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Streptococcus mutans is one of several members of the oral indigenous biota linked with severe early
childhood caries (S-ECC). Because most humans harbor S. mutans, but not all manifest disease, it has been
proposed that the strains of S. mutans associated with S-ECC are genetically distinct from those found in
caries-free (CF) children. The objective of this study was to identify common DNA fragments from S. mutans
present in S-ECC but not in CF children. Using suppressive subtractive hybridization, we found a number of
DNA fragments (biomarkers) present in 88 to 95% of the S-ECC S. mutans strains but not in CF S. mutans
strains. We then applied machine learning techniques including support vector machines and neural networks
to identify the biomarkers with the most predictive power for disease status, achieving a 92% accurate
classification of the strains as either S-ECC or CF associated. The presence of these gene fragments in 90 to
100% of the 26 S-ECC isolates tested suggested their possible functional role in the pathogenesis of S. mutans
associated with dental caries.

The mutans streptococci (MS) are strongly associated with
dental caries by virtue of their metabolic, ecological, and epi-
demiological attributes (23, 46). Among the MS, Streptococcus
mutans appears to be a predominant bacterial species in the
microbiota of preschool children with severe early childhood
caries (S-ECC) (4–6, 49). Although the association between S.
mutans and S-ECC seems convincing, most children colonized
by S. mutans do not manifest the disease (8), suggesting that
among other possibilities, S. mutans vary in their ability to
initiate caries.

In our previous study, we demonstrated that strains of S.
mutans strains associated with S-ECC differ in their genomic
composition compared to caries-free (CF) controls (42). Using
the power of suppressive subtractive DNA hybridization
(SSH), several unique gene segments were identified from a
strain of S. mutans (AF199) that was isolated from a child with
S-ECC. The presence of unique genetic loci among S. mutans
strains is consistent with the recent work by Waterhouse and
Russell (51), as they described the presence of “dispensable
genes” distributed among strains of S. mutans. These segments
include mobile genetic elements that are widely distributed in
S. mutans (2) and have been shown to modulate sucrose (31)
and melibiose metabolism (40). S. mutans strains also vary in
content in terms of the presence of plasmids (10, 32), mutacin
I, II, III, and IV operons (3, 19, 35–37), serotypic antigens (43);
competence (34), the comBCD genes (28), and gtfBC (14, 48,
52), among other genetic loci. Based on the wide diversity of
genotypes and genetic loci within S. mutans, different strains of
S. mutans apparently comprise both common and unique ge-

netic loci, and it seems that these differences are unequally
distributed among strains (42, 51). Identifying the unique DNA
fragments that are common to most of the strains isolated from
S-ECC but not CF children will be important even if their
function is unknown because the nucleotide sequences can
serve as diagnostic biomarkers for DNA-based detection ar-
rays (38, 41).

Here we report the identification of a hierarchical series of
gene biomarkers derived via SSH from strains of S. mutans
associated with S-ECC. These biomarkers were then evaluated
by machine learning techniques for their ability to classify
clinical isolates of S. mutans into one of two categories, CF or
S-ECC. Our findings suggest that as few as three SSH biomar-
kers were sufficient to accomplish this goal.

MATERIALS AND METHODS

Subjects. Thirty-nine children of Hispanic origin (twenty-three boys and six-
teen girls; age range, 2.4 to 8.6 years) were included in the present study.
Twenty-two of the subjects were CF children; the remainder were S-ECC chil-
dren who had a score for decayed, missing, and filled teeth of 9.6 � 3.6 (mean � the
standard deviation) and a score for decayed, missing, and filled tooth surfaces of
17.9 � 11.8. The S-ECC children were selected from a list of children who were
scheduled for extensive caries restorative treatment under general anesthesia in
the operating room at the Bellevue Hospital, New York, NY, from April 2003 to
April 2004 (26). CF children of ages comparable to those of the S-ECC cohort
were selected from the of the Bellevue Hospital’s pediatric dental clinic after
having been diagnosed as being free of detectable caries. The study protocol was
approved by the Institutional Review Board of New York University School of
Medicine and the Bellevue Hospital for human subjects.

