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1. Introduction
The term molecular mechanics (MM) refers to the use of simple potential-energy functions
(e.g., harmonic oscillator or Coulombic potentials) to model molecular systems. Molecular
mechanics approaches are widely applied in molecular structure refinement, molecular
dynamics (MD) simulations, Monte Carlo (MC) simulations, and ligand-docking simulations.

Typically, molecular mechanics models consist of spherical atoms connected by springs which
represent bonds. Internal forces experienced in the model structure are described using simple
mathematical functions. For example, Hooke’s law is commonly used to describe bonded
interactions, and the nonbonded atoms might be treated as inelastic hard spheres or may interact
according to a Lennard-Jones potential. Using these simple models, a molecular dynamics
simulation numerically solves Newton’s equations of motion, thus allowing structural
fluctuations to be observed with respect to time.

Dynamic simulation methods are widely used to obtain information on the time evolution of
conformations of proteins and other biological macromolecules1–4 and also kinetic and
thermodynamic information. Simulations can provide fine detail concerning the motions of
individual particles as a function of time. They can be utilized to quantify the properties of a
system at a precision and on a time scale that is otherwise inaccessible, and simulation is,
therefore, a valuable tool in extending our understanding of model systems. Theoretical
consideration of a system additionally allows one to investigate the specific contributions to a
property through “computational alchemy”,5 that is, modifying the simulation in a way that is
nonphysical but nonetheless allows a model’s characteristics to be probed. One particular
example is the artificial conversion of the energy function from that representing one system
to that of another during a simulation. This is an important technique in free-energy
calculations.6 Thus, molecular dynamics simulations, along with a range of complementary
computational approaches, have become valuable tools for investigating the basis of protein
structure and function.

This review offers an outline of the origin of molecular dynamics simulation for protein systems
and how it has developed into a robust and trusted tool. This review then covers more recent
advances in theory and an illustrative selection of practical studies in which it played a central
role. The range of studies in which MD has played a considerable or pivotal role is immense,
and this review cannot do justice to them; MD simulations of biomedical importance were
recently reviewed.4 Particular emphasis will be placed on the study of dynamic aspects of
protein recognition, an area where molecular dynamics has scope to provide broad and far-
ranging insights. This review concludes with a brief discussion of the future potential offered
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to advancement of the biological and biochemical sciences and the remaining issues that must
be overcome to allow the full extent of this potential to be realized.

1.1. Historical Background
MD methods were originally conceived within the theoretical physics community during the
1950s. In 1957, Alder and Wainwright7 performed the earliest MD simulation using the so-
called hard-sphere model, in which the atoms interacted only through perfect collisions.
Rahman8 subsequently applied a smooth, continuous potential to mimic real atomic
interactions. During the 1970s, as computers became more widespread, MD simulations were
developed for more complex systems, culminating in 1976 with the first simulation of a
protein9,10 using an empirical energy function constructed using physics-based first-principles
assumptions. MD simulations are now widely and routinely applied and especially popular in
the fields of materials science11,12 and biophysics.

As will be discussed later in this review, a variety of experimental conditions may be simulated
with modern theories and algorithms. The initial simulations only considered single molecules
in vacuo. Over time, more realistic or at least biologically relevant simulations could be
performed. This trend is continuing today.

The initial protein MD simulation, of the small bovine pancreatic trypsin inhibitor (BPTI),
covered only 9.2 ps of simulation time. Modern simulations routinely have so-called
equilibration periods much longer than that, and production simulations of tens of nanoseconds
are routine, with the first microsecond MD simulation being reported in 1998.13 In addition,
the original BPTI simulation included only about 500 atoms rather than the 104-106 atoms that
are common today. While much of this advancement results from an immense increase in
availability of computing power, major theoretical and methodological developments also
contribute significantly.

The number of publications regarding MD theory and application of MD to biological systems
is growing at an extraordinary pace. A single review cannot do justice to the recent applications
of MD. Using data from ISI Web of Science, the authors estimate that during 2005 at least 800
articles will be published that discuss molecular dynamics and proteins. The historical counts
are shown in Figure 1.

1.2. Protein Dynamics
The various dynamic processes that can be characterized for proteins have time scales ranging
from femtoseconds to hours. They also cover an extensive range of amplitudes and energies.
Many of these motions have critical roles in biochemical functions.14 Rapid and localized
motions may play a role in enzymatic reactions. Slower motions that occur on the scale of
whole proteins include allosteric coupling15 and folding transitions. Subunit associations occur
over even longer distances.

Simulations of the longer time scale folding events are covered elsewhere in this issue.16
Characteristic time scales for protein motions are shown in Table 1.

2. Application of Molecular Dynamics in the Study of Biomolecular
Phenomena

Molecular dynamics can now be routinely applied in the investigation of a wide range of
dynamic properties and processes by researchers in numerous fields, including structural
biochemistry, biophysics, enzymology, molecular biology, pharmaceutical chemistry, and
biotechnology. Using MD simulations, one is able to study thermodynamic properties and
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time-dependent (i.e., kinetic) phenomena. This enables an understanding to be developed of
various dynamic aspects of biomolecular structure, recognition, and function. However, when
used alone, MD is of limited utility. An MD trajectory (i.e., the progress of simulated structure
with respect to time) generally provides data only at the level of atomic positions, velocities,
and single-point energies. To obtain the macroscopic properties in which one is usually
interested requires the application of statistical mechanics, which connects microscopic
simulations and macroscopic observables.

Statistical mechanics provides a rigorous framework of mathematical expressions that relate
the distributions and motions of atoms and molecules to macroscopic observables such as
pressure, heat capacity, and free energies.17,18 Extraction of these macroscopic observables
is therefore possible from the microscopic data, and one can predict, for instance, changes in
the binding free energy of a particular drug candidate or the mechanisms and energetic
consequences of conformational change in a particular protein.

Specific aspects of biomolecular structure, kinetics, and thermodynamics that may be
investigated via MD include, for example, macromolecular stability,19 conformational and
allosteric properties,20 the role of dynamics in enzyme activity,21,22 molecular recognition
and the properties of complexes,21,23 ion and small molecule transport,24,25 protein
association,26 protein folding,27,16 and protein hydration.28

MD, therefore, provides the opportunity to perform a variety of studies including molecular
design (drug design29 and protein design30) and structure determination and refinement (X-
ray,31 NMR,32 and modeling33).

3. Molecular Dynamics Methods and Theory
Given the structure of a biomolecular system, that is, the relative coordinates of the constituent
atoms, there are various computational methods that can be used to investigate and study the
dynamics of that system. In the present section, a number of such methods are described and
discussed. The majority of important dynamics methodologies are highly dependent upon the
availability of a suitable potential-energy function to describe the energy landscape of the
system with respect to the aforementioned atomic coordinates. This critical aspect is, therefore,
introduced first.

3.1. Potential Functions and the Energy Landscape
Choice of an appropriate energy function for describing the intermolecular and intramolecular
interactions is critical to a successful (i.e., valid yet tractable) molecular dynamics simulation.
In conventional MD simulations, the energy function for nonbonded interactions tends to be a
simple pairwise additive function (for computational reasons) of nuclear coordinates only. This
use of a single nuclear coordinate to represent atoms is justified in terms of the Born-
Oppenheimer approximation.34 For bonded groups of atoms, that is those that form covalent
bonds, bond angles, or dihedral angles, simple two-body, three-body, and four-body terms are
used, as described below.

The energy functions usually consist of a large number of parametrized terms. These
parameters are chiefly obtained from experimental and/or quantum mechanical studies of small
molecules or fragments, and it is assumed that such parameters may be transferred to the larger
molecule of interest. The set of functions along with the associated set of parameters is termed
a force field. A variety of force fields have been developed specifically for simulation of
proteins.
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There are notable exceptions, but it is usual for a force field to be purely additive. For instance,
bond lengths are not considered to be dependent on the bond angles, and atomic partial charges
are fixed in magnitude. This is generally considered to give a reasonable, although not flawless,
35 approximation of the potential-energy landscape. Alternative methods for probing dynamics
might demand additional restrictions or properties to be satisfied by the potential functions,
and these are detailed in the appropriate sections of this review.

Some force fields, often termed class II force fields, do incorporate cross terms or higher order
terms.36–38 These class II force fields were typically developed to reproduce vibrational
spectra accurately or treat structures with geometries far from their equilibrium values.

One fairly typical and widely applied force field is the CHARMM22 force field.39–41 Like
all widely applied force fields, it consists of several discrete terms. Each of these terms
possesses a simple functional form and describes an intermolecular or intramolecular force
exhibited within the system given the set of relative atomic coordinates

(1)

where Kd, KUB, Kθ, Kχ, and Kϕ are the bond length, Urey-Bradley (1–3 bond length), bond
angle, dihedral angle, and improper dihedral angle force constants, respectively. Likewise, d,
S, θ, χ, and ϕ are the bond length, Urey-Bradley (1–3 bond length), bond angle, dihedral angle,
and improper dihedral angle values exhibited in the current configuration, and the zero
subscript represents the reference, or equilibrium, values for each of those. These terms
represent the bonded interactions. The final term in the function represents the nonbonded
interactions, incorporating Coulombic and Lennard-Jones interactions. εij relates to the
Lennard-Jones well depth, Rij

min is the distance at which the Lennard-Jones potential is zero,
qi is the partial atomic charge of atom i, εl is the effective dielectric constant, and rij is the
distance between atoms i and j. The Lorentz-Berthelodt combination rules42 are used to obtain
the necessary Lennard-Jones parameters for each pair of different atoms; εij values are the
geometric mean of the εii and εjj values, while Rij min values are the arithmetic mean of the
Rii

min and Rjj
min values. Values for the atomic partial charges, qi, are determined from a

template-based scheme, with charges often modified to reproduce dielectric shielding effects
(i.e., to mimic some of the effects of shielding from a high dielectric constant solvent). This
εl is usually set to unity for simulations incorporating explicit solvent representations.

Using eq 1 one may evaluate the potential energy, V(r), of the system from a single set of
atomic coordinates since the relevant distances and angles are easily determined. The energy
is that of a single instance, termed a snapshot, of the system.

V(r) includes contributions from every bond angle and dihedral angle in the system; however,
it might be noted that many Urey-Bradley terms and improper dihedral angles are not used.
Only those that are required for fitting computational results to observable vibrational spectra
are utilized. In addition, the linear term in the original Urey-Bradley function is not incorporated
at all. This is a reasonable approximation because it has been shown that, when Cartesian
coordinates are used, only the quadratic term is required for determining vibrational
frequencies.43 The nonbonded terms are applied to all atoms except those attached through
one or two covalent bonds. In certain, specific, cases the Lennard-Jones term is adjusted for
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atoms connected through three covalent bonds in order to accurately reproduce experimentally
observed structures. An example of such a case is the nitrogen and oxygen atoms of amides.

For the purposes of MD, it is advantageous for the force field to have efficiently accessible
first and second derivatives with respect to atomic position (which correspond to the physical
characteristics of atomic force and force gradients, respectively), and this is one of the more
notable reasons for the very simple mathematical forms generally chosen.

The CHARMM force fields have been separately parametrized for proteins,39 nucleic acids,
44 lipids,45 and carbohydrates46,47 with the goal of consistency between these sets, allowing
for simulation of heterogeneous systems. Different force fields exist for small organic
molecules48–51 and nonbiological macromolecules such as zeolites.

3.2. Energy Minimization
Although not strictly a dynamics method, energy minimization is a fundamental concept upon
which much of the theory discussed in this review is built.

Given a set of N independent variables, r, where r = (r1, r2, r3, …, rN), the task is to find the
values for each of those variables, termed rmin, for which a particular function, V(r), has its
global minimum. In the case of a molecular mechanics protein model, N is typically three times
the number of atoms (resulting from three degrees of freedom per atomic coordinate), r encodes
the atomic coordinates (e.g., the Cartesian coordinates), and V is the potential energy as given
by an equation such as eq 1. It may be seen that computationally this task is a nonlinear
optimization problem.

Numerous algorithms exist for solving such nonlinear optimization problems, and a small
selection of these are widely applied in molecular mechanics modeling of proteins. Relevant
algorithms are reviewed elsewhere.52,53

It is extremely difficult to locate the global minimum of a general nonlinear function with more
than a dozen independent variables. Typical biomolecular systems with as few as a hundred
atoms will be described with on the order of 300 variables; thus, it is usually impossible to
provably locate the global minimum. Also, while energy minimization methods may be used
to efficiently refine molecular structures, they are totally inadequate for sampling
conformational space. Given an unrefined molecular structure with bond angles and lengths
distorted from their respective minima or with steric clashes between atoms, energy
minimization methods can be very useful for correcting these flaws and are therefore routinely
applied to protein systems. The most popular methods include those that use derivatives of
various orders, including the first-order (i.e., utilizes first-order derivatives) steepest descent
and conjugate gradient methods and the second-order (i.e., utilizes second-order derivatives)
Newton-Raphson method.

The steepest descent method is one of several first-order iterative descent methods. These all
utilize the gradient of the potential-energy surface, which directly relates to forces in the MM
description of molecular systems, to guide a search path toward the nearest energy minimum.
Because this corresponds to reducing the potential energy by moving atoms in response the
force applied on them by the remainder of the system, this method is attractive as it may be
considered to have a behavior that is physically meaningful. Formally, the force vector is
defined as F(r) = −d/dr V(r) where r is the vector of atomic coordinates.

