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The hetero-Diels-Alder reaction is one of the most useful reactions in organic chemistry
because multi functionalized compounds can be constructed in a single step.1 The catalytic
enantioselective version of this process has attracted much attention in modern organic
chemistry. We recently reported the catalytic highly enantioselective nitroso hetero-Diels-
Alder reaction using nitroso-pyridine as a dienophile in the presence of a chiral copper catalyst.
2 Encouraged by this success, we focused on hetero-Diels-Alder reaction using a 2-azopyridine
derivative since this reaction with azo compounds (azo hetero-Diels-Alder reaction) produces
1,4-diamines.3 These structural motifs are important building blocks as well as 1,4-amino
alcohols. For example, these structures are found in pharmaceutically important compounds
such as HIV protease inhibitors.4 Diastereoselective azo hetero-Diels-Alder reactions using a
chiral auxiliary have been developed,5 however, despite several efforts toward an
enantioselective version of this process,6 there are no reports of a catalytic highly
enantioselective azo hetero-Diels-Alder reaction. We herein report the catalytic highly regio-
and enantioselective azo hetero-Diels-Alder reaction (Scheme 1).

2-Azopyridine (1) was prepared in two steps from commercially available 2-
hydrazinopyridine.7 On the basis of our previous results, we chose for initial investigations
the hetero- Diels-Alder reaction of acyclic silyloxydiene 2a with (R)-BINAP and
CuPF6(CH3CN)4 catalyst.2, 8 Unfortunately, we were unable to observe any chiral induction.
Thus, several metal catalysts were surveyed9 and we found that the combination of AgOTf
and (R)-BINAP in THF produced adduct 3a with 55% ee. Encouraged by this result, various
ligands and solvents were tested (Table 1). The use of (R)-BINAP as a ligand and CH3CN or
EtCN as a solvent gave 3a with 94% ee (Table 1, entries 5 and 6). EtCN was selected as a
solvent to obtain high reproducibility. Next, the ratio of (R)-BINAP and AgOTf was checked
since we previously had observed that three types of Ag-BINAP complex were formed in THF.
10 The 2:1 ratio of AgOTf and (R)-BINAP was found to be optimal, producing an adduct 3a
with >99% ee. It should be noted that decreased enantioselectivity was observed by chiral
biphosphine ligands with narrow dihedral angles (entries 7 and 8) which are expected to
generate a 1:1 complex of Ag-ligand preferentially.

Having an optimized condition in hand, the applicability of this reaction was studied for the
functionalized silyloxydienes 2b–2j.11 All of the reactions proceeded in high yields and
enantio-selectivities, with complete regio- and diastereoselectivities.

The dialkyl-substituted dienes generally gave high enantio-selectivites (Table 2, entries 1, 2
and 5). Silyloxydiene 2c with a sterically hindered substituent afforded 3c with slightly
decreased enantioselectivity. Lewis basic substituents such as ester, ether, protected alcohols,
and protected amine (Table 2, entries 4 and 6–8) were also used in the reaction and produced
highly functionalized products enantioselectively. Silyloxydiene 2j having 2-furyl group gave
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an adduct 3j with high regio- and enantioselectivity (Table 2, entry 10). Meanwhile, the
enantio-selectivity of reaction using silyloxydiene 2k with phenyl group was decreased
dramatically (Table 2, entry 11).

The products can be cleanly converted into the corresponding diamino alcohols. For example,
deprotection of TIPS group of 3a with TBAF/AcOH12 followed by reduction and protection
of the resulting alcohol gave 4a as a single diastereomer. Removal of the pyridine ring was
cleanly achieved by the known procedure,2c) accompanied by the conversion of 2,2,2-
trichloroethoxycarbonyl group to methoxycarbonyl group. The resulting amine was protected
with trifluoroacetyl group to afford 5a. To cleave N-N bond of 5a, 5a was treated with SmI2
to give 6a in 71% yield (Scheme 2).13 Thus, two amino groups are differentiated for further
transformation.

The absolute and relative configurations of azo hetero-Diels-Alder adducts were assigned by
X-ray crystallographic analysis. Deprotection of Troc and TIPS groups followed by reduction
afforded 7a as a single diastereomer. Subsequently, 7a was converted into 4-bromobenzoate
derivative 8a which was crystallized from Et2O (Scheme 3, Supporting information).

In summary, we have developed highly regio-, diastereo-, and enantioselective azo hetero-
Diels-Alder reaction using 2-azo-pyridine (1) and silver(I)-BINAP 2:1-catalyst. This catalytic
process could be one of the effective synthetic routes to a number of chiral 1,4-diamines which
are pharmaceutically important compounds. Further studies of the detailed mechanism of the
reaction and synthetic applications are currently underway in our laboratory.
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Scheme 1.
Azo hetero-Diels-Alder Reaction
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Scheme 2. Conversion to Protected Diamino Alcohola
a(a) (i) TBAF, AcOH, (ii) NaBH4, (iii) TIPSOTf, NEt3, 65% (3 steps); (b) (i) MeOTf (ii) NaOH,
(iii) TFAA, NEt3, 71% (3 steps); (c) SmI2, MeOH, 71%.
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Scheme 3. Determination of Absolute Stereochemistrya
a(a) (i) Zn, AcOH, (ii) TBAF, AcOH, (iii) NaBH4, 53% (3 steps).
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Table 1
Optimization of Reaction Conditions

entry ligand solvent yield (%) ee (%)b

1 (R)-BINAP (10 mmol%) THF 73 55
2 (R)-BINAP (10 mol%) Et2O 74 56
3 (R)-BINAP (10 mol%) toluene 63 67
4 (R)-BINAP (10 mol%) CH2Cl2 72 80
5a (R)-BINAP (10 mol%) CH3CN 61 94
6 (R)-BINAP (10 mol%) EtCN 62 94
7 (R)-Difluorophos (10 mol%) EtCN 76 30
8 (R)-Segphos (10 mol%) EtCN 71 20
9 (R)-BINAP (5 mol%) EtCN 87 >99
10 (R)-BINAP (20 mol%) EtCN 26 0

a
Reaction was conducted at −40 °C.

b
ee value was determined by HPLC (Supporting Information).
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