

NIH Public Access

Author Manuscript

JAm Chem Soc. Author manuscript; available in PMC 2008 September 22.

Published in final edited form as:

J Am Chem Soc. 2006 December 27; 128(51): 16482–16483. doi:10.1021/ja066726y.

Catalytic Enantioselective Hetero-Diels-Alder Reactions of an Azo Compound

Masanori Kawasaki and Hisashi Yamamoto^{*}

Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637

The hetero-Diels-Alder reaction is one of the most useful reactions in organic chemistry because multi functionalized compounds can be constructed in a single step.¹ The catalytic enantioselective version of this process has attracted much attention in modern organic chemistry. We recently reported the catalytic highly enantioselective nitroso hetero-Diels-Alder reaction using nitroso-pyridine as a dienophile in the presence of a chiral copper catalyst. ² Encouraged by this success, we focused on hetero-Diels-Alder reaction using a 2-azopyridine derivative since this reaction with azo compounds (azo hetero-Diels-Alder reaction) produces 1,4-diamines.³ These structural motifs are important building blocks as well as 1,4-amino alcohols. For example, these structures are found in pharmaceutically important compounds such as HIV protease inhibitors.⁴ Diastereoselective azo hetero-Diels-Alder reactions using a chiral auxiliary have been developed,⁵ however, despite several efforts toward an enantioselective azo hetero-Diels-Alder reaction. We herein report the catalytic highly regio-and enantioselective azo hetero-Diels-Alder reaction (Scheme 1).

2-Azopyridine (1) was prepared in two steps from commercially available 2hydrazinopyridine.⁷ On the basis of our previous results, we chose for initial investigations the hetero- Diels-Alder reaction of acyclic silyloxydiene **2a** with (*R*)-BINAP and $CuPF_6(CH_3CN)_4$ catalyst.^{2, 8} Unfortunately, we were unable to observe any chiral induction. Thus, several metal catalysts were surveyed⁹ and we found that the combination of AgOTf and (*R*)-BINAP in THF produced adduct **3a** with 55% ee. Encouraged by this result, various ligands and solvents were tested (Table 1). The use of (*R*)-BINAP as a ligand and CH₃CN or EtCN as a solvent gave **3a** with 94% ee (Table 1, entries 5 and 6). EtCN was selected as a solvent to obtain high reproducibility. Next, the ratio of (*R*)-BINAP and AgOTf was checked since we previously had observed that three types of Ag-BINAP complex were formed in THF. ¹⁰ The 2:1 ratio of AgOTf and (*R*)-BINAP was found to be optimal, producing an adduct **3a** with >99% ee. It should be noted that decreased enantioselectivity was observed by chiral biphosphine ligands with narrow dihedral angles (entries 7 and 8) which are expected to generate a 1:1 complex of Ag-ligand preferentially.

Having an optimized condition in hand, the applicability of this reaction was studied for the functionalized silyloxydienes 2b-2j.¹¹ All of the reactions proceeded in high yields and enantio-selectivities, with complete regio- and diastereoselectivities.

The dialkyl-substituted dienes generally gave high enantio-selectivites (Table 2, entries 1, 2 and 5). Silyloxydiene **2c** with a sterically hindered substituent afforded **3c** with slightly decreased enantioselectivity. Lewis basic substituents such as ester, ether, protected alcohols, and protected amine (Table 2, entries 4 and 6–8) were also used in the reaction and produced highly functionalized products enantioselectively. Silyloxydiene **2j** having 2-furyl group gave

E-mail: yamamoto@uchicago.edu.

an adduct **3j** with high regio- and enantioselectivity (Table 2, entry 10). Meanwhile, the enantio-selectivity of reaction using silyloxydiene **2k** with phenyl group was decreased dramatically (Table 2, entry 11).

The products can be cleanly converted into the corresponding diamino alcohols. For example, deprotection of TIPS group of **3a** with TBAF/AcOH¹² followed by reduction and protection of the resulting alcohol gave **4a** as a single diastereomer. Removal of the pyridine ring was cleanly achieved by the known procedure,^{2c}) accompanied by the conversion of 2,2,2-trichloroethoxycarbonyl group to methoxycarbonyl group. The resulting amine was protected with trifluoroacetyl group to afford **5a**. To cleave N-N bond of **5a**, **5a** was treated with SmI₂ to give **6a** in 71% yield (Scheme 2).¹³ Thus, two amino groups are differentiated for further transformation.