In all of the iterative descent methods, a succession of atomic configurations are generated by
applying, for iteration k, the relationship x(k) = x(k − 1) + λ(k)F(k), where the vector x represents
the 3N dimensional configuration, λ(k) is a step size, and F(k) is the force vector. The step size
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for the first iteration is usually selected arbitrarily or else by some simple heuristic. After every
iteration this step size is adjusted according to whether the overall potential energy of the system
was reduced or increased by that step. If the energy increased, it is assumed that the step size
was sufficiently large to jump over the local minimum along the search direction, and
accordingly the step size is reduced by some multiplicative factor, typically 0.5. In the event
that the energy was indeed reduced, the step size is increased by some factor, typically around
1.2. This continual adjustment of the step size keeps it roughly appropriate for the particular
curvature of the potential-energy function in the region of interest. While the steepest descent
method is highly inefficient for multidimensional problems with irregular potential surfaces
with multiple local minima, it is robust in locating the closest local minimum. Consequently,
the global motions required to locate the global energy minimum will not be observed.
Nonetheless, it is very effective in removing steric conflicts and relaxing bond lengths and
bond angles to their canonical values.

The Newton-Raphson method is a popular second-derivative method, although it requires some
simple modifications before it is suited to typical biomolecular MM systems. The basic method
relies on the assumption that, at least in the region of the minima, the potential energy is
quadratically related to the individual variables. V(xi) ≃ a + bxi + cxi

2, where a, b, and c are
constants. This leads to first and second derivatives of

(2)

At the minimum, dV(xmin)/dx = 0, so xmin may be calculated using

(3)

For quadratic surfaces, no iterative searching is necessary since the exact minimum may be
determined from the current configuration and the derivatives at that configuration.
Unfortunately, biomolecular MM systems tend to be extremely nonquadratic and also contain
many local minima. These characteristics render the basic Newton-Raphson method less
useful. However, it has found widespread use as a method for efficiently completing the
optimization performed via an alternative method. One modified form of the method, adopted
basis set Newton-Raphson (ABNR), is very effective for large biomolecular systems.41

3.3. Adiabatic Mapping
The simplest approach to studying motion in proteins is the characterization of low-energy
paths for specific motions. This approach is termed “adiabatic mapping”.54

The protocol typically followed involves forcing specific atoms to move along a predetermined
path to cause a structural change of interest. The remaining atoms are allowed to move freely,
subject to the potential-energy landscape, to reduce (or minimize) the overall potential energy
at each point along the path. It is assumed that, since shifts in atomic coordinates will roughly
correspond to the structural fluctuations required to allow the motion, these energies
approximate the change in energies that should be observed during the associated real,
spontaneous, motion.

Adiabatic mapping is computationally inexpensive and has therefore been applied to study
many structural changes of various magnitudes or scales. No direct information on the time
scales of dynamic mechanisms is obtained, although some approximate results can be derived
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from the relaxed energies in analytical models of the dynamics (e.g., the Langevin equation,
below).

The major flaw in this method is the dependence of the results on the path selected to represent,
or drive, the entire motion. If the motion actually proceeds along a different path, then
misleading results will be obtained. Quantitative errors are also to be expected due to any
incomplete conformational relaxation, chiefly overestimation of enthalpy barriers caused by
incomplete relaxation of delocalized strain. Energy minimization algorithms tend to be
inefficient with respect to nonlocal strain (i.e., that which may be driving large domain
motions). In addition, this approach ignores certain important thermal effects. For instance,
neither the entropy nor the temperature dependence of the enthalpy is ordinarily obtained,
despite these being important factors in the kinetics of structural motions.

3.4. Molecular Dynamics
In simple terms, molecular dynamics simulations involve the iterative numerical calculation
of instantaneous forces present in a MM system and the consequential movements in that
system. The MM system consists of a set of particles that move in response to their interactions
according to the equations of motion defined in classical (i.e., Newtonian) mechanics. Classical
MD is much more efficient than might be expected from full consideration of the physics of
biomolecular systems due to the number of substantial approximations. Notably, quantum
dynamical effects are usually ignored. Instead, each particle (typically a single atom, but
sometimes a rigid set of atoms) is considered to be a point mass. This approximation is justified
in terms of the Born-Oppenheimer approximation34 (i.e., only the nuclear displacements need
to be considered). This section provides a brief overview of the concepts upon which molecular
dynamics simulations are justified and implemented.

For an atom, i, with mass mi, and position indicated by the 3-dimensional vector ri, the
relationship between the atom’s velocity and momentum, pi, is

(4)

The net force, Fi, exerted on the atom i by the remainder of the system is given by the negative
gradient of the potential-energy function with respect to the position of atom i

(5)

The Newtonian equation of motion for atom i is

(6)

Given the position with respect to a single component of vector ri, (that is the position along
a single dimension, x) at a specific time, t, then the position after a short and finite interval,
denoted Δt, is given by a standard Taylor series

(7)

The position x(t), the velocity dx(t)/dt, and the acceleration d2x(t)/dt2 are sufficient for
numerical solution to the equations of motion if some approximation to account for higher
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order terms in the Taylor series can be made. For this single dimension, Newton’s second law
describes the acceleration

(8)

where Fx is the component of the net force acting on the atom parallel to the direction of x.

This just leaves the unspecified approximation for the infinite series of higher terms from the
Taylor expansion to be devised. The simplest approach is to assume that the higher terms sum
to zero, effectively truncating the Taylor expansion at the second derivative, the acceleration.
In the general case, this is a very poor approximation as highlighted by consideration of
Newton’s third law. The net force acting in the entire system should be zero, resulting in
conservation of the total energy (i.e., kinetic plus potential energies) and conservation of the
total momentum. With the simple approximation suggested, significant fluctuations and
drifting over time occur in the total energy of the system as a simulation progresses. A wide
range of improvements to this simple approximation are used in modern molecular dynamics
software, many of which are described later in this review.

Numerous algorithms exist for integrating the equations of motion.55–58 Many of these are
finite difference methods in which the integration is partitioned into small steps, each separated
in time by a specific period Δt because the continuous potentials describing atomic interaction
preclude an analytical solution. The simple Verlet algorithm55 uses the atomic positions and
accelerations at time t and the positions from the prior step, x(t − Δt), to determine the new
positions at t + Δt

(9)

A slight modification of this, known as the leapfrog algorithm,59 is popular. The leapfrog
algorithm uses the positions at time t and the velocities at time t − (Δt/2) for the update of both
positions and velocities via the calculated forces, F(t), acting on the atoms at time t

(10)

(11)

Alternative finite difference method integrators include the velocity Verlet method57 and the
Beeman algorithm.56 The velocity Verlet method synchronizes the calculation of positions,
velocities, and accelerations without sacrificing precision. The Beeman algorithm exhibits
improved energy conservation characteristics due to its more accurate expression for velocities.

All of these commonly used integrators are time reversible. This means the direction of
simulation in time is arbitrary. If the velocities of all atoms were swapped in sign, the simulation
would run in exactly the reverse direction.

The computational expense of using any particular integration scheme is important, but for
practical simulations of proteins another consideration becomes even more critical. The
computational demands of the integration method are insignificant compared to the calculation
of all the forces acting within the system. It is therefore advantageous to limit the number of
force calculations required during the simulation. One method for doing this is to select an
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integrator that allows longer time steps without deviating significantly from the path of an
exact, analytical trajectory.

The degree to which the Taylor series expansion is important in determining the accuracy of
each integrator depends on which terms they include. The largest term in the Taylor expansion
which is not considered in a given integration scheme defines the, so-called, order of that
method. The Verlet algorithm, for example, is a fourth-order method with terms beyond Δt4
truncated.

A family of integration algorithms which are correct to a selected error order are known as the
predictor-corrector methods.58 These methods initially estimate the positions, velocities,
accelerations, and any desired higher order terms of the Taylor expansion. Next, forces are
calculated with these estimated positions giving new accelerations at time (t + Δt). The two
sets of accelerations are compared, and a correction step adjusts the originally estimated
positions, velocities, etc.

3.4.1. Simulated Environment—A range of experimental conditions can be simulated by
MD. The earliest protein simulations9,10,60 considered the molecules as isolated entities,
effectively in a vacuum. Later simulations included explicit water and neighboring protein
molecules as in a crystal environment. It is now conventional to duplicate the system
periodically in all directions to represent an essentially infinite system. Typically, a cubic lattice
is used for replication of the central cubic box. The atoms outside the central box are simply
images of the atoms simulated in that box. So-called periodic boundary conditions ensure that
all simulated atoms are surrounded by neighboring atoms, whether those neighbors are images
or not. The so-called minimum image conVention guarantees that duplicate interactions
between atoms are not included by calculating only one pairwise interaction for each pair of
atoms. For atoms i and j, the interaction is that between the original atom i and whichever copy
of atom j, original or image, is closest to atom i.

Periodic boundary conditions are not restricted to cubic systems. Other geometries are used
including the rhombic dodecahedron61 and the truncated octahedron.62 These can
significantly reduce the number of solvent atoms required in the system, leading to a
corresponding reduction in the computational requirements. The range of possible geometries
suitable for periodic systems is limited, but stochastic boundary conditions63 can be utilized,
in the absence of periodicity, with any system geometry.

Stochastic boundary conditions are particularly useful when investigating only a particular
region such as the binding site in a ligand-binding study. This enables much of the system that
would otherwise be simulated to be excluded, thus saving considerable computational
resources. The region of interest is enclosed within a shell, usually spherical. The atoms
belonging to this shell region are subject to stochastic dynamics, for example, evaluated using
the Langevin equation. The stochastic shell region itself is enclosed in a bath region in which
the atoms are stationary. This outer region forms a barrier that maintains the overall structure
of the system, while the shell region accommodates any local fluctuations in conformation,
density, or energy that occur in the central region where standard MD is performed. This
approach has been applied in the study of proteins,64 but the restrictive boundaries in the
simplest models are known to introduce artificial density fluctuations and can alter the structure
of solvents such as water.65 More recent models have improved characteristics.66–68

3.4.2. SHAKE—From a fixed amount of computation, the length of a simulation is determined
by a number of factors including the cost of evaluating interactions, number of interactions
that need to be evaluated at each time step, period of that time step, and number of degrees of
freedom that need to be propagated. To increase the efficiency of a computer simulation, any
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of those four aspects might be improved upon. Increasing the time step period is, therefore, a
simple approach for extending tractable simulation time scales, but a number of factors limit
the step size.69 The number of interactions to evaluate may be reduced via the use of implicit
solvent models, discussed later in this review, or by a reduced representation of the
biomolecular structure, also discussed later.

Numerous algorithmic improvements can be applied to enhance the stability and increase the
efficiency of MD simulations. The use of integrators with good stability properties such as
velocity Verlet57 and extensions such as the reversible reference system propagator algorithm
method (RESPA)70 are typical and allow extended time steps to be utilized. Improvements in
efficiency are often obtained through freezing the fastest modes of vibration by constraining
the bonds to hydrogen atoms to fixed lengths using algorithms such as SHAKE,60,71
RATTLE,72 and LINCS.73 Specifically, the use of RESPA and fixing of bond lengths
involving hydrogen atoms with SHAKE, RATTLE, or LINCS allow the use of larger time-
step (Δt) sizes without any significant amount of degradation in the quality of the trajectory
(or in the accuracy of the simulation).

The SHAKE algorithm (otherwise known as the constrained Verlet method) is a
straightforward modification of the Verlet algorithm to impose constraints on the internal
coordinates such as bond lengths and bond angles. The length of the time step is restricted by
the requirement that Δt is small compared to the period of the highest frequency motions being
simulated. For the biomolecular systems of interest, the highest frequency motions are the bond
stretching vibrations, yet these vibrations are generally of minimal interest in the study of
biomolecular structure and function. Thus, algorithms, such as SHAKE, that constrain the
bonds to their equilibrium lengths are useful. In essence, they may be considered as averaging
out the highest frequency vibrations.

In the SHAKE algorithm all constraints are imposed through fixed interatomic distances. In
the case of bond lengths, single interatomic distances are sufficient. To constrain bond angles
the fact that three constituent atomic coordinates are related through three interatomic distances
is relied on.

If constraint k is on the distance between atoms i and j, then it may be expressed as

(12)

where rij is the vector from atom i to atom j (rij = rj−ri) and dij is the desired distance. At any
given step during the practical numerical simulation, the constraint is said to be satisfied
whenever the deviation is less than some threshold. In the case of SHAKE, the constraint is
satisfied when rij 2 −dij

2 < ε/dk 2, where ε is a constant and dk 2 is the equilibrium bond length.

All except the highest frequency motions of proteins are not noticeably affected, although
constraints are not recommended for valence bond angles except for those in the rigid water
models.74 This is chiefly due to coupling between the bond-angle motions and dihedral
motions. It is also usually applied only to the bonds with the fastest vibrations, namely, those
involving a hydrogen atom. Nonetheless, in practice the time step can typically be increased
by a factor of 3 compared to simulations with the original Verlet algorithm.

The LINCS constraint method directly resets the constraints rather than the derivatives of the
constraints (i.e., resets the constrained distances rather than the velocities), therefore avoiding
drift inherent in the SHAKE method. It is also reported to produce a further speed up of about
four times.73
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Other improved variations of SHAKE have been proposed, including MSHAKE,75 which
performs matrix inversion to solve the constraint equations. Such variants are suited to systems
with a limited number of interdependent constraints (e.g., water) where the cost of inverting
the matrix is favorable compared to performing a large number of iterations. This method is
also useful when a high level of accuracy in the application of constraints is desired. The
QSHAKE method76 introduces quaternion dynamics for rigid fragments. The total number of
holonomic constraints is reduced, thus obtaining convergence within fewer iterations and
increasing stability under larger time steps. Generalized SHAKE77 adds support for general
nonholonomic constraints, and no numerical drift is observed for large numbers of constraints
with this approach.

