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Many cyanobacterial strains are able to grow at a pH range from neutral to pH 10 or 11. Such alkaline
conditions favor cyanobacterial growth (e.g., bloom formation), and cyanobacteria must have developed
strategies to adjust to changes in CO2 concentration and ion availability. Synechocystis sp. strain PCC 6803
exhibits similar photoautotrophic growth characteristics at pH 10 and pH 7.5, and we examined global gene
expression following transfer from pH 7.5 to pH 10 to determine cellular adaptations at an elevated pH. The
strategies used to develop homeostasis at alkaline pH had elements similar to those of many bacteria, as well
as components unique to phototrophic microbes. Some of the response mechanisms previously identified in
other bacteria included upregulation of Na�/H� antiporters, deaminases, and ATP synthase. In addition,
upregulated genes encoded transporters with the potential to contribute to osmotic, pH, and ion homeostasis
(e.g., a water channel protein, a large-conductance mechanosensitive channel, a putative anion efflux trans-
porter, a hexose/proton symporter, and ABC transporters of unidentified substrates). Transcriptional changes
specific to photosynthetic microbes involved NADH dehydrogenases and CO2 fixation. The pH transition
altered the CO2/HCO3

� ratio within the cell, and the upregulation of three inducible bicarbonate transporters
(BCT1, SbtA, and NDH-1S) likely reflected a response to this perturbed ratio. Consistent with this was
increased transcript abundance of genes encoding carboxysome structural proteins and carbonic anhydrase.
Interestingly, the transition to pH 10 resulted in increased abundance of transcripts of photosystem II genes
encoding extrinsic and low-molecular-weight polypeptides, although there was little change in photosystem I
gene transcripts.

Cyanobacteria are among the most alkaliphilic microbes,
and they frequently dominate alkaline environments, such as
soda lakes and microbial mats (30, 36). In addition to pH, key
parameters that include nutrient availability and temperature
influence the population composition of phytoplankton com-
munities (18). However, cyanobacterial bloom formation is
usually accompanied by an elevated pH that results from in-
creased photosynthesis that depletes CO2. Many cyanobacte-
rial strains are alkali tolerant and grow at pHs ranging from
neutral to 10 to 11, so that cyanobacteria both generate and
thrive in alkaline conditions. There have been numerous re-
ports of habitats where photosynthetic rates are high (such as
shallow lakes), pH values exceed pH 10, and cyanobacteria
become the major phytoplankton species (7, 27). Such popu-
lations of cyanobacteria are frequently associated with the pro-
duction of a range of secondary metabolites, including nui-
sance and toxic compounds (5). This has led to experiments
aimed at reducing cyanobacterial populations; e.g., it has been
established for a long time that adding carbon dioxide or acid
to lower the pH of lake samples can increase the abundance of
green algae relative to that of cyanobacteria (42).

One reason that cyanobacteria have an advantage over other
phytoplankton species at high pH is that the carbon-concen-

trating mechanism of cyanobacteria is better able to utilize
bicarbonate than the mechanism in green algae (21). It is
anticipated that cyanobacteria must employ additional mech-
anisms to maintain pH homeostasis in order to flourish at high
pH. Many nonphotosynthetic bacteria are able to survive or
grow at alkaline pH, and they respond to increased pH using a
variety of mechanisms to maintain homeostasis within the cell;
the best characterized of these strategies is the increased ex-
pression and activity of monovalent cation/proton antiporters
(33). These transmembrane proteins maintain the intracellular
pH through the uptake of protons, utilizing outward monova-
lent cation gradients. Multiple cation/proton antiporters have
been identified in cyanobacteria, and their involvement in pH
homeostasis has been suggested by gene knockout studies with
different strains exhibiting altered pH- and NaCl-sensitive phe-
notypes (3, 14, 57). Additional bacterial responses aimed at
regulating intracellular pH include elevated metabolic acid
production (via amino acid deaminases and sugar fermenta-
tion), increased ATP synthase activity (H� entry coupled to
ATP generation), and altered cell surface properties (33, 52).
However, the extent to which these strategies are employed
and their impact in different bacterial strains remain to be
determined.

Compared to other alkaliphilic bacteria, cyanobacteria
have two additional complexities, photosynthetic (thyla-
koid) membranes and the presence of ATP synthase in both
thylakoid and plasma membranes (43). Compartments
within the cell are maintained at different pHs, and the
thylakoid lumen has a pH that is �2 units lower than the pH
of the cytosol (2). Changes in the external pH have been
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shown to alter both the cytoplasmic and thylakoid lumen
pHs, with an increase in the external pH of 2 pH units
resulting in an increase of �0.2 pH unit (2, 40). Therefore,
growth of cyanobacteria in alkaline environments requires
maintenance of pH gradients across multiple membrane
systems, regulation of inorganic carbon uptake, and adjust-
ment to changes in the abundance of different ions.

