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ABSTRACT Most potassium channels are tetramers of four homologous polypeptides (subunits). During channel gating, each
subunit undergoes several conformational changes independent of the state of other subunits before reaching a permissive state,
from which the channel can open. However, transition from the permissive states to the open state involves a concerted movement
of all subunits. This cooperative transition must be included in Markov models of channel gating. Previously, it was implemented by
considering all possible combinations of four subunit states in a much larger expanded model of channel states (e.g., 27,405
channel states versus 64 subunit states), which complicates modeling and is computationally intense, especially when accurate
modeling requires a large number of subunit states. To overcome these complexities and retain the tetrameric molecular structure,
a modeling approach was developed to incorporate the cooperative transition directly from the subunit models. In this approach,
the open state is separated from the subunit models and represented by the net flux between the open state and the permissive
states. Dynamic variations of the probability of state residencies computed using this direct approach and the expanded model
were identical. Implementation of the direct approach is simple and its computational time is orders-of-magnitude shorter than the
equivalent expanded model.

INTRODUCTION

In recent years, major advancements have been made in our

knowledge of ion-channel structure (1–3) and understanding

of ion-channel gating (4–8). Incorporating properties of single

ion channels into models of their electrophysiological func-

tion requires a Markovian formulation, which represents

discrete kinetic states of the channel and their interactions (9).

Unlike the macroscopic Hodgkin-Huxley type models of

ionic currents through large ensembles of channels (10),

single channel Markov models allow us to simulate state-

specific channel properties and their alterations by mutations,

disease, or drug binding. As Markov models simulate both

single channel and macroscopic currents, they provide an

implicit relationship between the single channel records and

the macroscopic current. Explicit relations have been derived

as well (11–15). In cardiac electrophysiology, Markov

models of ion channels have been used to study channel

function during the action potential (9,16,17), the cellular

electrophysiological consequences of ion-channel mutations

(17–21), and pharmacogenetics of anti-arrhythmic drug

therapy (22). Most potassium channels, including cardiac

channels, are tetramers consisting of four homologous poly-

peptides, termed subunits. Each subunit contains a voltage-

sensing domain. It has been established experimentally that

each of the voltage sensors undergoes several conformational

changes before reaching a permissive (or activated) state,

from which the channel can open (5,23,24). The process of a

subunit reaching the permissive state is independent of the

other subunits. The final transition from the subunits per-

missive states to the channel open state is a cooperative pro-

cess that involves a concerted movement of all subunits (25–

29). This situation, that is typical of potassium channels,

causes dependency between state residencies of subunits. The

dependency between subunits has been implemented in

Markov models by considering channel states (rather than

subunit states), with each channel state representing a possible

combination of four subunit states (9,26,27,30). The number

of channel states in such expanded models is much larger than

the number of subunit states and increases drastically with the

number of subunit states. Therefore, inclusion of more sub-

unit states for more detailed modeling is limited with this

approach. More detailed modeling may also be achieved by

assuming time-dependent transition rates between channel

states, which in turn complicates the simulation and calibra-

tion procedure (31). Obviously, a direct simulation approach

that does not require transformation into the expanded model

is highly desired, as it involves much smaller models and

allows inclusion of many subunit states and therefore, de-

velopment and calibration of Markov models based on the

molecular structure of ion channels.

As stated above, the gating of a tetrameric ion channel can

be simulated by modeling its four subunits with identical

Markov structures. In this modeling approach, the transition

of the channel to the open state may occur only if all the

subunits are in the permissive preopening state. Fig. 1 is a

schematic of a cooperative Markov model of a tetrameric ion

channel. The model consists of four identical Markov struc-

tures representing the four subunits of the channel and a final

cooperative transition to the open state. It should be noted that

each subunit closed state may be modeled by any form of a

Markov structure and is not restricted to a linear sequence of

transitions to the permissive state. In this figure, Ci values are
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the subunit states and C1 is the subunit permissive state.