Bacterial sample procedures and processing. Bacterial samples from saliva
and pooled plaque of the S-ECC and CF children were collected before any
dental treatment was initiated. The supragingival plaque samples were collected
and processed as previously described (10, 26). The genomic DNA of pure
cultures of isolates of S. mutans were obtained by using a genomic DNA puri-
fication kit (Qiagen, Hilden, Germany), as previously described (25, 27). All of
the DNA samples from S. mutans were first subjected to chromosomal DNA
fingerprinting (9, 24) to identify the genotypes of the isolates of S. mutans and
then for subtractive hybridization.
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SSH. SSH was used to isolate DNA fragments present in the strains of S.
mutans isolated from plaque samples from S-ECC but not present in the S.
mutans of the CF plaque sample. The protocol has been described elsewhere
(42). Briefly, the DNA of S. mutans strains isolated from S-ECC subjects, se-
lected as tester strains, was subtracted against the pooled genomic DNA of
strains of S. mutans from CF subjects. DNA samples from CF children were
mixed (2 �g of each), and 2 �g from this DNA mix was used as driver against 2
�g of each tester DNA. Six subtraction reactions were performed, using the
PCR-Select bacterial genome subtraction kit (BD Biosciences, San Jose, CA)
with minor modifications (42). Tester and driver samples were digested sepa-
rately with RsaI. Amplification of tester-specific fragments was performed by
using PCR and primers directed at tester-ligated adaptor sequences and the
protocol provided by the manufacturer (BD Biosciences). Secondary PCR prod-
ucts (4 �l) were cloned into the pCR4-TOPO (Invitrogen) vector and trans-
formed into Escherichia coli TOP10 cells (Invitrogen). A total of 1,300 transfor-
mants were picked at random and grown in 96-deep well plates at 37°C in 1.5 ml
of Luria-Bertani medium with kanamycin for 12 h. The plasmid DNA was
extracted by using 96 Turbo BioRobot Kit and BioRobot 3000 (Qiagen). False-
positive results (SSH fragments present in both S-ECC and CF strains) were
identified by dot blot hybridization. Purified plasmid DNA containing cloned
SSH fragments were sequenced using the M13 universal primer. Sequencing
reactions were performed in both directions on an ABI model 377 DNA se-
quencer. Nucleic acid and predicted protein compositions were compared to
those archived in GenBank using BLAST (National Center for Biotechnology
Information [NCBI]). Sequences were also analyzed for protein coding regions
via the open reading frame finder (NCBI) and PFAM (http://www.ncbi.nlm.nih
.gov/gorf/gorf.html) (47).

Dot blot hybridization. Dot blots were prepared by using standard procedures
(42). PCR products from each of the 1,300 selected transformants were purified
by using a PCR purification kit (Qiagen). Portions (10 �l) of the PCR products
were diluted with 40 �l of 1 M NaOH, 5 �l of 200 mM EDTA, and 45 �l of sterile
water. Diluted PCR products were denatured and spotted directly onto Hy-
bond-N� nylon membranes (Ambion), using a 96-well manifold (Gibco-BRL).
Membranes were UV cross-linked by using Stratalinker (Stratagene) and stored
dry before hybridization. Membranes were prehybridized for 15 min in a hybrid-
ization oven with 7 ml of warm (68°C) UltraHyb buffer (Ambion). Biotin-labeled
probes were made with 100 ng of purified, RsaI-digested driver or tester genomic
DNA. Hybridization was carried out for 16 h at 68°C in a rotating hybridization
oven. Standard protocols for membrane washing (42) were followed, washing
twice under moderate to high-stringency conditions (50 ml of 0.2� SSC [1� SSC
is 0.15 M NaCl plus 0.015 M sodium citrate] plus 0.1% sodium dodecyl sulfate,
15 min, 42 to 65°C). Hybrids were detected with a BrightStar detection kit
(Ambion) after exposure to BioMax X-ray films (Kodak).

PCR amplification. To determine the distribution of putative unique S-ECC-
associated sequences among S. mutans, PCR primers and conditions were de-
signed for each of the selected SSH biomarkers for screening other S-ECC and
CF genotypes. In addition, each SSH fragment was analyzed for G�C content
and then used to query BLAST and protein databases. Standard PCRs were
carried out with either S-ECC or CF S. mutans genomic DNA. Typically, a 50-�l
PCR included 2.5 �l of 10� PCR buffer (100 mM Tris-HCl [pH 9.0], 15 mM
MgCl2, 500 mM KCl), 0.25 �l of 20 mM deoxynucleoside triphosphates, 1 �l of
each of the forward and reverse primers (stock concentration, 50 nM), 0.5 �l (5
U) of Taq DNA polymerase (Invitrogen), and 2 �l of template DNA. PCR
conditions were as follows: 94°C for 3 min; 94°C for 45 s, 54 to 59°C for 45 s, and
72°C for 60 s for 30 cycles; and 72°C for 7 min. Corresponding tester and driver
strains were used as positive and negative controls, respectively. Amplicons were
analyzed by electrophoresis on 1.5% agarose gels.