We investigated the impact of a pH transition from pH 7.5
to pH 10 in Synechocystis sp. strain PCC 6803. This freshwater
cyanobacterium is a halo- and alkali-tolerant strain which ex-
hibits similar growth at pH 7.5 and pH 10 (8). Six genes have
been annotated as genes that encode sodium/proton antiport-
ers in Synechocystis sp. strain PCC 6803 (19). It is likely that
these proteins have overlapping functions, and this has made it
difficult to define their role in pH homeostasis (59). In addi-
tion, Synechocystis sp. strain PCC 6803 accumulates acetolac-
tate under alkaline conditions, and it has been suggested that
this is a mechanism for pH homeostasis (28).

The importance of external pH has been demonstrated in
Synechocystis sp. strain PCC 6803 by identification of a num-
ber of pH-sensitive photosystem II (PSII) mutants that are
able to grow photoautotrophically at pH 10 but not at pH
7.5 (8, 54). Each of these pH-sensitive strains contains two
mutations in PSII, including the absence of either the PsbO
or PsbV luminal protein. The cellular adaptations that occur
during changes in the external pH that make the differential
growth possible have not been identified. We examined
global gene expression in Synechocystis sp. strain PCC 6803
following a transition to high pH by establishing a time
course to identify genes that showed pH-dependent expres-
sion at 1 h (t1), 2 h (t2), and 6 h (t6) following transfer from
pH 7.5 to pH 10. This study revealed that the response of
Synechocystis sp. strain PCC 6803 to alkaline conditions was
cell-wide and included strategies typical of many bacteria, as
well as strategies specific to phototrophic microbes. The
levels of transcripts of a number of the components involved
in acclimation to alkaline pH in other bacteria, such as
monovalent cation/proton antiporters and ATP synthase,
were elevated at pH 10. We observed increased abundance
of transcripts of additional transporters with the potential to
contribute to osmotic, pH, and ion homeostasis. Changes
specific to photosynthesis included the upregulation of
genes encoding three bicarbonate transport systems, prob-
ably in response to a perturbed CO2/HCO3

� ratio within the
cell. Consistent with this was increased abundance of tran-
scripts of genes encoding carboxysome structural proteins
and carbonic anhydrase. The transcripts of a number of
genes encoding transcriptional regulators were differentially
regulated at pH 10. Furthermore, we observed that at an
elevated pH, the levels of transcripts of genes encoding PSII
extrinsic and low-molecular-weight polypeptides were in-
creased.

MATERIALS AND METHODS

Growth conditions. The glucose-tolerant organism Synechocystis sp. strain PCC
6803 (60) was grown at 30 � 2°C using cool white fluorescent light at an intensity of
�30 microeinsteins m�2 s�1 with shaking at 125 rpm in BG-11 medium (4). The pH
of the BG-11 medium was maintained by addition of either 25 mM HEPES (pH 7.5)
or 25 mM 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS) (pH 10) (8). The cell

densities of the cultures were determined by measuring the optical density at 750 nm
(OD750) as previously described (6, 29).

RNA isolation. Total RNA was extracted and purified using phenol-chloro-
form extraction and CsCl gradient purification as previously described (39, 48).

Microarray design and analysis. The microarray platform used and construc-
tion of this platform were described previously by Postier et al. (38), and the
cDNA labeling, prehybridization, and hybridization protocols were described in
detail by Singh et al. (47). The microarray experiment involved a loop design that
allowed comparison of Synechocystis sp. strain PCC 6803 at different time points
following a transition from pH 7.5 to pH 10 by using an analysis of variance
model (26, 47). Cells were grown in BG-11 medium at pH 7.5 until the OD750

was �0.2 (approximately 8 � 107 cells/ml) before they were harvested by cen-
trifugation (5,000 � g for 5 min) and transferred to pH 10 at an OD750 of �0.2.
Samples were collected immediately after transfer to pH 10 (t0) and at t1, t2, and
t6 after transfer.

Data acquisition and analysis were performed as described by Singh et al. (47);
this included an analysis of variance model approach to test the null hypothesis
that a particular gene’s expression level was not different over time, and a P value
was calculated. We used a false discovery rate (FDR) of 5% to control the
proportion of significant results that were type I errors (false rejection of the null
hypothesis) as described previously (55). Genes that had an FDR of 0.05 (cor-
responding to 5% expected false positives) and that exhibited a change of at least
1.5-fold were considered interesting and retained for further analysis. The P
values for these genes ranged from 6.0 � 10�3 to 1.4 � 10�13.

RESULTS AND DISCUSSION

Global transcriptional response to the transition from pH
7.5 to pH 10. Approximately 7, 12, and 10% of the chromo-
somal genes were differentially regulated at t1, t2, and t6
after transfer from pH 7.5 to pH 10, respectively. Genes
were divided into functional categories according to Cyano-
base (http://bacteria.kazusa.or.jp/cyanobase), and the num-
ber of differentially expressed genes in each category is
shown in Table 1. Excluding hypothetical and unknown
genes, photosynthesis and respiration was the category with
the largest number of differentially regulated genes follow-
ing transfer to pH 10, and these genes were almost all upregu-
lated. Other categories with elevated levels of transcripts after
transfer to pH 10 included proteins with regulatory functions and
transport and binding proteins (Table 1).