The absolute and relative configurations of azo hetero-Diels-Alder adducts were assigned by X-ray crystallographic analysis. Deprotection of Troc and TIPS groups followed by reduction afforded **7a** as a single diastereomer. Subsequently, **7a** was converted into 4-bromobenzoate derivative **8a** which was crystallized from Et₂O (Scheme 3, Supporting information).

In summary, we have developed highly regio-, diastereo-, and enantioselective azo hetero-Diels-Alder reaction using 2-azo-pyridine (1) and silver(I)-BINAP 2:1-catalyst. This catalytic process could be one of the effective synthetic routes to a number of chiral 1,4-diamines which are pharmaceutically important compounds. Further studies of the detailed mechanism of the reaction and synthetic applications are currently underway in our laboratory.

Supplementary Material

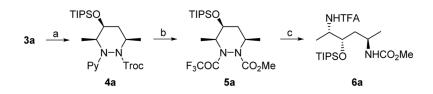
Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Support of this research was provided by National Institutes of Health (NIH) Grant No. GM068433-01 and Merck Research Laboratories. We thank Dr. Ian M. Steel for X-ray crystallographic analysis.

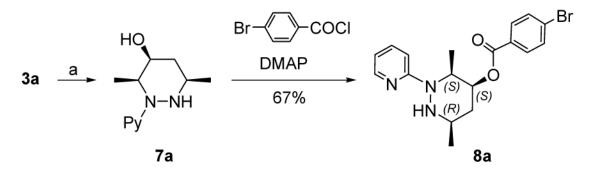
References

- 1. For a general review of hetero-Diels-Alder reactions, see: (a)FringuelliFTaticchiAThe Diels-Alder Reaction: Selected Practical MethodsJohn Wiley & Sons2002(b)
 - KobayashiSJørgensenKACycloaddition Reactions in Organic SynthesisWiley-VCHWeinheim20021509(c)JacobsenENPfaltzAYamamotoHComprehensive Asymmetric Catalysis IIISpringerBerlin1999123254 (d) Gouverneur V, Reiter M. Chem Eur J 2005;11:5806. (e) Jørgensen KA. Angew Chem Int Ed 2000;39:3558. (f) Tietze LF, Kettschau G. Top Curr Chem 1997;189:1.
- 2. (a) Yamamoto Y, Yamamoto H. Eur J Org Chem 2006:2031. (b) Yamamoto Y, Yamamoto H. Angew Chem Int Ed 2005;44:7082. Angew Chem 2005;117:7244. (c) Yamamoto Y, Yamamoto H. J Am Chem Soc 2004;126:4128. [PubMed: 15053601]
- (a) Chowdari NS, Ahmad M, Albertshofer K, Tanaka F, Barbas CF III. Org Lett 2006;8:2839. [PubMed: 16774270] (b) Reetz MT. Chem Rev 1999;99:1121. [PubMed: 11749442] (c) Patel M, Kaltenbach RF III, Nugiel DA, McHugh RJ Jr, Jadhav PK, Bacheler LT, Cordova BC, Klabe RM, Erickson -VS, Garber S, Reid C, Seitz SP. Bioorg Med Chem Lett 1998;8:1077. [PubMed: 9871711] (d) Reedijk J. Chem Commun 1996:801. (e) Konradi AW, Pedersen SF. J Org Chem 1992;57:28. (f) Cummins CC, Beachy MD, Schrock RR, Vale MG, Sankaran V, Cohen RE. Chem Mater 1991;3:1153.
- 4. (a) Izawa K, Onishi T. Chem Rev 2006;106:2811. [PubMed: 16836300] (b) Specker E, Böttcher J, Brass S, Heine A, Lilie H, Schoop A, Müller G, Griebenow N, Klebe G. Chem Med Chem 2006;1:106. [PubMed: 16892342] (c) Engstrom K, Henry R, Hollis LS, Kotecki B, Marsden I, Pu Y-M, Wagaw S, Wang W. J Org Chem 2006;71:5369. [PubMed: 16808529] (d) Yeung CM, Klein LL, Flentge CA, Randolph JT, Zhao C, Sun M, Dekhtyar T, Stoll VS, Kempf DJ. Bioorg Med Chem Lett 2005;15:2275.