AI. Two independent forms of artificial intelligence (AI), support vector ma-
chine (SVM) and neural network analyses, were used to compare and calculate
the sensitivity, specificity, and overall accuracy of each selected SSH biomarkers.

SVM. The presence or absence of 19 PCR-amplified SSH biomarkers (derived
from the original 1,300 clones minus false-positives) from S-ECC strains by SSH
versus pooled strains from CF children) was assessed from each of a total of 49
clinically isolated S. mutans strains S-ECC (n � 26) and CF (n � 23). Amplifi-
cation of each SSH biomarker in each strain was scored as present (“1”) or
absent (“0”). SVM was used as a supervised learning method to identify an
optimal combination of the S-ECC biomarkers that could correctly classify clin-
ical isolates of S. mutans into one of two categories: S-ECC associated or CF
associated. Forty-nine S. mutans strains were randomly assigned to a training set
(60%) or a tester set (40%). The SVM classifier program (WEKA, Sequential
Minimal Optimization [http://www.cs.waikato.ac.nz/ml/weka/]) was then run on
the training set, resulting in an algorithm that defined the S-ECC strains. Due to
the limited size of each data set, cross-validation within the original data set was

utilized to provide a nearly unbiased estimation of classification. For each clas-
sification, the true-positive, true-negative, false-positive, and false-negative val-
ues were obtained from which accuracy, sensitivity, and specificity were calcu-
lated by using Health Decision Strategies EpiMax software (15).

The SVM analysis was extended by reducing the number of features (SSH
biomarkers) used to build the classifier (attribute and/or feature selection).
Using the WEKA software, the markers were ranked by information gain; first,
the top 10 and then the top 5 markers were chosen to train and classify, cross-
validate, and classify the test set.

Neural network and recursive partitioning tree. A feed-forward, back-propa-
gation, neural network with five input nodes, 20 hidden nodes, and two output
nodes was also used to assess the discriminatory capability of the SSH-biomark-
ers. The five input nodes were for SSH biomarkers 0018, H7, 0102, 0006, and
0004 and were identified from analysis by SVM and the classification tree (see
below). A total of 50% of the S-ECC- and CF-associated strains of S. mutans
were randomly selected as a training set, and the remaining cases formed the test
set. The process of selecting the training set, training the net, and testing was
repeated 1,000 times, and the mean sensitivity and specificity and their empirical
95% confidence intervals were calculated.

Finally, a recursive partitioning tree was constructed from the pool of all SSH
fragments and pruned to three levels. At each level, a binary decision was applied
based on the presence or absence of the (automatically) selected fragment.
Neural net analysis and recursive partitioning tree determinations were per-
formed in R version 2.6. (www.R-project.org).

Nucleotide sequence accession numbers. The nucleotide sequences unique to
cariogenic strains of S. mutans were deposited in GenBank under accession
numbers EU918292 to EU918301.

RESULTS

The aim of the present study was to test the utility of SSH to
produce strain-specific DNA biomarkers and then examine
their distribution among S. mutans strains from children of
different disease statuses. Among the 39 children examined, 49
S. mutans genotypes were included in the study. The majority
of S-ECC children harbored a single genotype of S. mutans, as
determined by screening 10 randomly chosen isolates from
mitis-salivarius-bacitracin medium and chromosomal DNA
fingerprinting analysis. Using two independent forms of AI,
SVM and neural network analysis, we identified the most in-
formative SSH biomarkers that can classify S. mutans strains
isolated from either S-ECC or CF children (Fig. 1).