pH-independent gene expression. Genes that were upregu-
lated both after transfer from pH 7.5 to pH 10 and after
transfer from pH 10 to pH 7.5 were designated pH indepen-
dent and are listed separately from the pH 10-responsive data
set in Table 1. These genes were identified by combining data
from the microarray experiment examining transfer from pH
7.5 to pH 10 with data from a similar experiment examining the
transition from pH 10 to pH 7.5. There were 198 genes whose
transcription was found to change independent of the direction
of the pH transition, and �75% of these genes were upregu-
lated after transfer. Upregulated genes encoding ribosomal
proteins accounted for approximately one-quarter of the dif-
ferentially expressed genes. Other categories with differentially
expressed genes included photosynthesis and respiration, en-
ergy metabolism, and biosynthesis of cofactors, prosthetic
groups, and carriers (Table 2). Increased abundance of the
transcripts of a number of these genes, such as those encoding
ribosomal proteins and ATP synthase, has been associated
with favorable growth conditions, including light-versus-dark
transition and log-phase growth versus stationary-phase
growth (10, 53). However, the doubling times following the
transition from pH 7.5 to pH 10 and the transition from pH 10
to pH 7.5 remained �12 h (data not shown). Additional pH-
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independent transcriptional changes likely include mecha-
nisms to maintain cellular homeostasis and are discussed in
more detail below.

Photosynthesis and respiration. Cyanobacterial NADH de-
hydrogenase complexes (NDH-1) are composed of a multipro-
tein core (NDH-1M) and NdhD and NdhF subunits. Different
NdhD and NdhF subunits determine whether an NDH-1 com-
plex functions in cyclic electron transfer around PSI and respi-
ratory electron transfer or CO2 uptake (1). Genes encoding 7
of the 13 NDH-1M core proteins, including ndhD2,were up-
regulated at pH 10 (Table 3). The protein encoded by ndhD2
is hypothesized to associate with the NDH-1M core along with
NdhF1 to form the NDH-1L� complex, and gene knockout
studies indicated that this subunit is involved in PSI cyclic
electron transfer (32). The NdhD3 and NdhF3 subunits, to-
gether with the proteins designated CupA and CupS, associate
with NDH-1M to form a low-CO2-inducible transporter
(Sll1732 to Sll1735) (62). The operon consisting of sll1732 to
sll1735 was upregulated both after transfer to pH 10 and after
transfer to pH 7.5 (Table 2).

The transcript encoding a �-type carbonic anhydrase
(slr1347) was upregulated after transfer to pH 10 (Table 3).
This protein is located in the carboxysome, where it catalyzes
the conversion of HCO3

� to CO2 and both activates ribulose-
1,5-bisphosphate carboxylase/oxygenase (Rubisco) and com-
pensates for the low affinity of Rubisco for CO2 (21, 51). The
assembly and structural protein components of the carboxy-
some are encoded by the carbon-concentrating mechanism
(ccm) genes; the abundance of the transcripts was increased
after transfer to pH 10, and the abundance of many of them
was increased after transfer to pH 7.5 (Table 2).

The genes encoding the PSII extrinsic proteins PsbO,
PsbP, PsbQ, and PsbU were upregulated at pH 10. In addi-
tion, the genes encoding seven low-molecular-weight pro-
teins implicated in assembly or stability of PSII centers were
upregulated at pH 10 (44). These genes comprised the
psbEFLJ operon, whose genes encode the cytochrome b559 	
and � subunits, PsbL, and PsbJ, respectively, and the psbK,
psbM, and psbX genes. Increased abundance was observed
for the sll1414 transcript encoding the PSII-associated pro-
tein Psb29, which is thought to be involved in PSII biogen-
esis (22). There was no change in the abundance of tran-
scripts for the core proteins D1, D2, CP47, and CP43, and
the genes encoding these proteins were highly expressed at
both pH 7.5 and pH 10. This is consistent with the similar
oxygen evolution rates and PSII abundance observed at pH
10 and pH 7.5 (54).

ATP synthase genes were upregulated after transfer to both
pH 7.5 and pH 10 (Table 2). As ATP synthase is associated
with both the thylakoid and plasma membranes, the pH regu-
lation of this complex may be different from that observed for
nonphotosynthetic bacteria.

Regulatory genes. Genes encoding 21 regulatory compo-
nents were upregulated after transfer to pH 10, including genes
that had different transcriptional kinetics (Table 3; see Table
S1 in the supplemental material). Following transfer to pH 10,
increased abundance was observed for the transcripts of two-
component system histidine kinases (hik9 and hik12) and re-
sponse regulators (rre7 and rre5), a serine/threonine kinase, the
global nitrogen regulator, ntcA, and several putative transcrip-
tion factors (Table 3). The response regulator rre5 gene was
upregulated under inorganic carbon (Ci) limitation conditions

TABLE 1. Functional categories of genes differentially regulated at pH 10 compared to pH 7.5 in Synechocystis sp. strain PCC 6803a