[PubMed: 15837308] (e) Ikunaka M. Chem Eur J 2003;9:378. (f) Abdel RHM, Al KGS, El KNA, Youssef AF, Kiso Y. Curr Med Chem 2002;9:1905. [PubMed: 12369875] (g) Ghosh AK, Bilcer G, Schiltz G. Synthesis 2001:2203. (h) Kempf DJ, et al. J Med Chem 1998;41:602. [PubMed: 9484509] (i) Ettmayer P, Hübner M, Gstach H. Tetrahedron Lett 1994;35:3901. (j) Kempf DJ, Codacovi L, Wang XC, Kohlbrenner WE, Wideburg NE, Saldivar A, Vasavanonda S, Marsh KC, Bryant P, Sham HL, Green BE, Betebenner DA, Erickson J, Norbeck DW. J Med Chem 1993;36:320. [PubMed: 8426362]

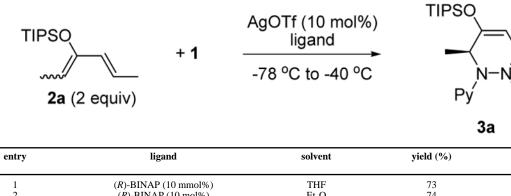
- (a) Robiette R, Cheboub BK, Peeters D, Marchand BJ. J Org Chem 2003;68:9809. [PubMed: 14656111] (b) Adam W, Bosio SG, Degen H-G, Krebs O, Stalke D, Schumacher D. Eur J Org Chem 2002:3944. (c) Urabe H, Kusaka K, Suzuki D, Sato F. Tetrahedron Lett 2002;43:285. (d) Zhang A, Kan Y, Jiang B. Tetrahedron 2001;57:2305. (e) Kaname M, Arakawa Y, Yoshifuji S. Tetrahedron Lett 2001;42:2713. (f) Dussault PH, Han Q, Sloss DG, Symonsbergen DJ. Tetrahedron 1999;55:11437. (g) Wyatt PB, Villalonga BC, Motevalli M. Tetrahedron Lett 1999;40:149. (h) Aspinall IH, Cowley PM, Mitchell G, Raynor CM, Stoodley RJ. J Chem Soc Perkin Trans 1 1999:2591. (i) Virgili M, Moyano A, Pericas MA, Riera A. Tetrahedron 1999;55:3959. (j) Aspinall IH, Cowley PM, Mitchell G, Stoodley RJ. J Chem Commun 1993:1179.
- Aburel PS, Zhuang W, Hazell RG, Jørgensen KA. Org Biomol Chem 2005;3:2344. [PubMed: 16010370]
- 7. Synthesis of similar compounds, see: Srinivasan V, Jebaratnam DJ, Budil DE. J Org Chem 1999;64:5644. [PubMed: 11674634]
- 8. The reaction of 2-triisopropylsilyloxy-1,3-cyclohexadiene with $\text{CuPF}_6(\text{CH}_3\text{CN})_4$ and (*R*)-BINAP gave the corresponding adduct with >99% ee. The origin of this result is being investigated in our laboratory.
- 9. Reactions using the following metal catalysts were checked on TLC; Al, B, Mg, Zn, Ti, Sc, Hf, Yb, Zr, In, La. None of them accelerated the reaction.
- 10. Momiyama N, Yamamoto H. J Am Chem Soc 2004;126:5360. [PubMed: 15113198]
- Synthesis of silyloxydienes, see: (a) Nakashima D, Yamamoto H. J Am Chem Soc 2006;128:9626. [PubMed: 16866505] (b) Yamamoto Y, Yamamoto H. Angew Chem Int Ed 2005;44:7082.
- 12. Excess amount of AcOH was necessary to avoid epimerization of methyl group via retro-Michael reaction.
- SmI₂ mediated cleavage of N-N bond with trifluoroacetyl group, see: (a) Chowdari NS, Barbas CF III. Org Lett 2005;7:867. [PubMed: 15727461] (b) Ding H, Friestad GK. Org Lett 2004;6:637. [PubMed: 14961642]

Kawasaki and Yamamoto


Scheme 1. Azo hetero-Diels-Alder Reaction

Kawasaki and Yamamoto

Scheme 2. Conversion to Protected Diamino Alcohol^{*a*} ^{*a*}(a) (i) TBAF, AcOH, (ii) NaBH₄, (iii) TIPSOTf, NEt₃, 65% (3 steps); (b) (i) MeOTf (ii) NaOH, (iii) TFAA, NEt₃, 71% (3 steps); (c) SmI₂, MeOH, 71%.