SSH fragments. To obtain unique gene fragments present in
S-ECC S. mutans strain six independent SSH reactions were
conducted using genomic DNA and subtracted against the
pooled genomic DNA of four S. mutans strains from CF sub-

FIG. 1. Overall study design for subtractive DNA hybridization,
attributes/biomarker selection, and classification analysis.
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jects. Approximately 1,300 clones containing SSH fragments
were picked (lengths, 300 to 750 bp). To eliminate the false-
positives, we used dot blot hybridization with PCR-amplified
SSH fragments and biotin-labeled genomic DNA from S. mu-
tans strains used in SSH. The dot blot results indicated that 856
(66%) of DNA fragments were present in most of the six
S-ECC strains used in SSH, and 442 (34%) were either absent
or present in only a few S-ECC S. mutans strains. A total of 247
clones (19%) were false positives (SSH fragments also present
in CF S. mutans strains). Randomly picked 352 clones out of
the 856 clones that were present in most of S-ECC strains used
in SSH experiment were sequenced. The average size of the
SSH fragments was �600 bp: 220 clones (62%) contained
useable nonvector sequences with a minimum Phred score of
62. After the duplicate and overlapping fragments were elim-
inated, a total of 54 unique SSH fragments were obtained
containing 42 kb of informative sequence. A BLAST search of
the nucleotide or translated sequences of these SSH fragments
indicated that 18 did not have significant protein matches to
the existing sequences from S. mutans in GenBank. The
%G�C content of these SSH fragments ranged from 26 to
50.8%, with an average difference of 4.6% from the genome of
S. mutans UA159. Table 1 shows the results from the BLAST
query of S. mutans specific SSH fragments from S-ECC ob-
tained from the subtractive library and used in AI.

SVM. The presence or absence of SSH fragments in either
S-ECC or CF strains of S. mutans (detected by either dot blot
or fragment-specific primers) proved useful in comparing their
distribution among S. mutans isolates. In the specific case of
SSH fragments derived from S-ECC strains, we wanted to
know whether a particular constellation of SSH fragments (bio-
markers) could be used to classify additional strains derived
from either S-ECC or CF children. To do this, we empirically
selected 19 SSH-fragments as biomarkers based upon the their

G�C content differing from that of S. mutans, a BLAST match
to a possible gene involved with pathogenesis or horizontal
transfer, or a mobile genetic element (Table 1). We then sur-
veyed 49 strains of S. mutans from either S-ECC (n � 26) or
CF (n � 23) to test the utility of these 19 SSH fragments as
biomarkers for S-ECC.

The SVM classifier algorithm generated a model capable of
differentiating between S-ECC and CF strains. For each cate-
gory (S-ECC or CF), the number of true-positive, true-nega-
tive, false-positive, and false-negative values were calculated
and then used to estimate the overall accuracy, sensitivity, and
specificity of the various models (Tables 2 and 3). The resulting
classifier correctly partitioned strains into either S-ECC or
CF-associated with accuracy of 90% and a sensitivity and spec-
ificity of 89 and 90%, respectively (Table 3). The classifier was
run again using only the most informative five biomarkers
(0018, H7, 0006, 0007, and 0004). With just five biomarkers,
the accuracy of classifying strains improved to 92% (Table 2).

TABLE 1. Characterization of S-ECC S. mutans specific DNA biomarkers obtained from SSH librariesa

Biomarker Length (bp) %G�C Best protein matchb BLAST e-value or
referencec

0001 1,193 38.57 Multidrug resistance ABC transporter ATP-binding and permease protein,
Streptococcus pyogenes

3e-82

0004 1,346 38.52 Hypothetical protein SH0211, Staphylococcus haemolyticus 1e-15
0006 876 35.37 Mobile genetic element, Lactobacillus helveticus 2e-13
0007 651 40.44 Threonyl-tRNA synthetase, Streptococcus gordonii 5e-100
0018 506 35.81 Hypothetical protein, Staphylococcus haemolyticus 8e-32
0022 982 36.90 Putative phosphopantetheinyl transferase, Bacillus subtilis 4e-31
0023 1,277 37.00 ABC transporter ATP-binding and permease protein, Streptococcus pyogenes 1e-46
0024 848 33.69 None
0036 736 29.77 Hypothetical protein CLOL250, Clostridium spp. 4e-25
0037 552 29.67 Transposase orfB, Streptococcus pneumoniae 1e-32
0102 855 30.06 Hypothetical adenine-specific methylase, Mycoplasma pneumoniae 9e-06
0105 682 36.29 Hypothetical protein, Finegoldia magna 2e-87
0106 1,023 26.93 Transcriptional regulator, TetR family, Streptococcus pyogenes 2e-06
0145 731 33.13 Conserved hypothetical protein, Bacillus anthracis 2e-40
0191 602 27.94 Predicted protein, Francisella tularensis 3e-09
0216 706 22.81 Valyl-tRNA synthetase, Streptococcus pneumoniae 2e-120
G3 460 56 TraQ protein (transposon, Bacteroides fragilis YCH46; Porphyromonas

gingivalis W83)
Previous study (42)

D7 493 43.6 None Previous study (42)
H7 653 49.1 None Previous study (42)

a DNA biomarkers used in artificial intelligence analysis are reported in the table.
b No significant similarities to archived GenBank sequences were detected.
c The e-value represents the number of times this match or a better one would be expected to occur purely by chance in a search of the entire database.