General pathway No. of
genesb

No. of differentially regulated genes (no. of genes upregulated)c

pH independent
(t2/t0)d

pH 10 compared to pH 7.5

t1/t0 t2/t0 t6/t0

Amino acid biosynthesis 97 6 (5) 6 (6) 10 (9) 9 (8)
Biosynthesis of cofactors, prosthetic

groups, and carriers
124 11 (11) 10 (6) 14 (8) 11 (8)

Cell envelope 67 2 (1) 2 (1) 4 (1) 3 (2)
Cellular processes 76 5 (4) 7 (6) 8 (8) 4 (4)
Central intermediary metabolism 31 4 (3) 0 (0) 1 (1) 1 (1)
DNA replication, restriction,

recombination, and repair
60 0 (0) 4 (4) 11 (4) 9 (2)

Energy metabolism 132 11 (10) 14 (10) 13 (7) 15 (12)
Hypothetical 1,076 40 (22) 73 (37) 130 (71) 96 (62)
Other categories 175e 10 (8) 15 (7) 28 (8) 27 (11)
Photosynthesis and respiration 141 23 (23) 23 (22) 30 (28) 34 (31)
Purines, pyrimidines, nucleosides, and

nucleotides
41 3 (3) 2 (1) 4 (2) 5 (2)

Regulatory functions 146 4 (2) 14 (13) 18 (13) 19 (15)
Transcription 30 3 (3) 2 (2) 2 (1) 3 (2)
Translation 168 51 (51) 12 (11) 15 (12) 15 (13)
Transport and binding proteins 196 3 (3) 13 (10) 19 (10) 20 (15)
Unknown 474 22 (9) 19 (4) 63 (15) 45 (17)

Total 3,165 198 (158) 216 (140) 370 (198) 316 (205)

a Genes were considered differentially regulated when the FDR was 0.05 (change, �1.5-fold).
b Total number of genes based on Kazusa annotation prior to May 2002.
c The upregulated genes were the genes upregulated at pH 10 compared to pH 7.5.
d Differentially regulated genes after transfer from pH 7.5 to pH 10 and after transfer from pH 10 to pH 7.5.
e The number does not include genes encoding transposases.
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and was suggested previously to be involved in CO2 uptake and
pH homeostasis (58). In addition, sll1937 and sll0567, encoding
putative ferric uptake regulation (Fur) proteins, were upregu-
lated at pH 10 from t1 to t6 (1.7- to 2.9-fold). Fur proteins are
metal ion uptake regulators, and the sll0567 product is essen-
tial for growth under normal culture conditions and is part of
the iron-responsive regulation mechanism (25). The role of

sll1937 is not clear, as deletion of this gene did not alter
iron-stress-induced gene expression (25). Transcripts of a his-
tidine kinase and response regulator (cph1/rcp1) exhibited
strong pH-independent downregulation (Table 2). These tran-
scripts are upregulated in the dark and are thought to be
involved in regulation at light-dark transitions (49).

Stress response. The slr1516 gene, encoding superoxide
dismutase (sodB), was upregulated at pH 10 (1.5-fold). Ex-
pression of this gene, which encodes an antioxidant, is in-
duced by various stress conditions, including temperature
(high or low), salt, hydrogen peroxide, and light (57). Su-
peroxide dismutase converts reactive oxygen species to hy-
drogen peroxide, which then is scavenged by catalases or
peroxidases or both. The slr1992 gene, encoding glutathione
peroxidase, was upregulated at t1 through t6 (1.9- to 1.8-
fold). Two genes encoding thioredoxin (slr0623 and slr1139)
were upregulated at t2 and t6 (1.5- to 1.7-fold). The levels of
the slr0623 transcript were high, consistent with the hypoth-
esis that it encodes the most abundant of the four Synecho-
cystis sp. strain PCC 6803 thioredoxins. Furthermore,
Slr0623 has been suggested to have a major role in supplying
reducing equivalents to the antioxidant systems (13). In
addition, the genes encoding the chaperones HspA, DnaK1,
and HtpG were upregulated at pH 10 (Table 3), and previ-
ous reports indicated that these genes are upregulated un-
der various stress conditions, including oxidative stress (20,
26, 34, 45, 50). Two of these genes, hspA and htpG, were
upregulated in a pseudorevertant of a PSII mutant, 
PsbO:

PsbU. The original 
PsbO:
PsbU strain is able to grow at
pH 10, although it does not grow at pH 7.5, but the pseu-
dorevertant was able to grow at both pH 10 and pH 7.5 (53).

Monovalent cation/proton antiporters. Six genes have been
annotated as genes encoding Na�/H� antiporters in Synecho-
cystis sp. strain PCC 6803, including sll0689 (nhaS3), whose
transcript level was increased twofold at pH 10 (Table 3).
Unlike four of the Na�/H� antiporters, sll0689 appeared to be
essential for cell viability, as mutants lacking this gene could
not be fully segregated (16, 59). Moreover, the partially segre-
gated 
Sll0689 strain was sensitive to high-salt conditions at
pH 9, and Sll0689 has a high affinity for both Na� and Li� ions
(16, 59).