3.4.3. Experimental Conditions—Typically, it is important to accurately simulate the
experimental conditions to be replicated. Various values for physical conditions, such as
pressure and temperature, may be readily considered in the simulations.

Ensembles: An ensemble is a collection of all possible systems that have differing microscopic
states but belong to a single macroscopic or thermodynamic state.17 Various different formal
ensembles with differing characteristics exist. The most widely simulated are as follows. (1)
The canonical ensemble (NVT): This is the collection of all systems whose thermodynamic
state is characterized by a fixed number of atoms, N, fixed volume, V, and fixed temperature,
T. (2) The isobaric-isoenthalpic ensemble (NPH): An ensemble with a fixed number of atoms,
N, fixed pressure, P, and fixed enthalpy, H. (3) The isobaric-isothermal ensemble (NPT): An
ensemble with a fixed number of atoms, N, fixed pressure, P, and fixed temperature, T. (4) The
grand canonical ensemble (μVT): A thermodynamic state characterized by a fixed chemical
potential, μ, fixed volume, V, and fixed temperature, T. (5) The microcanonical ensemble
(NVE): A thermodynamic state characterized by a fixed number of atoms, N, fixed volume,
V, and fixed energy, E. This corresponds to a closed (i.e., isolated) system since energy is
conserved.

Most early simulations corresponded to the microcanonical ensemble under so-called free
dynamics. However, experiments are usually performed at constant temperature and volume
(i.e., the canonical ensemble) or constant pressure and temperature (i.e., the isobaric-isothermal
ensemble), so it is often desirable to simulate these conditions instead or mimic these conditions
or those expected under physiological conditions. During a simulation at constant energy, the
temperature will be observed to fluctuate due to the spontaneous interconversion of the kinetic
and potential components of the total energy. The instantaneous temperature may be evaluated
from the atomic velocities using

(13)

where kB is Boltzmann’s constant, mi and vi are the mass and velocity of atom I, respectively,
and N is the total number of atoms. If desired, the atomic velocities can be rescaled or otherwise
modified to keep the temperature constant during the course of a simulation. It is worth
mentioning that eq 13 must be corrected when constraint algorithms, such as SHAKE, are used.
78

To maintain a constant pressure during a simulation, the volume needs to be allowed to fluctuate
by adjusting the dimensions of the periodic box and rescaling the atomic positions accordingly.
Numerous methods exist for running MD simulations at a constant pressure properly. Methods
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include the extended system algorithm,79 the constraint algorithm,80 weak coupling to an
external bath,81 the hybrid method,82 and the LangeVin piston method.83

3.4.4. Solvation—A reasonable representation of a protein’s environment is important for
characterizing its properties through simulations. At today’s levels of understanding and
computational resources, it is not currently possible to fully consider the full physiological
environment of any typical protein. Certain specific cases can be considered more fully, but
the general case is too complicated. The nonphysiological cases that involve proteins in crystal-
packing arrangements or in vacuo (such as in the original BPTI simulation9) are comparatively
trivial. Even simulations of in vitro systems have particular issues to consider as outlined in
this section. Nonetheless, such systems are tractable, so an aqueous solvent is selected as the
environment for the vast majority simulations. Great strides have been made for simulations
in more specific environments such as those for transmembrane proteins.24,25,84,85

Implicit Solvation: Most proteins exist, at least partially, within an aqueous environment.
Justified by this fact, it is common to assume that a protein is fully solvated in pure or ion-
containing water during simulations. However, a considerable portion of the computation time
could be spent evaluating the solvent-solvent interactions. It is therefore desirable to avoid
using explicit water when possible. However, solvent effects are important and cannot be
totally disregarded. Consequently, numerous implicit solvent models have been developed.
86–89

In addition to the dielectric screening effects, an explicit solvent contributes specific
interactions that are often important for mediating protein structure or function. Thus, explicit
solvents play an important role in simulations for the accurate consideration of electrostatic
effects90 and for the valid decomposition of free energies, for example. Conversely, implicit
models of solvation allow for better direct estimations of free energies of solvation than explicit
solvation models.91 The statistical mechanical characteristics and properties of implicit
solvation models have been rigorously examined.92

One implicit solvent model is the generalized Born (GB) model93,88 which, especially on
parallel computer systems, can be used to run significantly faster MD simulations than can
explicit solvent models.94 Like all implicit models, GB is known to be unable to reproduce
certain microscopic solvent features.87 Moreover, implicit solvent models are known to
facilitate modified conformational dynamics of protein molecules when compared to explicit
models,95 which is usually undesirable. A hybrid method which incorporates explicit solvent
molecules in a defined region of the system, such as a binding site or a channel, is the
generalized solvent potential method.96 In this method a static solvent-shielded field from the
biomolecular solute is calculated using a finite-difference Poisson-Boltzmann method. This
field is used to impose a solvent reaction field, and the specific region of interest for explicit
solvent is hydrated.

Apolar solvation models, using a cavity potential plus dispersion potential decomposition, such
as the analytical generalized Born and nonpolar (AGBNP) solvent model,97 have been shown
to be very effective. The apolar component is likely to be necessary in the exploration of larger
conformational changes.98 This overcomes the poor correlation often found between the apolar
forces from explicit solvent and implicit solvent simulations.99

Explicit Water Models: For cases when explicit consideration of the solvent is desirable, or
necessary, there is a wide range of explicit water models available. The most popular of these
models include TIP3P, TIP4P,100 TIP5P,101 SPC, and SPC/E.102
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Commonly, the parameters in water models are adjusted such that the enthalpy of vaporization
and the density of water are reproduced in simulations. All of the above models have a dipole
moment of about 2.3 D instead of the experimental gas-phase value of 1.85 D. The temperature
dependence of the density of water is not described well by any of these models perhaps except
the TIP5P model.

The most popular models for water are all consistent with the SHAKE approximation,
discussed above, since these models for water treat the molecules as completely rigid.

MD simulations with only a thin layer of water around the protein can overcome some of the
problems of a purely implicit solvent.103–105 The restrained water droplet model applies a
weak harmonic restraining force to a 5 Å shell of water.106

Electrostatics: Long-range electrostatic interactions107 play a dominant role in protein
structural stability and are also crucial determinants in the initial encounter of many association
processes.26 Typically, the most computationally expensive portion of a MD simulation is the
evaluation of these long-range electrostatic interactions.108,109 As the number of charges in
a system increases, the number of Coulombic interactions will grow as the square of that
number, potentially resulting in a prohibitively large number of interactions to evaluate.

In earlier MD simulations, a cutoff was applied to the distance of electrostatic interactions,
known as spherical truncation.110,111 The interactions beyond that cutoff distance, for
instance, at 12 Å, were ignored so that the maximum number of interactions becomes bounded,
assuming a finite density. An abrupt cutoff distance introduces an energetic discontinuity into
the system, and this can lead to unstable simulations, so smoothing functions are often applied
instead. To further reduce the computational cost, group-based neighbor lists were introduced,
but it is known that with such techniques the energy is not conserved.111 The twin-range cutoff
method overcomes some of these problems. The technique calculates the short-range
electrostatic interactions at every time step, while the long-range interactions are only
recalculated immediately after the nonbonded neighbor list is recalculated.

The Ewald summation method112 offers a theoretically rigorous approach to the evaluation
of electrostatic interactions in infinite periodic systems. While the original method is not well
suited to efficient calculations within biomolecular MD simulations, more recent work113,
114 has introduced versions with improved computational complexity (N log N complexity),
and these are widely applied. Particularly for systems with large periodic boxes and high
dielectric solvents, the artifacts observed in simulations with the Ewald summation methods
are insubstantial.115,116 These methods were demonstrated as being relatively efficient.

For systems that are naturally two dimensional, special Ewald summation and particle mesh
Ewald (PME) methods can be applied.117,118 Such systems often include those in the
simulation of transmembrane proteins that are typically simulated with periodicity in the plane
of the membrane but with a finite length perpendicular.

The fast multipole (FM) method also offers an efficient way (computational complexity O(N))
to handle long-range electrostatic interactions.114

An alternative to explicitly including all interactions in an infinite system, as is done by the
Ewald and FM methods, but still considering those interactions unlike the spherical truncation
methods, is to use a reaction field.67, 96 This seeks to represent the surroundings by mimicking
the response of the dielectric medium beyond the cutoff distance or boundary. While it is still
an approximation, this gives stable and accurate results.119,109
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For nonperiodic systems, provided that they are large, multipole expansion120 and multigrid
methods121,122 are both efficient and useful.

3.5. Langevin Dynamics
Langevin dynamics incorporates stochastic terms to approximate the effects of degrees of
freedom that are neglected in the simulation. It is based on use of the Langevin equation as an
alternative to Newton’s second law. This equation incorporates two additional terms. The first
term is a frictional, or damping, function that is intended to represent the fictional drag
experienced by solute molecules in a solvent that is not explicitly simulated. The second
additional term is a random force that is applied to mimic the random impulses that would be
expected from both the solvent and any coincident solute molecules. The Langevin equation
for the motion of an atom, i, is

(14)

where Fi(r) is the usual term used in conventional MD, ζi is the friction coefficient, and Ri(t)
represents the random forces experienced by the atom. The temperature of the simulated system
is maintained by a relationship between ζi and Ri(t) (namely, the fluctuation-dissipation
theorem). When ζi = 0, Langevin dynamics is equivalent to conventional MD. When ζi > 0,
the random impulses felt by the system can assist in propagating barrier-crossing motions and,
therefore, Langevin dynamics can offer improved conformational sampling characteristics
over standard MD.

3.6. Brownian Dynamics
Brownian dynamics (BD) is a diffusional analogue of molecular dynamics26,123,124 carried
out through the numerical integration of the Langevin equation. When the solvent surrounding
a molecule has high effective viscosity, the motion of that molecule can be described in terms
of a random walk since the damping effect of the solvent will overcome any inertial effects.
The Brownian dynamics method seeks to simulate the random walk to produce a representative
diffusional trajectory. This is achieved by using a very large friction coefficient, ζi, in the
Langevin equation. In the case that a process of interest is diffusion controlled, Brownian
dynamics is a useful and widely applied approach that is complementary to molecular
dynamics. It is common, but not essential, for proteins to be treated as rigid bodies in BD
simulations. As a result of the relative computational requirements of Brownian dynamics
methods compared to molecular dynamics, time scales in the microsecond or millisecond range
are readily accessible.26

Examples of biological processes which are amenable to study by Brownian dynamics include
diffusion-controlled reactions, diffusional encounters, and ionic diffusion under the influence
of an electrostatic field.

The choice of MD versus Langevin dynamics versus BD needs to be carefully considered
depending upon which contributions are thought to dominate in the motion of interest.

3.7. Monte Carlo
Structural and thermodynamic properties of a system can be obtained through Monte Carlo
(MC) simulations, thus making these a significant alternative to molecular dynamics
simulations. Monte Carlo simulations are a stochastic approach to the task of generating a set
of representative configurations under given thermodynamic conditions such as temperature
and volume.
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One attractive aspect of conventional MC simulations is that only the potential energy is
normally used in stepping through configurations; no forces need evaluation, resulting in more
efficient calculations. Some biased MC approaches do utilize force data, however.

In its simplest form, the Monte Carlo algorithm is a method for numerical integration. A set
of parameters are randomly selected, or randomly perturbed, and a function of these parameters
is evaluated. The results of many such steps are collated, and once sufficient sampling has
occurred, the probabilities of any given result occurring can be readily assessed.

Metropolis et al.125 introduced a technique known as Metropolis Monte Carlo simulation. In
this scheme, the problem is described in terms of a thermodynamic system at potential energy,
V, and temperature, T. With a constant T, the initial configuration is perturbed and the change
in energy dV is computed. If the change in energy is negative, the new configuration is accepted.
If the change in energy is positive, it is accepted with a probability given by a Boltzmann factor.
This process is iterated until sufficient sampling statistics for the current temperature T are
achieved. This procedure simplifies the calculation of the Boltzmann average for any
observable property since it is now just the mean value of this property over all samples.

There are a number of issues that seriously hamper the use of Monte Carlo simulations with
large biomolecules. Importantly, efficient moves are difficult to define for macromolecules.
That is, it is difficult to devise simple structural perturbations that cause changes of a
sufficiently large magnitude but also avoid generating energetically infeasible configurations.
Some work has eased this issue for proteins, however.126,127

Conventional MC methods are inefficient for exploring the configurational space of large
biomolecules when compared to molecular dynamics.128 In addition, MC methods give no
information about the time evolution of structural events. Hybrid MC/MD methods might
resolve both of these issues and are described in the literature.129–131 A conceptually related
procedure, known as the relaxed complex method, is discussed later in this review.

3.8. Simulated Annealing
The simulated annealing algorithm132 is related to the MC algorithm and forms an efficient
technique to find the minimum energy configuration of a system. The usual Metropolis Monte
Carlo algorithm is inefficient at sampling configurations that are beyond high potential-energy
barriers; thus, it is only useful when starting at a configuration that is already near the global
energy minimum well. Simulated annealing overcomes this problem by initially performing
Monte Carlo steps at a very high temperature. According to a periodic schedule, this simulation
temperature is decreased at a logarithmic rate (or, sometimes, a linear rate) until the temperature
reaches zero. This procedure is widely used in protein modeling or refinement applications.
As with conventional MC methods, no information about the time evolution of structural events
can be obtained.

The diffusion equation method (DEM) potential smoothing method133,134 (as discussed in
Enhanced Sampling section of this review) is an analytical equivalent to simulated annealing.
135

Similar temperature scaling procedures utilizing MD instead of MC for generating
configurations are discussed in the Enhanced Sampling section of this review, below.

