22→q23. The
NUSAP1 gene located at 15q15.1 is one of the few genes that were present in two of the tissue-
based analyses. Interestingly, alignment of our 171-gene metastasis signature using ‘Genome
View’ revealed that three of the genes more highly expressed in metastatic M4A4 cells were
grouped together at 15q15 (Goodison et al., 2005b). Moreover, this region was revealed to be
involved in cell-specific chromosomal rearrangements in the molecular cytogenetic analysis
of MDA-MB-435 sub-lines (Goodison et al., 2005a). Although specific genes may not make
the overlap lists, future meta-analyses of gene expression profiles with respect to chromosomal
location may reveal metastasis-associated DNA hot-spots.

Notably, many of the intersect genes are located at loci revealed by CGH to be perturbed in
breast cancer. The one gene on chromosome 3 that was present in at least two signatures is
TNFSF10, a member of the tumor necrosis factor ligand superfamily, located at 3q26. This
region was found to be a strong predictor of breast cancer recurrence by CGH (Janssen et al.,
2003). Furthermore, four clusters of intersect genes align very closely with recent reports of
copy number alterations which correlate with the advancing nature of breasttumors. These
include two genes located at 8q22→q24, two genes at 12p13.1→p12.3, one gene at 16p13,
and the two genes on chromosome 17 at 17q21→ q22. These four regions were all identified
through the use of array-CGH to be amplified in late-stage breast cancer (Yao et al., 2006).
The considerable alignment between the CGH and the gene expression microarray data
suggests that the combination of DNA- and RNA-based approaches can inform and guide the
search for essential cancer-associated genetic events.

Chemokines
A common theme throughout the cell line model metastasis signatures are components of the
human chemokine system. The chemokines and their receptors are a family of small secreted
molecules that regulate the migration around the body of cells in the lymphoid system, a process
that shares many characteristics with the successful dissemination of tumor cells in the body.
Chemokine receptors are G-protein-coupled cell surface proteins expressed on leukocytes and
many nonhematopoietic cells. These receptors bind various chemokines that are constitutively
expressed in distinct tissue microenvironments. The chemokine CXCL1 and the chemokine
receptor CXCR4 are present in the signature intersect gene list (Table 1). CXCR4 is the most
widely expressed chemokine receptor in many different cancers. Primary breast tumors express
the CXCR4 receptor, and target sites of breast cancer metastases, such as lung and bone, express
more CXCL12, the CXCR4 ligand, than other organs (Muller et al., 2001). Antibody, or
peptide-mediated blocking of the CXCR4 receptor decreased breast cancer cell invasiveness
in vitro and also the bulk of metastases in the MDA-MB-231 xenograft mouse model (Muller
et al., 2001;Liang et al., 2004;Lapteva et al., 2005). Smith et al. (2004) used stable RNAi to
reduce expression of CXCR4 in murine 4T1 cells, a highly metastatic mammary cancer cell
line that is a model for advanced human breast cancer. The knockdown of CXCR4 significantly
limited the growth of orthotopically transplanted breast cancer cells in all mice and even
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prevented primary tumor formation in some. Most importantly, all mice transplanted with
CXCR4 RNAi cells survived without developing macroscopic metastases (Smith et al.,
2004). Recent studies have also identified a role for CXCL12 as a proliferation factor for breast
tumor cells and in recruiting progenitor endothelial cells required for angiogenesis (Orimo et
al., 2005). CXCR4 expression is also a prognostic marker in various types of cancer, including
breast carcinoma. In a recent histological study of over 2000 breast carcinoma cases, CXCR4
was found to be expressed in the majority of cancers, and cytoplasmic expression was
associated with parameters of tumor aggression, including grade and lymph node status, and
had prognostic value (Salvucci et al., 2006). G protein-coupled receptors are considered among
the most desirable targets for drug development (Li et al., 2005), thus, CXCR4 antagonists
may become effective agents for the treatment of various malignancies.