The eight-gene cluster containing slr2006 to slr2012 (includ-
ing ssr3410) was upregulated 1.7- to 2.3-fold within 1 h at pH
10, and the transcript level remained elevated at 6 h (Table 3).
Two of these genes were annotated as genes encoding NDH
subunits; however, this cluster has similarity to genes encoding
a putative multiprotein cation/H� antiporter in Anabaena sp.
strain PCC 7120 (3). Interruption of one of these genes in
Anabaena sp. strain PCC 7120 resulted in a strain that exhib-
ited retarded growth at elevated pH and enhanced salt sensi-
tivity at pH 10.5 (3). Blanco-Rivero et al. (3) designated this
cluster mrp (multiple resistance and pH adaptation) due to
similarity to a Bacillus subtilis mrp operon involved in Na�

resistance, particularly at high pH (17). The similarity between
subunits of the Mrp and NDH complexes has been described
previously and may reflect a common origin and similar func-
tions of the two complexes (12).

Other transporters. The transfer to pH 10 resulted in dif-
ferential regulation of a number of transporters that may con-
tribute to osmotic, pH, and ion homeostasis (Table 3). This

TABLE 2. Selected differentially regulated pH-independent genes
in Synechocystis sp. strain PCC 6803 after transfer from pH 7.5 to

pH 10 and after transfer from pH 10 to pH 7.5a

Gene Designation
or function

Change (fold) after transfer to:

pH 10 pH 7.5
(t2)t1 t2 t6

Photosynthesis and
respiration

ATP synthase
sll1321 Hypothetical 1.7 1.4 1.4 3.0
sll1322 atpI 1.3 1.2 1.2 2.9
ssl2615 atpH 2.1 1.8 1.8 3.7
sll1323 atpG 2.1 1.7 1.7 4.7
sll1324 atpF 2.5 2.1 2.0 5.5
sll1325 atpD 3.1 2.8 2.6 4.5
sll1326 atpA 2.0 1.8 1.7 3.1
sll1327 atpC 1.9 1.6 1.6 3.6
slr1329 atpB 2.1 1.7 1.8 2.6
slr1330 atpE 3.0 2.5 2.4 3.1

CO2 fixation:
carboxysome

sll1028 ccmK2 2.0 2.0 2.1 2.4
sll1029 ccmK1 2.4 2.4 2.6 2.2
sll1030 ccmL 1.8 1.8 2.3 2.4
sll1031 ccmM 2.3 1.9 2.2 2.1
sll1032 ccmN 1.7 1.4 1.9 1.9
slr1838 ccmK3 1.3 1.8 1.8 1.3
slr1839 ccmK4 1.3 1.7 1.4 1.6

NADH dehydrogenase:
bicarbonate
transport

sll1732 ndhF3 2.1 1.4 3.7 1.3
sll1733 ndhD3 2.8 2.1 4.6 1.8
sll1734 cupA 3.3 2.7 5.3 2.9
sll1735 Hypothetical 2.0 1.6 3.8 3.2

Regulatory functions
slr0473 cph1 �2.4 �1.9 �1.9 �1.8
slr0474 rcp1 �4.6 �3.6 �3.4 �2.3

Transport proteins:
bicarbonate

slr0040 cmpA 1.4 1.1 5.3 2.9
slr0041 cmpB 1.4 1.2 9.4 2.8
slr0043 cmpC 1.5 1.4 2.4 1.6
slr0044 cmpD 1.3 1.5 3.3 2.0
slr1512 sbtA 2.9 2.1 5.5 3.7
slr1513 sbtB 2.5 2.1 6.5 2.9

Gene clusters
slr1667 Hypothetical �1.8 �2.5 �1.7 �5.8
slr1668 Hypothetical �1.5 �1.7 �1.3 �1.5

sll1077 speB2 1.7 2.2 �1.1 2.2
sll1078 hypA2 2.2 3.5 �1.1 1.6
sll1079 hypB2 2.5 3.9 �1.4 1.6
sll1080 Transport 2.3 2.7 �1.1 �1.4
sll1081 Transport 1.8 2.4 �1.3 NDb

sll1082 Transport 1.4 1.9 �1.2 �1.1

a Genes were considered differentially regulated when the FDR was 0.05
(change, �1.5 fold) (indicated by bold type).

b ND, not determined.
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differential regulation included upregulation (1.9- to 2.9-fold)
of the slr2057 transcript encoding a water channel protein
(ApqZ). Water channels allow bidirectional movement of wa-
ter and often highly specific movement of other compounds,
although they are usually impermeable to ions (41). In cya-
nobacteria these channels have been postulated to have a role
in CO2 uptake (56). A 
Slr2057 strain exhibited altered cell
shrinkage and altered gene expression under hyperosmotic
stress conditions (41). Another channel protein that is respon-

sive to osmotic shock had elevated transcript levels at pH 10.
The gene (slr0875) encoded a high-conductance mechanosen-
sitive channel; such channels are present in bacterial mem-
branes and open in response to stretch forces in the lipid
bilayer, preventing cell lysis (23). In addition, activation of
Slr0875 was shown to result in Ca2� release (31). Increased
abundance of the transcript for this channel may be part of a
response directed at maintaining ion homeostasis at high pH.
The same may be true of the slr0753 gene, encoding a putative