Kawasaki and Yamamoto

Scheme 3. Determination of Absolute Stereochemistry^{*a*} ^{*a*}(a) (i) Zn, AcOH, (ii) TBAF, AcOH, (iii) NaBH₄, 53% (3 steps).

Optimization of Reaction Conditions

(R)-BINAP (10 mmol%)	THF	73	55
(<i>R</i>)-BINAP (10 mol%)	Et ₂ O	74	56
(R)-BINAP (10 mol%)	toluene	63	67
(R)-BINAP (10 mol%)	CH ₂ Cl ₂	72	80
(R)-BINAP (10 mol%)	CH ₃ CN	61	94
(R)-BINAP (10 mol%)	EtCN	62	94
(R)-Difluorophos (10 mol%)	EtCN	76	30
(R)-Segphos (10 mol%)	EtCN	71	20
(R)-BINAP (5 mol%)	EtCN	87	>99
(<i>R</i>)-BINAP (20 mol%)	EtCN	26	0
	 (<i>R</i>)-BINAP (10 mol%) (<i>R</i>)-BINAP (10 mol%) (<i>R</i>)-BINAP (10 mol%) (<i>R</i>)-BINAP (10 mol%) (<i>R</i>)-Difluorophos (10 mol%) (<i>R</i>)-Segphos (10 mol%) (<i>R</i>)-BINAP (5 mol%) 	$ \begin{array}{ccc} (\hat{R}) - \text{BINAP} (10 \text{ mol}\%) & \text{Et}_2 \text{O} \\ (\hat{R}) - \text{BINAP} (10 \text{ mol}\%) & \text{toluene} \\ (\hat{R}) - \text{BINAP} (10 \text{ mol}\%) & \text{CH}_2 \text{Cl}_2 \\ (\hat{R}) - \text{BINAP} (10 \text{ mol}\%) & \text{CH}_3 \text{CN} \\ (\hat{R}) - \text{BINAP} (10 \text{ mol}\%) & \text{EtCN} \\ (\hat{R}) - \text{Difluorophos} (10 \text{ mol}\%) & \text{EtCN} \\ (\hat{R}) - \text{Segphos} (10 \text{ mol}\%) & \text{EtCN} \\ (\hat{R}) - \text{BINAP} (5 \text{ mol}\%) & \text{EtCN} \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*a*}Reaction was conducted at –40 °C.

 $\overset{b}{}_{\rm ee}$ value was determined by HPLC (Supporting Information).

Troc

ee (%)^b

	TIPSO	T H	AgOTf (10 mol%) (<i>R</i>)-BINAP (5 mol%)	DIPSO	
	R ¹ w	2 K	EtCN, -78 °C to -40 °C	Py Troc 3a-3k	
entry	diene	R ¹	R ²	yield (%)	ee (%)
-	2a	Me	Me	87	66<
2	2b	Me	$n-C_5H_{11}$	84	95
3	2c	Me	<i>i</i> -Pr	65	84
4	2d	Me	$CH_2CH_2CH_2CO_2Me$	74	98
5	2e	Bn	Me	74	92
9	2f	4-MOMO-Bn	Me	85	90
7	$^{2\mathrm{g}}$	$CH_2CH_2CH_2OTBS$	<i>i</i> -Bu	82	95
8	2h	CH ₂ CH ₂ CH ₂ OTBS	CH_2OBn	84	98
6	2i	CH2CH2CH2NNsBoc	<i>i</i> -Bu	77	98
10	2j	Me	2-Furyl	78	92
11 ^c	2k	Me	Ph	70	55

^aReaction was conducted with AgOTf (10 mol%), (R)-BINAP (5 mol%), azopyridine (1 equiv), and silyloxydiene (2 equiv) under Ar at -78 °C and gradually warmed to -40 °C over 3 h.

 \boldsymbol{b} ee value was determined by HPLC (Supporting Information).

J Am Chem Soc. Author manuscript; available in PMC 2008 September 22.

 $^{\rm C}20$ mol% of AgOTf and 10 mol% (R)-BINAP were used.