CCN family
The connective tissue growth factor gene (CTGF) was present in three signatures, and the
closely related CYR61 gene was present in two signatures. These genes encode proteins that
belong to the CCN family of secreted regulatory factors involved in angiogenesis,
chondrogenesis, and wound healing (Brigstock, 1999; Perbal, 2004). CTGF and CYR61 also
promote endothelial cell growth, migration, adhesion, and survival in vitro, and many of these
actions are mediated at least partly through interactions with integrins (Lau and Lam, 1999).
The proangiogenic activity of CTGF and CYR61 supports a role in the establishment and
functioning of the vasculature in metastasis. Recent studies have revealed an influence of CTGF
in osteolytic bone metastases and its expression shown to be regulated by PTHrP (Shimo et
al., 2006). In a large immunochemical study of human breast tumor specimens, high levels of
CYR61, but low levels of CTGF were associated with poor prognosis and meta-static disease
(Jiang et al., 2004). Interestingly, both genes are transcriptionally regulated by TGFβ (Bartholin
et al., 2007), a multifunctional growth factor, which is thought to promote breast tumor
metastasis and invasiveness (Beisner et al., 2006).

ARHGD1B
Another gene that was present in three metastasis signatures was the Rho GDP dissociation
inhibitor (GDI) beta (ARHGD1B) gene, a member of the Rho GDI family which are major
regulators of Rho GTPases. Evidence for the influence of Rho GTPase signaling in tumor
metastasis is growing. The expression of the RhoC molecule was identified as being correlated
with metastatic propensity in an increasingly metastatic series of the melanoma A375 cell line
and the Rho-GTPases, RhoGD12 and Rac1, have been associated with aggressive phenotypes
in experimental metastasis assays when testing bladder and breast cell line models respectively
(Bourguignon et al., 2000; Seraj et al., 2000). In our own work, restoration of one of these
GTPases, deleted in liver cancer-1 (DLC-1), in metastatic M4A4 cells resulted in the inhibition
of migration and invasion in vitro and a significant reduction in the ability of these cells to
form pulmonary metastases in athymic mice. Although RhoGDIs are known to inhibit Rho
activities, recent studies indicate that RhoGDIs can also act as positive regulators through their
ability to target Rho GTPases to specific sub-cellular membranes or to protect the GTPases
from degradation by caspases. This dual role makes them promising cellular targets for novel
anticancer drugs (Fritz and Kaina, 2006).

While the signatures obtained from different microarray platforms might reveal different gene
sets, they may be reporting related biological processes. Annotation of the 47 signature intersect
genes using GenMapp (http://www.genmapp.org/) and KEGG (http://www.genome.jp/kegg/)
pathway information summaries (Doniger et al., 2003; Kanehisa et al., 2006) revealed only
one significant grouping. Three genes (FN1, LAMB1 and COL1A1) belong to the inflammatory
response pathway. This finding perhaps reinforces the concept that gene expression programs
related to normal physiological responses, as described above with respect to wound healing,
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may confer an increased risk of metastasis (Chang et al., 2004). Investigation of potential
interaction between the gene products of the 47 signature intersect genes was queried using
the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database
(http://string.embl.de/) (von Mering et al., 2005). Evidence for protein associations derived
from experimental data and from the mining of databases and the literature was sought using
the Protein Mode for maximum specificity. With the exception of C14orf139, DTL, and
MLF1IP genes, and the pseudogene ANXA2P1, all gene products had annotations in the
STRING database. Without entering into the detailed specific interactions here, it is worth
noting that the analysis revealed that the transcription factor Sp1 may be a unifying factor for
many of the proteins present in the signature intersect list. Sp1 was present in the node that
connected a group that included CTGF, CYR61, MMP1, and several collagens with the
chemokines CXCR4 and CXCL1. Sp1 protein expression is known to be elevated in breast
carcinomas (Zannetti et al., 2000), and several studies show that Sp1 transcriptionally regulates
many genes previously implicated in cancer progression, including VEGF (Ryuto et al.,
1996; Abdelrahim et al., 2004), CCND1, FOS, and the anti-apoptosis BCL2 gene (Safe and
Abdelrahim, 2005). Furthermore, Sp proteins have been shown to regulate the expression of
TGFβ receptors (Ji et al., 1997; Jennings et al., 2001) and thus will impact TGFβ signaling,
which in turn regulates the CCN proteins discussed above. While additional research is required
to determine direct linkages between the expression of Sp1 and its downstream factors in
various tumor types, as a protein high in the regulatory hierarchy, Sp1 may be an important
prognostic factor and therapeutic target for metastatic disease. If a comparison of the intersect
of just the nine signatures described in this review can implicate some common themes, a
comprehensive meta-analysis of all available, unprocessed, metastasis-associated gene
expression microarray data with more of a focus on biochemical and signaling pathways than
gene identities may reveal much about the mechanisms of metastatic efficiency.