3.9. Nondynamic Methods
3.9.1. Conformational Sampling—Numerous nondynamic methods besides MC and SA
exist for sampling available conformational space of proteins.136
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CONCOORD137 is a method that does not generate a time series of configurations. However,
it does generate conformations that satisfy a set of distance constraints. This is different to the
above algorithms since it does not rely on a potential surface. The structures are obtained
through purely geometric considerations. This allows for some conformations that might never
be found in an MD simulation or other energy-based methods and is therefore complementary
to the dynamical simulation methods.

3.9.2. Principal Component Analysis—Principal component analysis (PCA) is a method
that is often used for reducing the dimensionality of a dataset. For an arbitrary dataset where
there is significant correlation between the dimensions, or individual variables, the first
principal component is the linear combination of these variables which gives the best-fit line
through the entire dataset. In other words, it is the linear combination which describes the
greatest amount of variance in the data. The second and subsequent principal components are
fit to the residual variation remaining after the more significant principal components are
excluded. All principal components are orthogonal.

The separation of functionally important motions from the random thermal fluctuations of a
protein is one of the challenges of trajectory analysis. PCA of the covariance matrix of the
atomic coordinates is termed essential dynamics (ED).138 This is a powerful method for
extracting the significant, large-scale, correlated motions occurring in a simulation. In this
sense, the principal components are the orthogonal basis set for the trajectory’s atomic
coordinates. The principal components corresponding to the greatest variance can be projected
onto the protein structure, either individually or in sets. All other motions, including the smaller
thermal fluctuations, will be filtered out. This facilitates visualization and appreciation of the
major motions that may be biologically relevant.139

3.10. QM/MM
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods140 have reached a
viable state and are rapidly gaining popularity.21,141

QM/MM methods are particularly useful since they allow the study of biomolecular reaction
mechanisms. This is a task for which conventional MM is unsuitable owing to their assumption
that bonds are never made or broken. Conventional QM methods are also unsuitable for this
task owing to their computational expense, making calculations on the scale of entire solvated
proteins currently intractable. QM/MM methods are beyond the scope of this review but are
covered elsewhere in this issue.142

4. Free-Energy Calculations
The purpose of a MD simulation is often to derive kinetic and thermodynamic data about the
model system. Indeed, many thermodynamic properties can be readily extracted from sufficient
sample configurations of a system. As an example, the entropy of a system is directly related
to the number of different configurations that are thermally accessible to it.17

One very important thermodynamic quantity is free energy, a measure of the stability of a
system. In particular, free energy of binding is a measure of the stability of a complex, a measure
that is probably fundamental to all studies of biomolecular binding processes.

Rigorous techniques, including the thermodynamic cycle-perturbation method,143 exist for
the estimation of free energies from simulations. However, such calculations are generally only
practical for small or highly constrained systems. Often the calculations are extremely
expensive or the level of sampling required for reliable statistics might be beyond the feasible
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limits. Methods for speeding up free-energy calculations are valuable.144 Recent methods for
free energy of binding estimation are briefly discussed below.

4.1. Free Energy of Binding
The interactions between proteins and other molecules are critical to many biological systems
and processes. Signal transduction, metabolic regulation, enzyme cooperativity, physiological
response, and other processes are all dependent upon noncovalent binding. These processes
may be investigated through modeling and simulation, particularly as the range of solved
protein structures grows. Through MD, MC, and the various related methods described in this
review, binding modes and the corresponding binding free energies6 may be estimated for
protein-ligand and protein-protein complexes.

Approaches available for estimating either relative or absolute binding free energies cover a
broad range of accuracies and computational requirements. Free-energy perturbation (FEP)
and thermodynamic integration (TI) methods are computationally expensive, but they have
been successfully applied in the prediction of the binding strengths for complexes.5,145 Many
more or less rigorous methods146 have been developed to estimate such free energies more
rapidly. These include the linear interaction energy (LIE) method,147 the molecular
mechanics/Poisson Boltzmann surface area (MM/PBSA) method,148,149 the chemical Monte
Carlo/molecular dynamics (CMC/MD) method,150,151 the pictorial representation of free-
energy components (PRO-FEC) method,150,152 the one-window free-energy grid (OWFEG)
method,153,154 the λ-dynamics method,155,156 and the 4D-PMF method,157 among others.

MM/PBSA—The molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) model
is a so-called endpoint free-energy method; only the initial and final states of the system are
evaluated to estimate a free-energy change. This compares to the more accurate FEP and TI
methods that require an equilibrium sampling of the entire transformation path, from an initial
to a final state. End-point methods are computationally efficient, and consequently, they are
widely discussed and applied in the literature. Despite their simplicity, a connection between
statistical thermodynamics and various end-point free-energy models has been derived.148,
158–161 Certain limitations of MM/PBSA must be considered, including the fact that there is
no consideration of specific water interactions, it is sensitive to the trajectory, and it is sensitive
to induced fit effects.

MM/PBSA149,162,163 is basically a postprocessing method to evaluate the standard free
energies of molecules or the binding free energies of molecular complexes in a relatively
computationally efficient manner.

The MM/PBSA method partitions the free energy into molecular mechanical (MM) energies,
continuum solvation energies, and solute entropy terms as follows

(15)

where 〈Gmol〉 is the average standard free energy148 of the molecule of interest, which can be
the ligand, the receptor, or their complex. 〈GPBSA〉 is the molecular solvation free energy. The
solute’s entropy term may be estimated using a number of methods.

The average molecular mechanical energy, 〈EMM〉, is typically defined as

(16)
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where Ebond, Eangle, Etorsion, Evdw, and Eelec are the bond, angle, torsion, van der Waals, and
electrostatics terms of intramolecular energy, respectively.

The molecular solvation free energy can be further decomposed to

(17)

where 〈GPB〉 is the average electrostatic contribution from molecular solvation, γ is the surface
tension of the solvent, and A is the solvent-accessible surface area (SASA). The electrostatic
solvation free energy, GPB, can be calculated using

(18)

where N is the number of atoms in the molecule, qi is the electrostatic charge of atom i, and
φi

aq and φi
g are the electrostatic potentials of atom i in the aqueous and gas phase, respectively,

which are usually obtained by solving the Poisson-Boltzmann equation.164,165

4.2. Activated Molecular Dynamics
Many biological processes are intrinsically fast but, since these processes occur infrequently,
appear to have long time scales. As an example, many reactions and conformational transitions
exhibit long time scales because they consist of one or more activated processes. In fact,
activated processes such as local conformational changes associated with ligand binding166
are widespread in biology. An activated process is one in which a high-energy barrier exists
between the initial and final states and this barrier must be overcome. The actual barrier
crossing is often relatively rapid, but the time required for the system’s random thermal
fluctuations to provide the constituent atoms with suitable momentum can be long.

Conventional MD is unsuitable for investigating activated processes in biology because the
tractable simulation time scales are of the order of nanoseconds while the biological process
might take milliseconds or longer. However, a procedure known as actiVated molecular
dynamics makes the study of such processes possible provided that the primary structural
changes for the process are known beforehand.

Activated molecular dynamics is a two-stage process. First, a series of simulations is
performed. Each of these simulations is constrained to a successive portion of the transition
pathway. The purpose of these simulations is to locate the free-energy barrier peak. The second
stage involves running conventional simulations from the region of the free-energy barrier.
The resulting trajectories can be run in forward and reverse to generate a set of representative
barrier crossing events. Analysis of these trajectories gives useful information regarding the
mechanism of the activated process.167

4.3. Steered Molecular Dynamics
Steered molecular dynamics (SMD) simulations introduce a time-dependent or position-
dependent force. The purpose of this force is to steer systems along particular degrees of
freedom. This allows one to focus on dynamic events of interest while keeping computational
expense to a minimum.168,169 For example, the external force could drive a particular binding
or unbinding event.

SMD offers scope for interactive steering in an immersive 3D environment. Implementations
of such interactive environments include one170 based on SIGMA171 and VMD172 and
another based on NAMD and VMD that utilizes a haptic feedback device.173
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In many respects, SMD simulation is the computational analogue of the experimental
techniques which apply external mechanical manipulations to biomolecules. These
experimental techniques include atomic force microscopy (AFM),174 optical tweezers,175
biomembrane force probes,176 and dynamic force spectroscopy177 experiments.

In the limit of weak forces that only slowly change in direction, any induced structural change
will be minor and SMD will be equivalent to umbrella sampling. The results of SMD
simulations are, however, often more interesting when this limit is violated significantly. Such
conditions would be disastrous to many applications of standard molecular dynamics, including
umbrella sampling itself and also methods relying upon free-energy perturbation theory and
the weighted histogram analysis. Therefore, SMD might be useful in cases where major
structural changes will be experienced and correspondingly major deviations from equilibrium
would occur. Examples of such nonequilibrium cases include ligand unbinding and protein
unfolding as initiated by stretching of termini. Equilibrium descriptions cannot be applied in
the analysis of such simulations. Therefore, the extraction of valid potentials of mean force
from SMD simulations is not straightforward, but several approaches have been proposed.
178–181 Free-energy differences can be obtained from the exponential averages of irreversible
work,182,183 and this leads to the most promising approach employed in extracting free-
energy profiles from SMD simulations.184,185

Jarzynski’s equation182,183 relates equilibrium free-energy differences and work done
through nonequilibrium processes. Consider a system described by a parameter λ and a process
that causes this parameter to evolve from λ0 at time zero to λt at time t. According to the second
law of thermodynamics, assuming the system is quasi-static, the average work done on that
system cannot be smaller than the difference between free energies of the system corresponding
to λ0 and λt

(19)

In other words, a nonequilibrium process provides only an upper limit to the free-energy
difference. Jarzynski182 proposed an equality that is independent of the speed of the process

(20)

where the average is over a set of trajectories of the nonequilibrium process.

This equality has been validated both experimentally186 and through computational
simulation.183 Thus, the equality provides a method for calculating free energies from non-
equilibrium processes despite conventional thermodynamic integration being invalid because
ΔF does not equate to 〈W〉. The major difficulty that remains, however, is that the average of
exponential term of Jarzynski’s equality is dominated by trajectories corresponding to small
values of work. These trajectories are infrequent in the simulations, leading to inadequate
sampling. Currently, practical application is limited to slow processes where the fluctuation of
work is comparable to the simulation temperature.184 Coupling SMD to certain enhanced
sampling techniques described later in this review might extend this limit of practicality.

A related technique is targeted MD in which a force that is dependent upon the difference
between the current conformation and a target conformation. The aim is to drive the evolution
of the simulation toward the given target conformation. Targeted MD has been applied in the
prediction of pathways between particular protein conformations187 and in protein folding.
188
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5. Recent Advances in the Theoretical Aspects of Molecular Dynamics
5.1. Force Fields

The accuracy of the potential-energy function is of crucial importance to the validity and
stability of MD simulations of proteins189,190 and indeed all macromolecules. As indicated
above, the form of the energy function must be simple in order to make such computations
tractable. It is also important that derivatives are readily accessible to facilitate efficient
minimization and efficient integrators of motion.

Most force fields utilized in MD simulations of proteins share a significant number of
similarities. Harmonic terms describe bond lengths and angles, Fourier series describe torsions,
and pairwise atomic interactions are described using a Lennard-Jones function and a
Coulombic function. Usually, although not always, parameters are first obtained for protein
systems and subsequent parameters are derived for nucleic acid, lipids, and other biological
molecules in such a way that they are consistent with the protein set. The main differences
between the various force fields result from the diverse approaches taken to derive the
individual parameters. It is not unusual for the parameters to contain significant interrelations
and compensatory components such that the final results within a full simulation system
reproduce desired experimental observables. Relatively innocuous seeming differences in the
way that different software packages handle technical details in the simulation, such as the
treatment of long-range electrostatic effects or the treatment of interactions between atoms
bonded through a small number of intermediate atoms, can lead to substantially divergent
energies with an alternative energy function. A drawback of this is that parameters for a given
atom type cannot be compared between the force fields. The direct transfer of parameters from
one force field to another is, generally, not valid.

The consistent-valence force field (CVFF)191 differs from most of these force fields in the
sense that it has a more complex functional form. Most of the others differ only through minor
points such as how improper torsions (i.e., out of plane dihedral angles) are treated, what scaling
factors are used for nonbonded interactions, or whether hydrogen bonds are included explicitly.
The van der Waals parameters of all of the force fields listed above were developed through
empirical fitting to small molecule model systems in liquid or solid phases. As a result, the
densities of solvated protein systems tend to be close to reality. The torsional parameters tend
to be fit to a mixture of QM and empirical data. The parametrization of template partial charges
for the atoms in residues is more challenging. The resultant electrostatic interactions must be
balanced with the particular water models. A typical approach is to determine the gas-phase
partial charges through a QM calculation of a model compound and to scale these calculated
charges by a somewhat justified multiplicative factor.

While it is not clear whether alanine tetrapeptide makes a reasonable model system for proteins,
a study of 20 different protein force fields using ab initio quantum mechanical calculations
indicated that there were discrepancies in all of these force fields.192 Furthermore, it was
suggested that in order to yield accurate electrostatics, the force fields would need to
incorporate non-atom-centered partial charges.

The AMBER95 force field193 for proteins is an example of one of the several widely used
force fields that are developed alongside particular MD simulation software packages. The
accuracy of partial charges assigned to various atoms in a protein structure is critical. Partial
charges for the AMBER force field were determined using the restrained electrostatic potential
(RESP) method.194,195 This method fits a quantum mechanically calculated electrostatic
potential at molecular surfaces using an atom-centered point charge model. Subsequent studies
were conducted to assess how well the method performed in calculating conformational
energies, and it performed better than the other tested force fields.196 RESP charges have been
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calculated for molecules with a description of lone-pair donor sites and atom-centered
polarization.197 In this study the partial charges were determined self-consistently from the
charges and induced dipoles to reproduce a quantum mechanical electrostatic potential. In a
separate study198 an automated systematic search and genetic algorithm-based approach was
applied for parameter optimization. For both of these methods the error in the conformational
energy was lower than with the older AMBER95 force field.