TABLE 2. Summary of stratified cross-validation analysis
of biomarkersa

Parameter
No. of biomarkers

10 5

Correctly classified instances 45 46
Incorrectly classified instances 5 4
Kappa statistic 0.7981 0.839
Mean absolute error 0.10 0.08
Relative absolute error (%) 20.05 16.04
Total no. of instances 50 50
Sensitivity (%) 89.3 92.6
Specificity (%) 90.9 91.3

a Cross-validation analysis was done by using the WEKA SVM classifier pro-
gram and Health Decision Strategies EpiMax software (15).
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Biomarker 0018, which was similar (e value of 8e-32) to a
hypothetical protein from Staphylococcus haemolyticus, was the
most informative of the five and was present in most of the
S-ECC S. mutans strains. These five biomarkers were present
in 90 to 100% of the 26 S-ECC isolates tested, suggesting that
these genes play a functional role in the pathogenic potential
of S. mutans.

Neural network and recursive partitioning classification.
The presence of all possible combinations of the 19 identified
biomarkers was explored by classification tree analysis, and the
combinations with the highest power to discriminate between
S-ECC and CF strains were observed. The tree was pruned to
three levels to avoid case-specific decision rules. The optimal
tree is shown in Fig. 2 and is based on three biomarkers: 0018,
H7, and 0006. This combination of fragments resulted in a
sensitivity of 96% and a specificity of 91% for the classification
of S-ECC.

Since both the training and test sets were small, there was
significant variability in the accuracy of classification from it-
eration to iteration. The 1,000 iterations of the neural net
resulted in a sensitivity of 88.5 and a specificity of 94.2.

DISCUSSION

Our results support the contention that S. mutans strains
differ in their genomic compositions and that these differences
can be used to classify strains into one of two disease status
groups using the power of AI learning. While not the intent of
this investigation to characterize the individual SSH fragments,
the compositions of many of the SSH fragments suggest that
they might have arisen from horizontal gene transfer because
they contain either remnants of mobile genetic elements or
vary in their G�C content.

That individual strains of S. mutans differ in their genetic
composition has been demonstrated in a number of studies
(10, 28, 35, 37, 43, 53), and the variation may be as much as
20%, comprising the “dispensable” genome (51). For example,
variation in the com genes that mediate quorum sensing and
genetic competence shows variation in distribution and genetic
composition (4, 50). It may not be a coincidence that all of the
loci described above have been linked directly or indirectly
with S. mutans’ virulence, and all exhibit variation. Some
strains of S. mutans harbor 5.6-kb cryptic plasmids, and there
are sufficient polymorphisms at the nucleotide level to allow
phylogenetic ordering of plasmid-containing strains of S. mu-
tans, giving insight into the evolutionary history of its human
host (10).

Genetic variation among strains within a given species is not

uncommon (for a review, see reference 1). Escherichia coli, for
example, varies in intraspecies genetic composition among nat-
ural isolates as much as 20%; this is not surprising given its
wide host range (44). Strains of Helicobacter pylori vary (29),
with in silico comparisons between genomes of ca. 7%. Com-
parison of genomes of Staphylococcus aureus showed that
strains are “peppered” with mobile elements and contains
large blocks of genes in pathogenicity islands, with 6% of the
genome being strain specific (13, 16, 20). Comparisons be-
tween strains of S. pyogenes (12) and between strains of S.
pneumoniae (7) showed intraspecies differences ca. 10%. In
both of these close relatives of S. mutans, differences are man-
ifest to a large extent in the presence or absence of large blocks
of genes. In many medically important bacteria, strain-specific
genes reside in large chromosomal regions called genomic or
pathogenicity islands (21–23). S. mutans UA159 contains at
least 11 genomic islands (Los Alamos Oralgene site [http:
//www.oralgen.lanl.gov/]), but the distribution of these and
other putative genomic islands among different strains of S.
mutans remains unknown. Some of these genomic islands may
be directly associated with the expression of virulence.