TABLE 3. Selected differentially regulated genes in Synechocystis sp. strain PCC 6803 after transition from pH 7.5 to pH 10a

Gene Designation or
function

Change (fold) at:
Gene Designation or

function

Change (fold) at:

t1 t2 t6 t1 t2 t6

Cellular processes: sll1937 fur 2.9 2.7 2.8
chaperones sll1423 ntcA 1.2 1.5 1.8

sll1514 hspA 1.4 1.9 1.4 sll0594 Tregc 1.5 1.7 1.6
sll0058 dnaK1 1.7 1.7 1.7 sll0782 Treg 1.6 1.9 1.6
sll0430 htpG 1.9 1.5 1.3 slr0599 spkC 1.3 1.6 1.6

slr0210 hik9 1.4 1.9 1.7
sll1672 hik12 1.5 1.2 1.9

Photosynthesis and slr1042 rre7 1.7 1.5 2.7
respiration slr1594 rre5 1.8 1.2 �1.2

PSII
Oxygen-evolving

complex Transport and binding
sll0427 psbO 1.5 1.9 1.7 proteins
sll1194 psbU 1.5 1.6 1.7 sll0689 nhaS3 2.1 1.4 2.0
sll1418 psbP 1.4 1.5 1.6 sll0771 glcP 1.7 1.5 1.5
sll1638 psbQ 1.6 2.1 1.7 slr0753 Transport 1.3 1.3 2.2

slr0875 mscL 1.4 1.5 1.7
Low-molecular-mass slr2057 apqZ 1.9 2.2 2.9

polypeptides
sml0002 psbX 2.4 2.2 2.1
sml0003 psbM 1.2 1.5 1.5 Gene cluster
sml0005 psbK 1.3 1.5 1.7 Putative cation/H�

ssr3451 psbE 1.4 1.8 1.5 antiporter
smr0006 psbF 1.4 1.9 1.6 slr2006 mrpC 1.8 1.2 1.9
smr0007 psbL 1.2 1.7 1.6 slr2007 mrpD 2.0 1.7 2.3
smr0008 psbJ 1.3 2.2 1.9 slr2008 mrpC 1.6 1.6 1.8

slr2009 mrpD 1.7 1.6 1.7
Putative assembly slr2010 mrpE 2.3 1.8 1.8

protein ssr3409 mrpF 1.4 1.4 1.5
sll1414 psb29 1.4 1.8 1.8 ssr3410 mrpG 1.8 1.7 1.7

slr2011 mrpA 2.1 1.7 1.9
NADH dehydrogenase: slr2012 mrpB 1.7 1.4 1.5

core subunits
sll0223 ndhB 1.6 1.4 1.7 slr1501 Other 3.9 3.9 6.4
sll0520 ndhI 2.0 1.8 2.3 slr1113 Transport 1.4 1.4 2.0
sll0521 ndhG 1.8 2.0 2.3 slr1114 Hypothetical 1.3 1.3 1.6
sll0522 ndhE 1.6 1.9 1.9 sll1392 Treg 1.3 1.6 1.8
slr1279 ndhC 1.6 1.5 1.7
slr1280 ndhK 2.0 1.8 2.1 slr0408 Unknown �1.4 �2.1 �1.9
slr1281 ndhJ 1.6 1.4 2.0 slr0142 Hypothetical NDb ND ND
slr1291 ndhD2 2.5 1.6 1.8 slr0143 hat ND ND ND

slr0144 4VRd ND ND ND
CO2 fixation slr0145 Unknown �1.5 1.4 1.4

slr1347 cab 1.6 1.6 1.5 slr0146 Hypothetical �2.4 �1.2 �1.1
slr0436 ccmO 1.5 1.6 1.8 slr0147 4VR �1.9 �1.0 �1.1
sll0934 ccmA 1.2 1.5 �1.1 slr0148 Hypothetical �2.6 �2.0 �2.0

slr0149 Hypothetical �2.7 �2.2 �2.1
slr0150 petF �1.8 �1.6 �1.6

Regulatory functions slr0151 Unknown �2.1 �3.9 �3.5
sll0567 fur 1.6 1.7 1.6

a Genes were considered differentially regulated when the FDR was 0.05 (change, �1.5-fold) (indicated by bold type).
b ND, not determined.
c Treg, transcriptional regulator.
d 4VR, 4-vinyl reductase.
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anion efflux transporter, which was upregulated �2-fold fol-
lowing 6 h at pH 10. Mutations in this gene removed the
chloride requirement of a PSII strain lacking PsbV, suggesting
that the gene encodes a chloride extrusion protein (24). Fi-
nally, the gene encoding a glucose transporter (glcP) was up-
regulated at pH 10. This transporter has been suggested to be
a hexose/proton symporter and therefore may be involved in
pH homeostasis (9).