The general AMBER force field (GAFF)199 for organic molecules is designed to be
compatible with existing AMBER force fields. It has parameters for most pharmaceutically
relevant compounds and can be applied to a range of molecules with an automated
methodology. This makes it suitable for applications such as rational drug design where
protein-ligand simulations are utilized and manually assigning appropriate parameters to all
ligands is not practical.

In the CHARMM22 force field200 the atomic charges were derived from ab initio quantum
chemical calculations of the interactions between model compounds and water molecules.

The majority of the bond length and bond angle parameters of the OPLS-AA force field201
were extracted directly from the AMBER95 force field. The torsional and nonbonded
parameters were instead derived using a combination of ab initio molecular orbital calculations
and Monte Carlo simulations. A study using a similar set of parameters for amines concluded
that there is no need to consider polarizability.202 The OPLS-AA force field was further
improved by reparametrizing the torsional coefficients.203 The deviation in the energy
compared to those from ab initio calculations of peptide was significantly reduced.

5.1.1. Polarizable Force Fields—One physical characteristic of molecular entities that is
currently avoided in contemporary MM force fields is the effect of fluctuations in polarization.
204,205 There are two schools of thought on the matter. The first would suggest that since
force fields are freely parametrized, these parameters could be fixed such that the effects of
polarization are implicitly incorporated, at least in an approximate or average sense. Others
would argue, however, that standard empirical force fields do not include any polarization
terms and only by explicitly including such terms would accurate reproduction of experimental
observables be enabled.192 The hypothetical polarizable force fields were for many years
touted as the “next-generation” of force field.192,206–208 To date the most common
methodologies for incorporating explicit polarizability include induced dipole models209 and
fluctuating charge models.210,211 Unfortunately, the practical issues involved along with
uncertainties in the best way to approximate the physics have resulted in a distinct lack of
usable polarizable force field for proteins and other biomolecules. Nonetheless, the simpler
case of homogeneous liquids such as water has yielded to the efforts of force field developers.
212–214 For example, in one study which found increased accuracy in a water model with
polarization compared to simpler condensed phase models, charges and dipoles were calculated
by fitting to ab initio potentials of isolated molecules and additional polarizability parameters
were fitted to a range of potentials from applying electric fields to the molecules.215 A recently
presented alternative is based on the Drude oscillator.216–218

More recently, some attempts toward producing a usable polarizable force field for proteins
have produced some more promising results. A fluctuating charge model for protein has been
demonstrated in a nanosecond time scale simulation.219,220

A promising atomic multipole method221 is distributed with the Tinker MD package222
(http://dasher.wustl.edu/tinker/).
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5.2. Constant pH Molecular Dynamics
The protonation state of acidic and basic residues of a protein along with the protonation state
of any substrate will be influenced by their interactions with the environment, their internal
interactions, and their mutual interactions.223 While it is important to correctly assign
protonation states, to run realistic simulations, it is especially vital to estimate the most
favorable protonation states accurately in order to reliably estimate the free energy of the
system. Numerous non-MD methods are available for estimating protonation states of proteins.
224–227

The general problem of allowing for protonations and deprotonations of titratable residues
during MD simulations could be important for accurate representation of proteins and has been
examined.228–232 A number of procedures for incorporating such events have been proposed.
233 In some of these methods, protons are added or removed in continuous, nonintegral fashion.
In other methods, the Poisson-Boltzmann equation is used to gauge the correct protonation
state but not for the propagation of the MD trajectory.

Recently a method using physically realistic, integral changes in protonation and consistent
potentials for both titration and propagation was presented.234 This approach uses a
generalized Born model for the aqueous solvent. To ensure that surface groups on the solute
protein exhibit proper canonical configurational sampling, Langevin dynamics is used to
propagate the solute trajectories. The interdependence of titration states and solute
conformation is recognized by use of periodic Monte Carlo sampling of the protonation states
of the titratable residues. In the Monte Carlo step, a titratable site and protonation state are
chosen at random, and the transition energy is calculated using

(21)

where kB is the Boltzmann constant, T is temperature, pH is the specified solvent pH, pKa,ref
is the pKa of the appropriate reference compound, ΔGelec is the electrostatic component of the
transition energy calculated for the titratable group in the protein, and ΔGelec,ref is the
electrostatic component of the transition energy for the reference compound, a solvated
dipeptide amino acid. The electrostatic portion of the transition energy is determined by taking
the difference between the potential calculated with the charges for the current protonation
state and the potential calculated with the charges for the proposed state. There is no need for
solvent equilibration because an implicit model is incorporated, so this is done in a single step.
The equation can then be used to calculate the total transition energy, as all other terms are
known. The total transition energy, ΔGelec, is used as the basis for applying the Metropolis
acceptance criterion to determine whether this transition will be accepted. If the transition is
accepted, MD is continued with the titratable group in the new protonation state. Otherwise,
MD continues without change to the protonation state. Applications of the method to hen egg
white lysozyme yielded agreement with the experimental pKa to within plus or minus one unit
for most titratable sites. This is comparable to methods designed specifically for pKa prediction.

5.3. Advanced Sampling Techniques
Sometimes one knows two biologically relevant but distinct conformational states but knows
little about the necessary dynamic events of paths that convert one state into the other.
Sometimes one knows a single conformational state, often a crystallographically determined
structure but also knows that there must be a conformational change to provide a particular
activity of interest. In many cases, the time scales involved in the conformation changes are
not accessible via conventional MD techniques. To address this issue, numerous accelerated
MD variants are proposed in the literature,235,236 and the more recent advances are covered
here. These accelerated MD methods extend the conformational sampling characteristics,
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enabling extended time scales, or effective time scales, to be accessed. These methods aim to
allow rare dynamic events to be observed more readily.

Accelerated MD methods can be grouped into three broad classes. The first class alters
sampling of conformational space though explicit modification of the potential surface. The
second class also alters the sampling but by using non-Boltzmann sampling to increase the
probability of high-energy states. The third class includes those methods that enhance the
sampling of certain degrees of freedom at the expense of other, typically faster, degrees of
freedom. There is some overlap between these classes.

All of these accelerated MD approaches are distinct from fundamental improvements in the
core MD algorithm, such as improved integrators and parallelism. These latter types of
enhancements are discussed elsewhere in this review.

The most interesting or promising enhanced sampling methods are described in the following
sections, but the reader should note that this area is actively researched, and further approaches
are keenly anticipated. A separate group of methods are those that apply some non-MD
algorithm. Although these are not actually MD methods, they are relevant to the issue at hand
and are therefore also discussed here.

There are two primary goals driving development of enhanced sampling methods. Some of
these approaches aim to increase the volume of conformational space that is explored during
the simulation, while others aim to drive the system to a particular conformation or to the global
minimum energy conformation more rapidly.

5.3.1. Modified Potentials—The basic principle behind various potential-energy
modification methods is to reduce the amount of time that the simulated system remains in a
local energy minimum well, speeding the transitions from the region of one local minimum to
another, forcing the system to sample the remainder of the available conformational space. In
each of these approaches, the potential-energy function is altered to enhance sampling by
reducing the propensity of energy wells to act as conformational traps. Methods that modify
the potential-energy surface include the deflation method,237 conformational flooding,238,
239 umbrella sampling,240 local elevation,241 potential smoothing,135 puddle-
skimming242,243 and puddle-jumping method,244 hyperdynamics,245,246 and accelerated
MD.247

Another method is the well-studied diffusion equation method (DEM),133–135,248–251 a
type of potential smoothing. In DEM, the diffusion equation is solved analytically for the
potential-energy surface, thus deforming and smoothing it. A time-reversal process is used to
restore the potential to its original form as the simulation proceeds.

The smoothing or flattening of the potential-energy landscape can be applied either globally
to increase the overall sampling or only along a specific, predefined, reaction coordinate to
enhance the conformational evolution along the direction of a desirable transformation or
enhance sampling over a particular set of conformations, depending upon the method. For
example, given some prior information about the desired conformations, one widely used
approach is umbrella sampling.240 A compensating function, known as an umbrella potential,
is added to the potential-energy function to bias the sampling. Obviously, construction of the
umbrella function requires prior knowledge of the conformations of interest. Nonetheless,
umbrella sampling is a powerful alternative to adiabatic mapping. In umbrella sampling, local
strain may be relaxed more effectively and kinetic effects can be included to some extent.
Importantly, some deviations from any specified conformational path can be tolerated.
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In principle, these schemes are all applicable to methods other than MD. They can be used for
enhancing sampling by MC simulations, for example.

The local elevation method241 enhances sampling by adding a penalty potential to any
conformations previously sampled. This resembles the widely used tabu search algorithm in
that a list of previous solutions is maintained and new solutions are driven away from solutions
existing in this list. This approach has not been adapted for use with proteins. It is likely that
the storage overhead for configurations of such large molecules would be overwhelming.

Another approach that aims to force systems out of their sampled local minima is
conformational flooding.238,239 In conformational flooding the initial state of the system is
destabilized by adding an extra unfavorable potential at this initial state. This method predicts
the so-called essential degrees of freedom using PCA, described earlier. A Gaussian potential
is added to the system to force it along these essential degrees of freedom. Unlike local
elevation, this method has been demonstrated in protein simulations.

Hyperdynamics and Accelerated MD: The recently described accelerated molecular
dynamics247 allows for more rapid sampling of the configurational space in systems with
rough energy landscapes and also allows one to calculate the correct thermodynamic properties
of the system. It resembles the puddle-skimming method243 except that its formulation avoids
nonsmooth potential-energy surfaces that cause significant problems in MD simulations. In
addition, the puddle-skimming method results in random sampling on a flat energy landscape
in the regions of the minima where sampling becomes very inefficient.

In the accelerated MD method, time becomes a statistical quantity in the simulation. The
effective time scale of simulations is increased by several orders of magnitude at the expense
of sampling around the energy minima. Because the potential is altered analytically, the
statistics of sampled configurations can be corrected to reproduce the canonical probability
distribution for the original potential surface.

The original potential function V(r) is altered via

(22)

where ΔV(r) has a nonnegative value as given by

(23)

The modified potential echoes the original potential, so sampling directions during the
simulation are still representative of the unbiased system. Thus, the random-sampling behavior
of puddle skimming in the regions of the original minima is not observed.

When applied the to the dihedral angle term and the 1–4 term of the Amber potential, in a
Langevin dynamics simulation using the GB implicit solvent model, substantial increases in
configuration sampling could be obtained. Also, after applying a correction for the sampling
bias, the method yielded the expected distribution of configurations for small peptides.247

5.3.2. Modified Sampling—The basic principle behind most of the second class of methods
is also to reduce the amount of time that the simulated system remains in local energy minimum
wells, forcing the system to sample the remainder of the conformational space available.
However, these techniques use alternative methods for sampling rather than performing
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conventional MD on explicitly modified energy landscapes. One obvious approach is simulated
annealing (SA), as described earlier, which effectively smoothes a potential-energy surface
through additional entropic contributions.132 It can be shown that SA is the stochastic
equivalent of the DEM method discussed above, and the relationships between these methods
have been investigated.135

Modified sampling methods include high-temperature MD,252 locally enhanced sampling
(LES),253–256 replica exchange,257,258 parallel tempering,259,260 self-guided MD,261
targeted MD,187 milestoning,262,263 repeated annealing,264 additional degrees of freedom,
265,266 and various non-Boltzmann sampling methods.267,268

Locally Enhanced Sampling: In the LES method253,256 a fragment of the system, maybe a
side chain or a ligand molecule, is duplicated so that the simulation contains N noninteracting
copies of that fragment. The remainder of the system experiences each fragment through
interactions that are reduced by a factor of 1/N from their original magnitudes. This use of
multiple copies and the reduction of the interaction potentials significantly enhances the
sampling of the conformations of the fragments.

Evaluating the free energy from LES simulations requires two additional perturbation
calculations: one in transforming from the single-copy representation of the reference state to
the multiple-copy representation and a second in transforming from the multiple-copy
representation of the perturbed state into the single-copy representation. However, the benefits
of adopting a multiple-copy representation outweigh the additional costs of introducing two
more perturbation calculations.269 This method has been applied to the study of α → β
anomerization of glucose, and it was found that the free-energy calculations converged an order
of magnitude quicker than with the single-copy method.270

High-Temperature Molecular Dynamics: Perhaps the most obvious approach for enhancing
sampling of high-energy states is to raise the simulation temperature. This approach is known
as high-temperature dynamics and has been evaluated by several groups.252,271,272 It is
suggested that high-temperature molecular dynamics is a useful aid in conformational searches,
but physiologically relevant low-energy structures are not generally obtained even after
minimization of the generated high-energy structures. Indeed, the generated structures often
have an infeasible proportion of cis-peptides.252 Consequently, this method is not without
criticism. Another possibly major issue is that MM force fields, generally, have not been
designed for, or validated with, temperatures much beyond the physiologically relevant 300–
330 K that most MD simulations are run at. Whether or not the force field is physically correct,
there may be debate about whether the use of such high temperatures leads to appropriate
sampling characteristics since the entropic contribution to the free energy is significantly
enhanced (and therefore over-sampled).238 Although there are several problematic issues
involved with using high temperatures to accelerate MD simulations, the basic principle acts
as the fundamental basis for a few more complex approaches discussed below.