Future directions
Genes revealed in analysis of multiple models, and those that are part of any overlap between
models and tissue-based studies, will be a logical focus for functional investigation. As
described above, relevant models for such investigations do exist, but it would be beneficial
to develop more such models in order to identify those genes and pathways that are implicated
across a number of platforms and are thus likely to be pivotal to metastatic efficiency. Likewise,
more tissue-based studies are needed, both for discovery and validation of existing candidate
genes. As discussed above, little overlap between tissue-based studies has been evident to date,
presumably due to differences in tissue sources and processing and availability of consistent
clinical information. The initiation of large-scale consortia such as TransBig and PACT will
greatly facilitate this through standardization of all parameters. While there are economical
and ease-of-use reasons to reduce the number of genes in diagnostic and prognostic signatures
for routine clinical use, global gene expression profiling can have more specific roles. For
example, based upon the expression of drug targets, and/or the expression of genes that
metabolize these drugs, gene expression profiling may guide adjuvant therapy for individuals.
Two studies that highlight this approach have reported an association in breast cancer patients
between gene expression signatures and drug sensitivity to docetaxel or to a combination
regimen containing paclitaxel, fluorouracil, doxorubicin and cyclophosphamide (Brown et al.,
2004; Villeneuve et al., 2006). This use of gene expression profiling is likely to have a more
rapid role in tailoring individual patient treatment.

Prognostic signatures gleaned from gene expression data alone have been achieved through
normalized microarray data comparison across literally hundreds of specimens. However, the
heterogeneity of breast cancer as a disease, a fact confirmed by gene expression studies, plus
the variation in patient genetic background makes the goal of predicting the outcome for an
individual patient far from achievable at this stage. One way to improve upon this situation is
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to further stratify patients using clinical measures and current understanding of disease
pathology. For example, the expression of the estrogen receptor (ER) and/or the Her2-neu gene
at diagnosis is currently used to subdivide patients. ER and Her2-neu expression have a marked
influence on the expression of many of the genes associated with breast cancer, and are thought
to have an important impact on survival and are used as independent prognostic factors (Hu et
al., 2006; Nicolini et al., 2006). Investigators have begun to use clinical parameters to subdivide
patients in order to further refine the prognostic classifiers for specific circumstances. For
example, by combining expression data with ER status and age as clinical variables, Dai et al.
(2005) identified a subgroup of patients in which a set of proliferation-associated genes was a
strong predictor of poor outcome and occurrence of metastasis.

The majority of expression studies to date have attempted to develop genetic marker-based
prognostic systems that might replace the existing clinical criteria, rather than incorporating
the valuable clinical information contained in established clinical markers. Given the
complexity of breast cancer prognosis, a more promising strategy may be to combine both
clinical and genetic marker information that may be complementary (Brenton et al., 2005).
Along these lines, Pittman et al. (2004) have described a comprehensive modeling approach
based on statistical classification tree models that evaluate the contributions of multiple forms
of data, both clinical and genomic, in order to define multiple risk factors that associate with
clinical outcome. A study of primary breast cancer recurrence demonstrated that models using
‘metagenes’ derived from microarray expression data combined with traditional clinical risk
factors improved the accuracy of prediction on an individual basis over genomic or clinical
data alone (Pittman et al., 2004). Furthermore, we have recently performed a computational
study using the Dutch 70-gene prognosis signature and associated clinical information. The
recently proposed I-RELIEF algorithm was used to identify a ‘hybrid signature’ through the
combination of both genetic and clinical markers. The hybrid signature performed significantly
better, with respect to specificity and odds-ratio, than the 70-gene signature, clinical markers
alone and the St Gallen and NIH consensus criteria (Sun et al., 2007).