In addition to the NDH-1-associated bicarbonate transport,
two low-Ci-inducible bicarbonate uptake systems were upregu-
lated after transfer to both pH 10 and pH 7.5. These systems
are BCT1, encoded by the cmp operon, and SbtA, plus the
neighboring gene sbtB. Changes in the external pH have been
shown to alter the cytosolic and thylakoid lumen pH (2); thus,
the transfer of cells to a different pH alters the CO2/HCO3

�

ratio within the cell. The upregulation of three inducible bi-
carbonate transporters (BCT1, SbtA, and NDH-1S) after
transfer to pH 7.5 and pH 10 may reflect a response to this
perturbed ratio.

Metabolic acid production. Deaminases have been sug-
gested to play a role in acclimation to alkaline pH in some
bacteria, and this appears to be true in Synechocystis sp. strain
PCC 6803 as well. Upon transfer to pH 10, the level of the
transcript encoding L-threonine deaminase (slr2072) was in-
creased. In addition, a number of genes involved in the bio-
synthesis of valine, leucine, and isoleucine were upregulated
(see Table S1 in the supplemental material). These genes in-
cluded the gene encoding acetolactate synthase, ilvB (sll1981),
which may play a role in pH homeostasis (26).

Gene clusters. The slr1501 gene was upregulated after
transfer to pH 10 and was rapidly downregulated after trans-
fer to pH 7.5. The adjacent gene sll1392 was similarly reg-
ulated, suggesting that there may be a divergent promoter.
In addition, two genes downstream of slr1501 (slr1113 and
slr1114) were upregulated at pH 10, and slr1113 was also
downregulated after transfer to pH 7.5 (Fig. 1a and Table
3). The designations of these genes in Cyanobase are as
follows: probable acetyltransferase gene, slr1501; transcrip-
tional regulator gene, sll1392; ABC transporter ATP-bind-
ing protein gene, slr1113; and permease gene, slr1114. The
accumulation of these transcripts at pH 10 and their striking
downregulation at pH 7.5 suggest that this gene cluster has
a role in growth at high pH.

The cluster containing genes slr0145 to slr0151 was down-
regulated at pH 10 (Fig. 1c and Table 3). Both slr0148 and
slr0150 encode ferredoxinlike proteins, and slr0150 has been
shown to be downregulated following high-light treatment
(37). Two genes in this cluster (slr0144 and slr0147) contain
4-vinyl reductase motifs predicted to be involved in small-
molecule binding (no data were available for slr0144 from this
experiment due to a high P value). Another two genes (slr0146
and slr0149) encode proteins containing bilin-binding domains.
This cluster was previously shown to be downregulated in iron-
deficient media and in the presence of hydrogen peroxide, and
it was suggested that the proteins may be involved in PSI
function and assembly (46). This function would be consistent
with the downregulation of this cluster and the upregulation of
a number of PSII genes at pH 10. The slr0408 gene is upstream
of this cluster and was upregulated at pH 10 (Fig. 1c and Table
3). This large gene encodes an unknown protein with a putative
Ca2� expulsion domain.

The slr1667 and slr1668 genes encoding a hypothetical
protein and an unknown protein, respectively, were down-
regulated after transfer to pH 10 and pH 7.5 (Table 2).
These genes may be regulated through 3�,5�-cyclic AMP
(cAMP) signaling as the levels of both transcripts were
decreased in a strain lacking a cAMP receptor protein en-
coded by sycrp1 (sll1371) (61). In addition, the adenylyl
cyclase Cya1 (Slr1991), which synthesizes cAMP, is acti-
vated by CO2 (11). This raises the possibility that Cya1 may
sense the altered HCO3

�/CO2 ratio, resulting in the down-
regulation of slr1667 and slr1668.

Genes in the cluster consisting of sll1077 to sll1082 were
upregulated for the first 2 h of the transition to pH 10, and
sll1077, sll1078, and sll1079 were upregulated after transfer to
pH 7.5 (Fig. 1b and Table 2). The sll1077 gene product is
annotated as an agmatinase (EC 3.5.3.11), an enzyme that
catalyzes the conversion of agmatine to putrescine and urea.
The polyamine putrescine forms a necessary component of the
outer membrane of some gram-negative bacteria during bio-
film formation (35). The sll1078 and sll1079 genes were anno-
tated as genes encoding hydrogenase formation proteins. How-
ever, deletion of these proteins did not alter hydrogenase
activity, leading to the suggestion that they are metallochaper-
ones of the protein encoded by sll1077 and not hydrogenases
(14). The sll1080, sll1081, and sll1082 genes are predicted to
encode the substrate-binding, permease, and ATP-binding
subunits of an ABC transporter, respectively. The coordinated
regulation of genes sll1077 to sll1082 at pH 10 suggests that
this transporter may be involved in putrescine transport to the
outer membrane.

Validation of microarray results. The microarray data were
validated by semiquantitative reverse transcription-PCR, and
good correspondence was observed for all genes examined (see
Fig. S1 in the supplemental material).