Multiple-Copy Dynamics: Several approaches that use a series of simultaneous (or parallel)
MD simulations are demonstrated in the literature.255,256,273–276 In these individual
molecules in the separate simulations may, or may not, interact in some way. Similar
approaches may be applied in simulated annealing.277

One interesting multiple-copy approach is SWARM-MD.256 The basic idea behind SWARM-
MD was motivated by the efficient search behavior observed of swarms of social insects.
Despite the absence of any higher intelligence, whole swarms of insects often appear to exhibit
significant organization and planning. The cooperative rules that lead to the swarm’s overall
behavior is mimicked for conformational search in a simulated swarm of molecules. In such
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simulations, each molecule is subject to supplementary artificial forces to introduce the
cooperative behavior. The artificial force drives the trajectory of each molecule toward the
mean trajectory of the entire swarm.

It would be easy to conceive a scheme in which each molecule is driven away from the mean
trajectory in order to enhance the volume of conformational space that would be sampled.

Multiple-copy approaches tend to be very well suited to trivial parallelization with
communication only between the individual systems. Indeed, the well-known distributed
protein-folding project, Folding@Home, uses a multiple-copy approach.278

A number of multiple-copy approaches specific to ligand binding or design have been
introduced, 275,279,280 and these are discussed further in the MD for Ligand Docking section,
below.

Replica Exchange Molecular Dynamics: Like the multiple-copy approaches, replica
exchange molecular dynamics (REMD)281 and the closely related parallel tempering
method260 utilize a series of simultaneous and noninteracting simulations, known as replicas.
With proteins, these simulations are typically MD, but earlier work applied Monte Carlo
simulations. The replicas are simulated over a range of temperatures, and at particular intervals
the temperatures of these simulations may be swapped (i.e., replicas are exchanged). The
methods differ, however, in the way the individual simulations are coupled. Usually these
replicas may exchange temperatures according to Monte Carlo-like transition probability. Such
exchanges occur through a simple swapping of the simulation temperatures via velocity
reassignment. The high-temperature replicas jump from basin to basin, but the low-temperature
replicas explore a single valley with sampling characteristics just like conventional MD.

While REMD is widely applied to smaller molecules, particularly in peptide and protein folding
experiments,282–284 it is found to be extremely computationally expensive when applied to
large proteins.

In a study in which REMD was applied to a 20-residue peptide it was found that at
physiologically relevant temperatures the conformational space was sampled much more
efficiently than it was with conventional constant temperature MD284 and with similar
thermodynamic properties.

Self-Guided Molecular Dynamics: Self-guided molecular dynamics (SGMD)261,285,286
applies an additional guiding force to drive the simulation. The guiding force is a continuously
updated time average of the force of the current simulation, leading to increased search
efficiency by assisting the system over energy barriers. For efficient sampling of the available
conformational space, the correlation between the guiding forces and the actual physical forces
must be low;287 nonetheless, the algorithm produces stable dynamics.286

A related method, the momentum-enhanced hybrid Monte Carlo method (MEHMC)288
overcomes some of the inherent problems observed with SGMD. The SGMD algorithm lacks
reversibility because the effective potential-energy landscape is a function of the trajectory
rather than a function of the coordinates. This irreversibility results in substantial errors in
canonical averages from the trajectory. MEHMC differs by using average momentum instead
of average force to bias the initial momentum within a hybrid MD/Monte Carlo procedure.
This is believed to yield correct canonical averages.288

5.3.3. Modified Dynamics—This third class of enhanced sampling method encompasses
those methods in which the dynamics along the “slow” degrees of freedom are accentuated
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relative to the “fast” degrees of freedom. One such method is extremely widely used, to the
extent that simulations not applying it (or one of its close descendants) are exceptionally rare.
This is the SHAKE algorithm,71 where constraints are applied to particular bond lengths to
allow larger time steps to be taken without encountering excessive forces. SHAKE was
described earlier in this review. Another method is the MBO-(N)D algorithm289 in which
groups of atoms are partitioned into substructures that are considered to be rigid during the
simulation. It is possible to integrate the equations of motion faster by separating the faster
components of the dynamic propagator from the slower components.290 Alternatively, the
faster (i.e., higher-frequency) motions may be reduced or eliminated completely. Several
algorithms based on this principle exist including dynamic integration within a subspace of
low-frequency eigenvectors,291 generalized moment expansion,292 various types of coarse-
grained modeling293,294 such as network models,295 mode coupling theory and projection
of a generalized Langevin equation onto certain degrees of freedom,296 digital filtering of
selected velocities,297–299 large time-step dynamics using stochastic action,300,301 and leap
dynamics.302

Gaussian Network Model: A large number of coarse-grained models for proteins have been
described in the literature. The Gaussian network model293,303–305 is one such coarse-
grained method in which the energy function evaluates the system at the level of residues rather
than atoms or in some cases even more coarse fragments.306 The residues interact through
simple harmonic and nonharmonic terms. This model has been widely applied in MD of
proteins.307,308

This simplified model has been reduced further, even to the point where sequence information
is not considered.309 In addition, sampling has been further enhanced through amplification
of slower motions310 and coupled to conventional MD to assist sampling.311

Leap Dynamics: In the leap-dynamics302 method a combination of MD and essential
dynamics is applied. Conformational “leaps” applied to the system force it over energy barriers.
The structures from the leaping process are refined using MD. The method was demonstrated
to correctly predict the enhanced partial flexibility of a mutant structure in comparison to native
bovine pancreatic trypsin inhibitor.

A potentially significant disadvantage of many of these modified dynamics methods is that the
dynamics are, of course, artificial. This may, or may not, be a problem depending upon the
desired application of the results. Some methods might still be anticipated to yield a Boltzmann
distribution of structures if run for a sufficiently large number of steps, but there can be no
such guarantees for others.

Digitally Filtered Molecular Dynamics: Digitally filtered molecular dynamics (DFMD)
applies the theory of digital filters to MD simulations, selectively enhancing or suppressing
motions on the basis of frequency.312 This method was applied to the Syrian hamster prion
protein, and a high degree of selectivity and control was demonstrated in the enhancement of
the rate of conformational changes.298 A time reversible version of the method has also been
developed.299

Multiple Time-Step Methods: A number of multiple time-step methods are available313 with
the reference system propagation algorithm (RESPA)314–316 being most widely applied to
biomolecular systems.317,318 A reasonable MD trajectory may be generated at 35–50% of
the usual computational expense. Coupled with the Langevin methods described above, speed
ups of as much as 2 orders of magnitude have been reported for protein simulations.319
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The basic concept in multiple time-step methods is to separate the slow motions from the fast
motions and evaluate the interactions relating to the slow motions less frequently. One common
assumption in such methods is that interactions involving longer distances change more slowly,
and therefore, the forces due to those interactions can be reapplied over several time steps
before being recalculated.

Multiple-Body O(N) Dynamics: Multiple-body O(N) dynamics (MBO(N)D)289 is a
molecular dynamics technique using a coarse-grained model that scales linearly with the
number of bodies in the system. Speed ups of 5–30 times compared to conventional MD are
claimed.320 This method combines rigid-body dynamics with multiple time steps. The highest
frequency harmonic motions are removed while retaining the low-frequency anharmonic
motions. It has been demonstrated to reproduce the global essential dynamic properties of both
proteins and nucleic acid systems.289 One notable problem with this otherwise extremely
promising method is that it relies upon the user to determine the level of granularity from an
empirical study of such levels for the system of interest.

6. Recent Advances in the Computational Aspects of Molecular Dynamics
The practical application of molecular dynamics is fuelled, in part, by the wide availability of
software and the growing availability of significant computational resources.

6.1. Software
There is a considerable amount of diversity in the software packages that may be chosen today.
While many molecular dynamics packages aim to have a broad or comprehensive range of
capabilities, each widely used package does have certain features or advantages that set it apart
from the others. Few research groups restrict their simulations to a single software package.
This encourages development of compatibility-oriented features and uniform benchmarks,
although there is still much scope for improvement in these areas. The majority of popular MD
packages can utilize force field, structure, and trajectory file formats that were originally
introduced in other packages. This enables a certain amount of validation and facilitates
reproduction of published results, even without the original software, an exigency for some
areas of computational chemistry.

Many of the general-purpose protein modeling packages contain some kind of MD facility,
although in many cases this is nothing more than an interface to one of the specialized MD
software packages. Such interfaces are useful in themselves as they can provide a simple
mechanism for invoking the simulations without an understanding of the underlying, and often
complex, software. They, therefore, allow the nonspecialist to readily perform simple
simulations.

Taking the authors’ research group as an example, GROMACS, AMBER, and NAMD are all
routinely used on a regular basis for MD studies as warranted by the specific aims or
requirements of the current project. In addition, CHARMM, NWChem,321,322 and others are
used when the situation demands.

While it might be argued by some that such a broad base of actively developed software
fractures the field and wastes a lot of effort through duplication, it in fact fosters a great deal
of friendly competition. Such competition is a sign of a healthy worldwide research effort.
Other reasons, such as the independent validation or verification of theories, should not be
understated either. As MD approaches and methods pass from the province of specialized
experts into the wider realm of scientists, particular software packages can offer important
advantages or accommodate particular needs of the diverse set of potential users.
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6.1.1. GROMACS—GROMACS323,324 (http://www.gromacs.org/) is advertised as a
versatile package which is primarily designed to perform molecular dynamics simulations of
biochemical molecules such as proteins and lipids. However, it is also claimed that since
GROMACS is extremely fast at calculating the nonbonded interactions that typically dominate
simulations, many groups are also using it for research on nonbiological systems such as
polymers. GROMACS was initially a rewrite of the GROMOS325 package
(http://www.igc.ethz.ch/gromos/), which itself, like AMBER, was originally derived from an
early version of CHARMM.

The main advantages of GROMACS are its ease of use and its exceptional performance on
standard personal computers. A lot of effort was expended in optimizing the code to run
efficiently on desktop computers such as those using the Intel Pentium IV and PowerPC G4
processors. The authors report that it is normally between 3 and 10 times faster than other MD
programs.

One factor that many users might find attractive is its lack of a scripting engine. GROMACS
is actually a suite of small command-line programs each with a simple set of options.

GROMACS file formats are somewhat interesting. All files are plain-text based, so they are,
in principle, human readable. This helps them avoid the platform dependence malediction of
many MD packages. These plain-text formats result in much larger file sizes than binary
formats would, so GROMACS transparently utilizes standard UNIX compression tools. In
addition, trajectories may be stored in a very condensed form using lossy compression. Lossy
compression describes a class of data compression algorithms that achieve impressive
reductions in data size by only approximating the original data. While some fidelity is lost, it
generally has little practical consequence much like the lossy compression used in the well-
known JPEG image format.

Most of the standard types of data analysis can be performed using the set of accompanying
tools which can also produce publication-ready plots in a straightforward manner.

From a practical point-of-view, one particularly attractive reason to choose GROMACS is the
fact that it is distributed as free software under the terms of the GNU General Public license
(http://www.gnu.org/). This provides certain freedoms and significant pedagogical benefits.
Source code is generally available (at least for academic groups) for all major MD packages,
but the use and reuse of such code is often highly restricted.

6.1.2. NAMD—Whereas GROMACS is renowned for its spectacular performance on modest
desktop computers, NAMD326 (http://www.ks.uiuc.edu/Research/namd/) exhibits inspiring
performance on high-end parallel computing platforms with large numbers of processors.
327 NAMD is able to comfortably handle system sizes which are well beyond the practical, if
not absolute, limits of other MD packages. For instance, NAMD was used in the simulation of
a 200 000 atom lac repressor system.328 Such huge biological systems are simulated on
massively parallel supercomputers and Beowulf-style clusters. NAMD scales to (i.e., runs
efficiently on) large numbers, even thousands, of processors impressively.329 Until the recent
development of PMEMD330 no other MD software came close on this point.

Besides its efficiency, another advantageous property is the level of integration with the VMD
molecular visualization software.172 This facilitates interactive molecular dynamics, for
example.331

One specific factor that probably contributes to its efficiency is that its feature set is relatively
modest compared to the other major MD packages. However, NAMD is file compatible with

Adcock and McCammon Page 29

Chem Rev. Author manuscript; available in PMC 2008 September 22.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript

http://www.gromacs.org/
http://www.igc.ethz.ch/gromos/
http://www.gnu.org/
http://www.ks.uiuc.edu/Research/namd/


packages such as AMBER and CHARMM, so system preparation and the postprocessing and
analysis of results are often performed using other software.

NAMD is distributed free of charge, with full source code, but certain conditions on use apply.
Its object-oriented design implemented using the C++ programming language332 facilitates
pedagogical use and the incorporation of new algorithms.

6.1.3. AMBER—Two of the more established and respected MD packages are CHARMM
and AMBER333 (http://amber.scripps.edu/). While the respective developers can trace the
programs heritage to a common source, they have been independently developed since the
early 1980s and adopted slightly different philosophies. AMBER consists of a suite of separate
programs, each performing a specific task. The CHARMM developers have taken a more
integrated approach where one single and monolithic application does everything from system
preparation through simulation to analysis. There are inherent benefits to each approach, but
the overall merit, more or less, comes down to personal preference.

AMBER was principally maintained in the research group of the late Professor Peter Kollman,
and ongoing maintenance is now coordinated in the research group of Professor David Case.
Code contributions came from a variety of locations, however. Along with CHARMM, it often
incorporates new methodologies and algorithms before any other packages.

A recent addition to the AMBER suite334 is PMEMD, a stripped-down and optimized version
of the general MD program known as Sander. PMEMD provides scaling on massively parallel
platforms that is comparable with NAMD.

The simulations executed using PMEMD are intended to replicate AMBER’s Sander
calculations within the limits of computational precision. However, the computation is
performed much more quickly, in roughly one-half of the memory, and with significantly less
overhead on larger numbers of processors. A number of benchmark cases are presented on the
PMEMD website (http://amber.scripps.edu/pmemd-get.html).