One of the major differences between gene expression-profile studies performed to date is in
data processing. The advent of microarray technology has spawned a whole new field of
bioinformatics which has the common goal of optimizing the accuracy and the applicability of
the information gleaned from the wealth of data now available, but individual studies have
often used quite different approaches which do not always facilitate inter-study comparisons.
A number of groups have tackled this by designing algorithms that enable meta-analysis of
publicly available data, including analysis across multiple array platforms (Bammler et al.,
2005; Rhodes et al., 2005; Segal et al., 2005). These analyses seek to not only identify inter-
study overlap but also to identify multidimensional interaction networks which in turn may
implicate molecular hierarchies and regulatory mechanisms involved in cancer gene
expression. Rhodes et al. (2004) analyzed compiled multiple data sets from some 3,700 cancer
samples and developed an analytical strategy to assess the intersection between profiles. This
approach identified components of transcriptional profiles which are similar across many
cancer types, including breast. Specific to breast cancer, Shen et al. (2004) applied a Bayesian
modeling strategy to analyze four independent microarray studies to derive a ‘meta-signature’
associated with breast cancer prognosis. The meta-signature had better prognostic performance
than any of the classifiers of survival in each study, and which had minimal overlap with each
other. These studies reveal that there are many legitimate ways to analyze array data sets, and
it is hoped that the formation of consortia to monitor large-scale tissue-based studies will
employ a standardized arsenal of bioinformatic and statistical analyses. Ongoing computational
developments that enable inter-study comparison and the incorporation of distinct forms of
data, including genomic and clinical data, will provide platforms for the refinement of cancer-
related gene signatures and lead to more economical and accurate prognostic systems that may
facilitate personalized patient evaluation and treatment decisions. These integrated analyses
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also have the potential to highlight pivotal genes and pathways that are likely part of the
biological driving force of metastasis.

Another way to significantly improve the quality of data resulting from tissue profile analyses
is to provide more accurate histopathological details of each sample upfront. Concordance
between two pathologists has been investigated and found to range from 50% to 85% (Robbins
et al., 1995), and inaccuracy in sample evaluation may account for considerable error when
array data is obtained from partial tissue specimens and subsequently related to parameters
such as disease staging and histological grade. Furthermore, solid tumors are complex entities
composed of malignant cells mixed and interacting with nonmalignant cells such as normal or
benign epithelia, stromal counterparts and lymphocytic infiltrate. Thus, molecular analyses by
standard gene expression profiling are limited when tissues are crudely homogenized causing
loss of information on non-tumor cell types in sample preparation. Gene expression differences
derived from such tumor samples may primarily reflect varying proportions of the non-
neoplastic tumor components. In order to try to overcome these limitations we have previously
employed a regression-based informatics approach for the identification of cell-type-specific
patterns of gene expression in prostate cancer (Stuart et al., 2004). Through intense histological
evaluation, we scored 88 prostate specimens for relative content of neoplastic and non-
neoplastic components. The proportions of these cell types were then linked in silico to gene
expression levels determined by microarray analysis, revealing unique cell-specific profiles.
Gene expression differences for malignant and nonmalignant epithelial cells could be identified
without being confounded by contributions from stroma that dominate many samples.
Validation of selected cell-specific expression patterns confirmed that this analysis allowed
segregation of molecular markers into more discrete and informative groups. This investigative
approach is applicable to tumor marker discovery in any solid tumor and is an example of how
more detailed evaluation of the tissue specimen can further refine expression profile data.

Another way to separate the cells of a complex tissue from each other is through
microdissection. This technique has most often been used to evaluate only several genes per
sample (Wang-Rodriguez et al., 2003), but the advent of semi-automated, laser capture
microdissection (LCM) systems now makes it feasible to use this procedure to obtain enough
material for microarray analysis (Nishidate et al., 2004; Dahl et al., 2006; Schuetz et al.,
2006; Yang et al., 2006). The combination of laser microdissection and gene expression
profiling has been used to explore the gene expression changes that are associated with the
early stages of breast cancer progression and ER-regulated genes (Ma et al., 2003; Yang et al.,
2006). In a study by Dahl et al. the investigation of matched pairs of invasive ductal breast
cancer and corresponding benign breast tissue by LCM and cDNA array profiling ultimately
led to the identification of karyopherin alpha2 (KPNA2) expression as being associated with
shorter overall survival and recurrence-free survival (Dahl et al., 2006).

Finally, it has to be stated that genomic approaches are unlikely to be adequate as a sole
prognostic and predictive platform in breast cancer. Most transcriptome array analyses
implicitly treat mRNA expression as a surrogate for protein activity level, an assumption that
does not account for processes such as mRNA stability, protein degradation and post-
translational modifications. The key proteins driving tumor progression may very well undergo
abnormal post-translational modifications. While the animal models of metastasis described
above lend themselves to proteomic analysis (Kreunin et al., 2004), proteomic analysis of
complex tumor tissues is far more difficult. Proteomic techniques are far more limited with
respect to high-throughput screening platforms. Current techniques cannot yet achieve high
proteome coverage rates and they need large amounts of material given that there is no method
for amplification. Due to the vastly superior gene screening advantages of microarrays, it is
logical that transcriptome data should guide proteomics, for example, validation of array data
should be performed at the protein level wherever possible.
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