Summary. Figure 2 illustrates the upregulation of transcripts
encoding structural proteins that may be involved in the main-
tenance of cellular homeostasis following a pH transition. The
response of Synechocystis sp. strain PCC 6803 to high pH had
similarities to the response reported for other bacteria. This
included the pH 10 upregulation of genes encoding two cat-
ion/H� antiporters (NhaS3 and Mrp), ATP synthase (also up-
regulated after transfer to pH 7.5), and at least one amino acid

FIG. 1. Coordinately regulated gene clusters of Synechocystis sp.
strain PCC 6803. (a) Gene cluster upregulated at pH 10 compared to
pH 7.5. (b) Gene cluster showing pH-independent regulation. (c)
Gene cluster containing many genes that exhibit upregulation after
transfer to pH 10.
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deaminase. One important difference between the response of
Synechocystis sp. strain PCC 6803 and the response of other
bacteria may be related to the lack of transcript level changes
for genes involved in the cell surface; however, the cluster
containing the agmatinase gene was upregulated, indicating
that the cell may produce polyamines destined for the outer
membrane. Furthermore, the cell envelope of cyanobacteria
has characteristics associated with both gram-negative and
gram-positive bacteria, as well as cyanobacterium-specific
characteristics, which result in distinct cell wall properties (15).
In addition to the general bacterial response, we identified
other transporters that may be involved in maintaining pH and
ion homeostasis following a transition to pH 10. These include
a putative chloride extrusion protein (Slr0753), a mechanosen-
sitive channel that may also act as a calcium channel (MscL),
a hexose/proton symporter (GlcP) (Fig. 2), and several ABC
transporter subunits for unidentified substrates that are not
shown in Fig. 2. A major result of these changes is that they
permit the cell to more readily dissipate a buildup of protons in
the cytoplasm.

The most important cyanobacterium-specific findings were
related to transcriptional changes involved in the maintenance
of photosynthetic capability. This study focused on NADH
dehydrogenases and the carbon-concentrating mechanism, in-
cluding the genes encoding carboxysome components and car-
bonic anhydrase (Fig. 2). In cyanobacteria, changes in the
external pH alter the intracellular pH, and an increase in the
external pH of 2 pH units results in an increase of �0.2 pH unit
in both the cytosol and the thylakoid lumen (2). Such changes

alter the CO2/HCO3
� ratio within the cell, and regulation of

CO2/HCO3
� concentration is essential for maintaining the

carboxylase activity of Rubisco. The upregulation of three in-
ducible bicarbonate transporters (BCT1, SbtA, and NDH-1S)
and many of the transcripts encoding the structural compo-
nents of the carboxysome after transfer to pH 7.5 and pH 10
may reflect a response to this perturbed ratio. The pH 10-
specific regulation may be a response to increased external pH
that decreases CO2 levels in the cell (e.g., upregulation of the
transcripts encoding the carboxysome �-type carbonic anhy-
drase and the water channel protein [ApqZ] that has been
implicated in CO2 import).

The transcriptional response to the transition from pH 7.5
to pH 10 was not the same as the response to Ci limitation.
The levels of a number of genes that were upregulated
under Ci limitation conditions were unchanged by the pH
transition, and a number of genes that were downregulated
by Ci were upregulated by the pH transition (e.g., many of
the genes encoding low-molecular-weight PSII polypeptides
[Table 3]) (58). The ATP synthase, �-type carbonic anhy-
drase, and ribosomal genes were downregulated at low Ci

levels but upregulated at pH 10. In contrast, the flavopro-
tein-encoding transcripts slr0217 and slr0219 were upregu-
lated at low Ci levels but were downregulated at high pH.
These differences may reflect the decreased growth that was
observed after transition to a low Ci level but that was not
observed at high pH. The pH change had another impact
specific to photosynthesis, namely, the pH 10 upregulation
of genes encoding the extrinsic and low-molecular-weight

FIG. 2. Model of a Synechocystis sp. strain PCC 6803 cell showing the transcriptional response to pH change. Genes upregulated after transfer
to pH 10 are indicated by dark green, and genes upregulated after transfer to both pH 10 and pH 7.5 are indicated by light green. Genes that are
not differentially regulated are indicated by open boxes (e.g., Rubisco). The upregulated genes include the genes that encode two cation/proton
antiporters (NhaS3 and Mrp), a putative chloride extrusion protein (Slr0753), a mechanosensitive channel that may also act as a calcium channel
(MscL), a hexose/proton symporter (GlcP), and a water channel (ApqZ). In addition, genes encoding subunits of NADH dehydrogenase (NDH)
and PSII, including the oxygen evolving center (OEC), are upregulated. PGA, phosphoglyceric acid; Cyt b6f, cytochrome b6 f complex.

5282 SUMMERFIELD AND SHERMAN APPL. ENVIRON. MICROBIOL.



intrinsic proteins of PSII, including the psbO and psbU tran-
scripts. This was surprising as photoautotrophic growth of a

PsbO:
PsbU strain at pH 10 but not at pH 7.5 had been
interpreted as indicating that PsbO and PsbU may be more
important at lower pH. Furthermore, this upregulation was
specific to the PSII genes, and very little change in the
abundance of the PSI gene transcripts was observed. The
mutant lacking luminal proteins may require quantitatively
greater enhancement of some of the components high-
lighted in Fig. 2, and comparisons to examine this possibility
will be the objective of future experiments.
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