Like CHARMM, a series of force fields are developed in conjunction with the AMBER
simulation software.189,335

6.1.4. CHARMM—CHARMM (Chemistry at HARvard Molecular Mechanics) is described
as a program for macromolecular simulations, including energy minimization, molecular
dynamics, and Monte Carlo simulations.39–41 It is predominantly developed within the
research group of Professor Karplus at Harvard University, although, as highlighted on the
CHARMM website (http://yuri.harvard.edu/), a network of developers in the United States and
elsewhere actively contribute to its ongoing development. The CHARMM software is
developed in unison with a series of force fields, as described above.

A variant of CHARMM, named CHARMm, is widely deployed in commercial settings. While
it lacks some of the more cutting-edge features, it is arguably more robust and bug free.
Commercial support is provided by Accelrys
(http://www.accelrys.com/support/life/charmm/).

6.2. Hardware
The great strides made in the molecular dynamics field are due in part to the phenomenal
developments in computer hardware. Protein simulations make heavy demands on the available
computing facilities. The length and accuracy of simulations is chiefly restricted by the
availability of processor power, while memory and disk space are also important, especially
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for large model systems. The most significant developments in computational infrastructure
with applicability to MD are briefly discussed here with details of this applicability.

6.2.1. Parallel Computing—The most powerful supercomputers available today consist of
arrays of processors that communicate via fast interconnects. The potential power of these
systems is only utilized when the algorithm to be run can be partitioned into a number of
separate processes that can individually be run on a single processor. With no or minimal
communication required between the processes, the bandwidth of the interconnects will not
become the bottleneck in the calculation. In addition, if the processes do not need to remain
synchronized, then processing power will not be wasted as one of the processes waits for others
to catch up. While this might be the case for many computational tasks, it is not for typical MD
algorithms. Particularly in the case of nonbonded interactions, significant communication is
required and the processes will need to be synchronized during each time step.

Blue Gene: Blue Gene336 is a widely publicized project, with an ultimate goal of
implementing and utilizing a so-called hugely parallel supercomputer architecture.

IBM’s Blue Gene Project. (http://researchweb.watson.ibm.com/bluegene/index.html) is
described as representing a unique opportunity to explore novel research into a number of areas,
notably including biomolecular simulation. The planned scientific program will require and
foster a collaborative effort across many disciplines and the participation of the worldwide
scientific community to make best use of this exciting computational resource.

Commodity Clusters: The availability of Beowulf-style clusters built from commodity PC
components is being increasingly leveraged, as a cost-effective alternative to traditional
supercomputer platforms, to facilitate large-scale MD simulations. There is one caveat,
however. The technical characteristics of typical clusters do not suit them to fully efficient MD
simulations as detailed in the Future Prospects and Challenges section. Clusters are suitable
for running many simulations in parallel, with minimal communication between the processing
nodes and therefore maintaining much of the efficiency of the serial codes. Some types of
simulation, including the relaxed complex method, are highly suited to clusters.

7. Recent Applications of Molecular Dynamics
There have been numerous and varied simulations described in the literature. As MD
approaches the point in its development at which it becomes a routine tool for nonspecialist
researchers, such simulations will only increase in frequency. It is impossible to give a broad
overview that will do justice to any of these simulations. Consequently, a tiny set of recent
examples driven by simulations of biomolecules is selected here for brief discussion.

7.1. Functional Mechanism of GroEL
In the highly concentrated milieu of the cell, chaperone molecules are essential to facilitate the
correct folding of many proteins. For example, in Escherichia coli it is thought that around
10% of proteins located in the cytoplasm require an experimentally well-characterized protein,
chaperonin GroEL, for correct folding. This protein is a homomeric complex of 14 subunits
arranged in two heptagonal rings.337 Critical to its function are large conformational changes
that are regulated through cooperative binding and hydrolysis of ATP in the presence of a
chaperonin GroES. This cooperativity is positive in a given ring but negative between the rings.
The conformational changes occur in all subunits, converting them from a “closed” form to an
“open” form upon binding of ATP and GroES.

It was impossible to determine the conformational pathway between the open and closed forms
experimentally. It is believed that this conformational transition occurs on a millisecond time
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scale, so conventional MD of this transition would not be tractable. However, targeted MD is
applicable in such cases and was applied to determine the transition pathway between the two
known conformations.338 The targeted MD simulation predicts a particular intermediate
conformation with ATP bound before GroES. It was also indicated that steric interactions along
with salt bridges between the individual subunits mediate the pattern of positive and negative
cooperativity of the ATP binding and hydrolysis. It is seen that early in the pathway ATP
binding triggers a downward motion of a small intermediate domain, and this causes the larger
motion of the apical and equatorial domains. Subsequent cryoelectron microscopy results
support the results of the simulation, indicating that this intermediate domain plays a critical
role in the conformational behavior.339

7.2. Simulation of Membrane Proteins
An active area where simulations play a key role is the study of ion diffusion through pores
and channels and the gating mechanisms associated with such channels, topics that are
frequently reviewed.25,340–342 Experimentally probing the structure of transmembrane
proteins is difficult, but valuable insights have been obtained through the application of MD
in cases where a reasonable structure is known or can be predicted. One system that has been
widely simulated is the M2 protein of influenza A. During a 4 ns MD simulation a funnel-like
structure formed, but it appeared to be occluded by a particular histidine residue,343 while it
has also been shown that the protonation of this residue can drive channel opening.344 Both
of these predictions have been validated by NMR results. This transmembrane protein fragment
has been used as the basis of a number of model ion channels for various viral proteins.340

7.3. Molecular Dynamics for Docking and Ligand Design
The interactions between proteins and substrates are critical to many biological systems and
processes. Signal transduction, metabolic regulation, enzyme cooperativity, physiological
response, and other processes are all dependent upon noncovalent binding. These processes
may be investigated through modeling and simulation, particularly as the range of solved
protein structures grows. Through MD, MC, and the various related methods described in this
review, binding modes and the corresponding binding free energies may be estimated for
protein-ligand29 and protein-protein345 complexes.

Ligand docking is the prediction of protein-ligand complexes; the use of MD is widespread in
such ligand-docking studies.346,347 Most ligand-docking methods are MM-based; however,
the present discussion is limited to methods that actually use MD rather than just using MM-
based scoring functions.

When calculating free energy of binding estimates there is a necessary balance to be found
between the accuracy or reliability of these estimates and the computational cost of the
calculations. It is not always essential to determine highly accurate binding constants for
productive studies in drug design.

At the upper end of the accuracy versus computational speed, one factor that becomes crucial
is that the ligand-binding process can lead to conformational changes in the receptor protein
itself. These changes could be necessary for the receptor to accommodate the bound ligand.
While it is important to explore the conformational space available to the receptor (i.e., the
protein) molecule, it is often difficult to predict or represent the plasticity of the binding site.
348 This is particularly important when there may be multiple, allosterically connected, binding
sites. While many approaches are available for considering such flexibility,349–351 it is
suggested that the use of multiple protein structures in the docking process is a wise approach
to the task. One simple approach to generate such multiple structures is through the use of
MD352,353 with standard “static” docking to a series of individual snapshots from the
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simulation trajectory. It may be tempting to use MD as the docking search method, but during
reasonable simulation times the system is likely to be stuck in local minima, with energy
barriers of more than 1–2 kT unlikely to be overcome. With some modification of the potential
function to smooth the energy surface and allow further exploration of receptor conformations
such simulations can become practical.354,355 By coupling different degrees of freedom of
the system to different temperatures, the system can be assisted in escaping local minima by
varying temperatures that specifically mediate the flexibility of the ligand.356,357 The concept
of varying temperatures to enhance sampling for docking simulations is commonly applied in
the guise of simulated annealing MD.358

7.3.1. Advanced Molecular Dynamics-Based Methods for Drug Discovery—It has
been shown that in a study of different search algorithms, an MD-based method was the most
efficient approach for large search spaces and produced the lowest (i.e., best) mean energies
for the docked conformations.359,360

Further docking methods based around MD have been proposed. The dynamic pharmacophore
method361 and the relaxed complex method362,363 are both designed to take receptor
flexibility into account in the analysis of ligand-receptor binding. These are described below.

SGMD, as described earlier, would probably be suited to investigation of protein-ligand
systems. This was applied to a host-guest system,364 but no study for protein-ligand systems
has been reported to date.

The main impediment to the use of MD in docking studies remains the computational cost of
running suitably long simulations. Approaches using only short MD simulations have been
shown to improve the performance of docking procedures versus methods using static
structures, in certain cases.365

The filling potential method366 is an MD-based approach for estimating free-energy surfaces
for protein-ligand docking. This is a modified umbrella potential sampling method which
enables the ligand molecule to drift out of local minima through a self-avoiding (via a tabu list)
random walk consisting of an iterative cycle of local-minimum searches and transition-state
searches.

Another interesting flexible docking method relies on calculation of the flexible degrees of
freedom using MD simulations.367 This approach allows relaxation of the protein
conformation in precalculated soft flexible degrees of freedom. These soft flexible modes are
extracted as principal components of motion from a conventional MD simulation.

MD is also widely used in the refinement of docked conformations from the results of
approximate, generally rigid-body, ligand docking. For example, a three-stage method has been
presented.368 A grid-based method is used to sample the conformations of an unbound ligand
in the first stage. Next, the lowest energy ligand conformers are rigidly docked into the binding
site. The docked modes are refined in the third stage by molecular mechanics minimization,
conformational scanning at the binding site, and a short period of MD-based simulated
annealing. This procedure was applied to ligand-protein complexes with as many as 16
rotatable bonds in the ligand with final root-mean-square deviations ranging from 0.64 to 2.01
Å compared to the crystal structures.

Taking this refinement a stage further, a combined quantum mechanical/molecular mechanical
(QM/MM) docking method is described.369 In this method AutoDock370 is used to generate
initial starting points for the docked structures, semiempirical AM1 QM/MM optimization of
the complex gives an improved description of the binding mode, and the electronic properties
of the ligand within the environment of a flexible protein to simulate the limited structural
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changes of the enzyme upon ligand binding. This method was able to reproduce the induced
fit structural changes when a simple optimization was adequate for reproducing the protein’s
movement.

Multiple-Copy Simultaneous Search: Multiple-copy simultaneous search is a method for
determining locations of favorable binding for functional groups to the surface of a protein.
275,371 A few thousand copies of a functional group are randomly placed at the protein surface
and then subjected to simultaneous energy minimization and/or quenched molecular dynamics.
The resulting locations of the functional group yield a functionality map of the protein receptor
site, which included consideration of its flexibility. A set of these functionality maps can be
used for the analysis of protein-ligand interactions and rational drug design.280

Locally Enhanced Sampling: In LES a fragment of the system exists as several copies in the
same simulation, as described above. The individual copies do not interact with each other but
do interact with the environment. In the case that the fragment is a ligand, LES becomes a
method for sampling ligand conformations under the influence of a protein.372

Dynamic Pharmacophore Method: The dynamic pharmacophore method351,361,373
requires a set of instantaneous snapshots of the fluctuating receptor molecule. These snapshots
are typically extracted from MD simulations, although structures that are consistent with NMR
data or other sources might be used instead. Probes corresponding to fundamental functional
groups (e.g., methyl, hydroxyl, phenyl) are docked to each snapshot with the aim of detecting
consensus patterns for the whole ensemble of snapshots.

Generally, receptor-based pharmacophore models are developed using a single receptor
structure. These pharmacophore models based on one receptor structure could fail to identify
inhibitors that bind to structures that are somewhat different from the experimental or model
structure but that are still readily accessible at physiological temperatures. The dynamic
pharmacophore model was developed to address this issue.

For each snapshot from an MD simulation, a pharmacophore model was constructed by
identifying favorable binding sites of chemical functional groups using the multiunit search
for interacting conformers (MUSIC) procedure of the BOSS program.374 This identifies
favorable binding sites of probe molecules by simultaneously refining the energy of a large
number of probe molecules, which do not interact with each other, in the potential field of the
receptor molecule. Strong binding sites tend to cluster many probe molecules in well-defined
orientations and locations. Thus, strong binding sites can be selected as those which
consistently appear in many snapshots rather than a few snapshots. These sites are used to form
the important components in a pharmacophore model. This approach also uncovers useful
binding sites that might not be readily recognized as such in the initial starting structure.

While this procedure increases the number of false positives,375 it produces pharmacophore
models that perform better than any single conformation model for potent inhibitors of HIV-1
integrase.373

Relaxed Complex Method: The relaxed complex method362,363 resembles the dynamic
pharmacophore method but involves docking of whole ligand molecules to the initial set of
receptor snapshots with subsequent rescoring of the most favorable structures within a rigorous
statistical mechanical framework.148

It is possible that ligands may bind to conformations that occur only rarely in the dynamics of
the receptor and that strong binding often reflects multivalent attachment of the ligand to the
receptor. Two successful experimental approaches that recognize this fact are SAR by
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NMR376 and the tether method.377 The relaxed complex method was inspired by these
methods and aims to reliably consider the induced fit at the binding site.

The relaxed complex method is a three-step process. The first step is to generate a series of
target conformations of the receptor. This task is typically performed by selecting
representative snapshots from an apo-protein MD trajectory. Alternative methods for
generating the receptor conformations are possible. Such methods include the replica exchange
method or even just an ensemble of short time-scale MD simulations. During the second step
small libraries of candidate ligands are docked into each representative receptor structure. In
the original work362,363 the Autodock370 software was used for this docking process,
although the overall method is independent of the choice of docking software. The final stage
seeks to improve the scoring of the predicted binding configurations by use of a more rigorous,
but computationally expensive, method for estimating the standard free energies of binding.
This rescoring process has been demonstrated with MM/PBSA363 as implemented in the
AMBER software with the electrostatic terms calculated using the APBS software,164 but
again, the overall method is not dependent upon this choice.