A novel aspect of the present study was the use of AI learn-
ing algorithms to use the presence or absence of SSH frag-
ments to classify each S. mutans isolate by caries state (S-ECC
or CF). Recent literature strongly suggests that AI approaches
to classification outperform “classical” statistical method (50).
This method provides a scaleable solution that can expand to
incorporate multiple data types and large numbers of samples.
AI, such as SVM, is very commonly used in disease prediction
and pattern recognition in microarray data analysis, especially
for cancer prediction. SVM algorithms have been successfully
used in bacterial proteins (17, 18, 30, 39), metabolites (11), and
pattern recognition and yielded �90% accuracy. In the present
study the results from two independent forms of AI, SVM and
neural network analyses, were compared to the true status of
each sample to calculate sensitivity, specificity, and overall
accuracy of the output. Exact binomial tests of independent
proportions were used to identify fragments that exhibited
maximal differentiation of S-ECC and CF. To control for the

FIG. 2. Recursive partitioning classification of fragment to opti-
mally discriminate caries status. Terminal nodes are shown as squares,
and nonterminal nodes are shown as circles. Each node is labeled as
either S-ECC or CF depending on the simple majority of cases within
the node. Decision rules are shown on the lines connecting the nodes.
This analysis shows that fragments 0018, H7, and 0006 used in a
decision tree result in a sensitivity of 96% for S-ECC status and 91%
for CF status.

TABLE 3. Accuracy of biomarkers by either class S-ECC or CFa

No. of
biomarkers

TP
(%)

FP
(%)

Precision
(%)

Recall
(%)

F measure
(%) Class

10 92.6 13.0 89.3 92.6 90.9 S-ECC
87.0 7.0 90.9 87.0 88.9 CF

5 92.6 8.7 92.6 92.6 92.6 S-ECC
91.3 7.4 91.7 91.3 91.3 CF

a The true-positive (TP) or false-positive (FP) status was determined by using
the WEKA SVM classifier and Health Decision Strategies EpiMax software (15).
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many multiple comparisons, we used adjusted P values to con-
trol for the false discovery rate (45). The number of SSH
fragments needed to accurately classify strains can be reduced
by considering a two-stage hierarchical classification proce-
dure. As seen in Table 2, this can be achieved with high accu-
racy (92.0%), with only five biomarkers using a linear SVM.
Table 3 shows the average prediction accuracy achieved on
other pairwise discriminations, indicating that the CF versus
S-ECC distinction can be made with high accuracy using just
five SSH fragments. Our studies indicated that virulent clones
possess the most important biomarkers, and most of the bio-
markers identified are present in various strains. This finding is
consistent with others that genetic variation among strains
within a given species is common, and these genetic changes
are associated with disease. Recently, McMillan et al. (33)
reported that reemergence of severe, invasive group A strep-
tococcal diseases could be caused by altered genetic endow-
ment in these organisms. Using similar approach of neural net
they identified three genes with a marginal overrepresentation
in invasive disease isolates. Significantly, two of these genes,
ssa and mf4, encoded superantigens but were only present in a
restricted set of group A streptococcal M types. The third gene,
spa, was found in variable distributions in all M types in the
study (33). Using a similar approach, we identified a small set
of SSH fragments that can be used to computationally “pre-
dict” S-ECC and CF S. mutans with high accuracy. In addition
to SVM we also applied artificial neural networks algorithms to
determine the robustness of fragments in classifying strains
into S-ECC or CF. The recursive partitioning tree confirms
that just three of these fragments (0018, H7, and 0006) can
produce a classification accuracy of 94%. Thus, our method-
ology identifies an optimum combination of genes that may
have the highest effect on the characteristic of S. mutans.

These data demonstrated successfully that DNA biomarkers
obtained from SSH can be used to classify strains of S. mutans
into S-ECC and CF groups. Further independent validation
studies with larger sample size are warranted to evaluate the
true potentials of these biomarkers. Even though these types of
analyses do not tell us what the function or role of particular
genetic loci plays in heath or disease, it does provide a panel of
biomarkers that may be applicable to risk assessment. In ad-
dition, mapping of these fragments or biomarkers onto the
chromosome will lead to the possible discovery of genomic
islands or other horizontally acquired genetic loci that might be
important in contributing to the overall virulence of S. mutans,
including those which have yet to be identified. Since S. mutans
is largely transferred from mother to child, a chairside test
might be devised from these biomarkers capable of indicating
potential risk to a child based on their own or their mother’s
strains of S. mutans. If successful, such a test would have
tremendous public health implications for identifying children
at risk before they experience this devastating disease.
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