A double-ligand variation of the above procedure incorporates consideration of the fact that
two ligands with relatively low binding affinities might be linked to form a single high-affinity
ligand. Because the binding of the first ligand could introduce unfavorable interactions for the
binding of the second ligand, the combination of the best-ranked ligands for respective binding
sites does not necessarily produce the most favorable composite compound. Continuing from
the previous single-ligand studies, the first ligand is treated as part of the receptor molecule
and the docking simulations of the second ligand are repeated but limited to a region of space
consistent with the allowable lengths of linkers. As before, the binding of the second ligand is
subsequently recalculated using the more accurate approach.

Initial results presented from work applying the relaxed complex approach covered the binding
of two ligands to the FK506 binding protein (FKBP) with conformations generated via a 2 ns
MD simulation. This demonstrated that the ligand binding is sensitive to conformational
fluctuations in the protein; the binding energies covered a range of 3–4 kcal mol−1, which
corresponds to a 100–1000-fold difference in binding affinities.362 The use of MM/PBSA
free-energy evaluations allowed for correct prediction of binding modes compared to the
crystallographic structures.363

Lambda Dynamics Method: The λ dynamics method155,156 is another technique intended
for speeding up free-energy calculations. In the λ dynamics method, another multiple-copy
method, multiple ligands are simultaneously located in the receptor binding site. However, the
interaction potential of each ligand is reduced from its full strength. The fraction, λi

2, of the
interaction potential for each ligand is determined dynamically during the simulation as an
additional degree of freedom. Specifically, λi is treated as a particle with a fictitious mass.
Because the interaction potential of each ligand is reduced, the barriers for conformational
transitions are lowered. The reduced barriers allow each ligand to further explore orientational
and conformational space more readily. The ranking of the ligands can emerge rapidly during
the simulation because λi

2 is rapidly able to increase for the winners at the expense of the losers.
Distinguishing the strong binders from the weaker binders can be much faster than by
performing many individual free-energy perturbation calculations with a single ligand each
time. This method has been demonstrated to efficiently identify strong benzamidine inhibitors
of trypsin.378

7.3.2. Practical Applications of Molecular Dynamics in Drug Discovery—There
are, undoubtedly, many examples where computer simulation and molecular dynamics have
played a demonstrated role in the discovery or development of therapeutic drugs.4 There are

Adcock and McCammon Page 35

Chem Rev. Author manuscript; available in PMC 2008 September 22.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



particular cases where MD provided an otherwise unavailable description of the flexibility of
the binding site to aid in the development of drug candidates. It is hoped that MD will help in
the discovery of practical HIV-1 integrase inhibitors, for instance, as it had in the earlier
discovery of widely prescribed HIV-1 protease inhibitors.379 Concepts from HIV-1 integrase
MD simulation have proved useful in developing promising novel antiviral compounds.380
MD simulations indicated sizable fluctuations of the catalytic site.381–383 MD studies
predicted favorable binding of compounds that utilize a hitherto unknown additional binding
trench adjacent to the catalytic site,384 as shown in Figure 2, and this has been validated by
experimental studies.380 This has the potential to greatly reduce the likelihood of resistant
strains developing.

8. Future Prospects and Challenges
8.1. Efficiency and Stability

Standard MD methods often fail to explore configurational space adequately for the accurate
evaluation of thermodynamic and kinetic properties for proteins. This is partly because such
systems typically have enthalpic and entropic barriers that are significantly higher than the
thermal energy at physiologically relevant temperatures. When systems are trapped in local
regions of configurational space over the time scale of a simulation, due to high free-energy
barriers, they appear nonergodic.385 That is, for these systems the time averages of observable
characteristics do not equal the corresponding ensemble averages. The simple fact that the low-
frequency motions of proteins typically correspond to the larger conformational changes, and
these are often the more interesting motions, aggravates the issue. Such motions sometimes do
not involve crossing of a very high energy barrier but may have a slow, diffusional character.
Thus, the problem is just a matter of sampling for an inadequate length of time. Many different
enhanced sampling methods have been introduced in the literature, as described above, to
reduce this problem. However, no perfect solution has been devised to date. Indeed, certain
approaches are better suited to specific systems or observable characteristics than others. Future
progress toward resolving this issue will be of great interest.

Besides the development of improved sampling protocols, simply enhancing the efficiency of
MD routines will increase its practical scope. For example, improvements to integrators might
allow larger time steps to be used. Likewise, improved methods for long-range force evaluation,
particularly in terms of computational parallelization, would lead to more efficient simulations.
Each of these putative improvements is ripe for exploration.

Fairly fundamental incremental improvements to the underlying MD algorithms are still being
made (e.g., a fast and readily parallelized pair list construction algorithm for nonbonded
interactions was described recently386).

8.2. Electrostatics
Generalized Born treatments of electrostatics have had the important advantage of lower
computational requirements over the more rigorous Poisson-Boltzmann treatments. With the
recent development of Poisson-Boltzmann solvers that are fast enough to conduct simulations
for proteins,164,387,388 it would be desirable to choose Poisson-Boltzmann methods when
the drawbacks of GB might affect the conclusions being drawn from a simulation. While
analogous methods that use Poisson-Boltzmann rather than generalized Born treatments of the
electrostatics require no conceptual jumps, those methods cannot be implemented as efficiently
as GB at this time. The necessary theory for determining forces and MD trajectories from the
Poisson-Boltzmann formalism exists387,389,390 but can be prohibitively expensive to
calculate at present. Analytical methods for higher order derivatives in such methods are
desired.
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8.3. Solvation and Solvent Models
Improvements to the speed and accuracy of calculations regarding solvent will be particularly
beneficial. Speed increases will be useful because a major portion of a typical simulation will
consist of solvent. Accuracy improvements are important because the solvent often mediates
important aspects of protein structure, dynamics, and function. Replicating explicit solvent
effects with new implicit solvent models will help to advance the understanding of such aspects.
Currently, specific interactions, solvation shells, and long-range order are ignored in most
implicit models, although some hybrid methods do seek to resolve this. In particular, the poor
correlation between apolar solvation forces exhibited in explicit solvent simulations and
implicit solvent simulations needs to be addressed.99,97

8.4. MD in Ligand Docking and Molecular Design Studies
While protein flexibility undoubtedly plays a critical role in determining molecular recognition,
most drug design and modeling efforts disregard these effects since they are computationally
expensive to include. With the rapid progress in algorithms and computational resources, as
discussed in this review, it is becoming feasible to consider these effects in a wider range of
drug discovery tasks. The more demanding but rigorous free-energy calculation methods can
often be used in the later stages of lead optimization. The more rapid but approximate methods,
those relying on single reference states, can be used to quickly identify favorable and
unfavorable features of a putative lead compound in molecular recognition. The identification
and classification of these features can help to suggest modifications of the compound to
improve binding affinities. These features also aid in construction of pharmacophore models
for locating possible alternative lead compounds from chemical libraries or databases. Even
the generation of improved libraries can be assisted via the use of pharmacophore-based
constraints in their design. Free-energy methods that may be considered intermediate to the
two extremes, for example, MM/PBSA and the semiempirical linear response approach, can
be utilized to further screen out less promising compounds suggested by the single reference
state models before more rigorous free-energy calculations are performed. Improved implicit
or hybrid implicit/explicit solvent models also have a role in facilitating rapid conformational
sampling, allowing protein flexibility to be fully accounted for in the early stages of a rational
drug design process.

8.5. Benchmarks
Benchmarks are inherently subjective; it is impossible to objectively compare all MD
algorithms or software on equal terms when they have widely differing capabilities and aims.
However, there are certain common example simulations, or analysis tasks, that are amenable
to benchmarking for both numerical accuracy and computational cost. The MD community
would benefit greatly from a diverse set of well-conceived and publicly available benchmark
tests based on these.

There are few direct comparisons of the various accelerated sampling techniques in the
literature, for example. A standard set of benchmark tests would alleviate the need for
researchers to setup and run unfamiliar methods and software to fairly compare these against
newly developed approaches. This would be of particular value when methods are specifically
developed, or optimized, for computer systems unavailable to the researchers who would
otherwise be performing the comparisons.

8.6. Computing Facilities
MD continues to benefit immensely from improvements in computer technology. As
computers become faster, it has become possible to handle larger molecules and explore their
dynamics for longer time scales. Moreover, the recent advent of Beowulf-style clusters has
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resulted in a considerable increase in the number of research groups able to undertake
biomolecular simulations. Currently, a typical simulation might have a system size of around
105-106 atoms, and a multiple nanosecond simulation will probably require of the order of
106-107 time steps. Such a simulation could be expected to take a couple of weeks on between
8 and 32 processors (obviously this is highly dependent on the nature of the particular protocols
employed and on the efficiency of the simulation software). During this period it could generate
gigabytes of data for subsequent analysis and visualization. Computer resources with the
capability of handling and storing such large quantities of data are now widely available, but
meaningful visualization is increasingly becoming a challenging task. The tools and techniques
developed for large-scale data-mining efforts will also be increasingly valuable in the study of
MD trajectories.

8.7. BioSimGrid
As just indicated, a typical and routine large-scale MD simulation might produce several
gigabytes of raw data that needs to be processed when complete. An additional unresolved
issue faced by the developers and users of modern molecular dynamics technology is the
archival, indexing, and dissemination of this output data. Building upon the current efforts
toward Grid computing, BioSimGrid (http://www.biosimgrid.org/) may provide the solution
or insight toward future solutions. BioSimGrid is a collaborative project between several of
the leading U.K. research groups in the field of molecular simulation.391

The BioSimGrid project seeks to build, using Grid technology, a publicly accessible database
of biomolecular simulation data. The data will include the raw simulation output, information
about the generic properties of that output and the corresponding software configuration data,
and information derived from analysis of the raw data. One valuable outcome of such a database
might be integration of the simulation data with experimental and bioinformatic data, opening
a wide range of data-mining possibilities.

9. Summary
MD simulations of proteins have provided many insights into the internal motions of these
biomolecules. Simulation of in silico models aids in the interpretation and reconciliation of
experimental data.

With ongoing advances in both methodology and computational resources, molecular
dynamics simulations are being extended to larger systems and longer time scales. This enables
investigation of motions and conformational changes that have functional implications and
yields information that is not available through any other means. Today’s results suggest that
(subject to the continuing utilization of synergies between experiment and simulation) the
applications of molecular dynamics will command an increasingly critical role in our
understanding of biological systems.

Investigation of the structural and functional characteristics of intriguing biochemical systems
is being made possible by computer simulation with techniques such as molecular dynamics.
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11. Abbreviations
AGBNP  

nalytic generalized Born and nonpolar

AFM  
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atomic force microscopy

BD  
Brownian dynamics

BPTI  
bovine pancreatic trypsin inhibitor

DEM  
diffusion equation method

ED  
essential dynamics

FEP  
free-energy perturbation

FM  
fast multipole

GB  
generalized Born model

IMD  
interactive molecular dynamics

LES  
locally enhanced sampling

LIE  
linear interaction energy

LINCS  
linear constraint solver

MBO(N)D  
multiple-body O(N) dynamics

MC  
Monte Carlo

MD  
molecular dynamics

MEHMC  
momentum-enhanced hybrid Monte Carlo method

MM  
molecular mechanics

MM/GBSA  
molecular mechanics/generalized Born-surface area method

MM/PBSA  
molecular mechanics/Poisson Boltzmann-surface area method

PCA  
principal component analysis
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PMEMD  
particle mesh Ewald molecular dynamics

PMF  
potential of mean force

QM/MM  
hybrid quantum mechanics/molecular mechanics

REMD  
replica exchange molecular dynamics

RESPA  
reversible reference system propagator algorithms

SA  
simulated annealing

SASA  
solvent-accessible surface area

SGMD  
self-guided molecular dynamics

SMD  
steered molecular dynamics

TI  
thermodynamic integration
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Figure 1.
Articles matching ISI Web of Science query “TS=(protein) AND TS=(molecular dynamics)”.
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Figure 2.
Two predicted binding conformations of a HIV-1 integrase inhibitor, 5CITEP, to a MD
snapshot of the protein. The green conformation is similar to that in the crystal structure392
and the purple is in a secondary predicted binding trench.
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Table 1
Characteristic Time Scales for Protein Motions

event spatial extent (nm) amplitude (nm) time (s) appropriate simulations

bond-length vibration 0.2–0.5 0.001–0.01 10−14-10−13 QM methods
elastic vibration of globular
domain

1.0–2.0 0.005–0.05 10−12-10−11 conventional MD

rotation of solvent-exposed side
chains

0.5–1.0 0.5–1.0 10−11-10−10 conventional MD

torsional libration of buried
groups

0.5–1.0 0.05 10−11-10−9 conventional MD

hinge bending (relative 1.0–2.0 0.1–0.5 10−11-10−7 Langevin dynamics, enhanced
motion of globular domains) sampling MD methods?
rotation of buried side chains 0.5 0.5 10−4-1 enhanced sampling MD methods?
allosteric transitions 0.5–4.0 0.1–0.5 10−5-1 enhanced sampling MD methods?
local denaturation 0.5–1.0 0.5–1.0 10−5-101 enhanced sampling MD methods?
loop motions 1.0–5.0 1.0–5.0 10−9-10−5 Brownian dynamics?
rigid-body (helix) motions 1.0–5.0 10−9-10−6 enhanced sampling MD methods?
helix-coil transitions >5.0 10−7-104 enhanced sampling MD methods?
protein association ≫1.0 Brownian dynamics
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