Transition rate to the open state is a1 if all the subunits are in

C1. The channel transitions to the closed state (all subunits

in C1) from the open state with a rate b1. Conformational

changes of each subunit are assumed independent of the other

subunits. This implies that transitions between states of a

subunit Markov model are independent of other subunits.

Because of the cooperative transition to the open state, the

Markov models of the subunits are coupled and computing the

occupancy of Markov states in each subunit requires that this

dependency be included.

For small models of the subunits, this dependency will be

automatically considered by deriving the expanded model of

the ion channel in which the permissive state is one of the

Markov states (9). Fig. 2 a shows a tetrameric model and Fig.

2 b shows its associated expanded model for an ion channel

with three closed states in each subunit. The channel closed

states in the expanded model have been determined by con-

sidering all the possible combinations of the closed states of

its four subunits. The transition rates between channel states in

the expanded model can be obtained from the transition rates

within subunits in the tetrameric model by determining the

possible subunit transitions that can cause a specific ion

channel transition (9,16,25,27). There are 5 channel closed

states for two subunit closed states and 15 channel closed

states for three subunit closed states. The number of channel

closed states, NCh, for n subunit closed states (n . 3) has been

derived in Appendix A and is equal to

NCh ¼
nðn2

1 1Þ
2

1
nðn� 1Þðn� 2Þðn� 3Þ

24
: (1)

Clearly, increasing the number of subunit states leads to a

much greater increase in the number of channel states and a

very large expanded Markov structure for the ion channel.

Subunit Markov models that are developed and calibrated

based on the molecular structure of an ion channel require

many subunit states. Implementing the expanded Markov

model of the ion channel for such cases is extremely difficult

and computationally expensive. It is also less representative

of the tetrameric structure of the channel. In this article, we

derive a mathematical scheme for calculating the cooperative

channel open probability and occupancy of subunit states

directly from the tetrameric Markov model of the channel

subunits, without using the expanded model of the channel.

THEORETICAL ANALYSIS

Statistical characteristics and
governing equations

In a cooperative Markov model (Fig. 1), all four or none of the

subunits of the channel may be in the open state. This means

that the probability of any subunit being in the open state is

equal to the probability of the channel being in the open state:

OðtÞ ¼ PcðO; O; O; OÞ ¼ PcðOÞ: (2)

We term the residency probability of the subunit states by the

name of the states (Ci(t) and O(t)) and the probability of

channel residency in any combination of subunit states by

Pc(S1;S2;S3;S4), where Si represents the state of subunit i.
Note that all the subunits are identical and so the probability of

distribution of subunits among different states is the same for

all four subunits. Transitions of a subunit between Ci states are

independent of the other subunits. However, the probability of

a subunit residing in a particular state is not independent of the

state residency of other subunits:

FIGURE 1 Schematic representation of a cooperative Markov model of a

tetrameric ion channel. C1 is the permissive state. O is the open state. Ci (i¼
2: n) are subunit closed states. The values ai and bi are transition rates.

FIGURE 2 (a) A cooperative Markov model of a tetrameric ion channel.

Each subunit has two closed states (C3, C2) and a permissive state (C1). (b)

An equivalent expanded Markov model of the ion channel in panel a. Circles

inside each square show the combination of four subunit states associated

with each channel state. Transition rates of the expanded channel model are

shown in terms of transition rates of the subunit states.
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Transitions of subunits to and from the open state cause this

dependency, as these transitions occur to and from specific

combinations of subunit states. For example, the probability

that all the subunits reside in C1 increases by a net flux from

the open state and decreases by a net flux to the open state.

To include this dependency in the model equations we first

introduce the following two parameters.

A: The probability that all subunits reside in C1 (the

permissive state).

F: The net flux (transition) from the open state to C1.

Assume that Q is the transition rate matrix (32) for the

Markov structure of a subunit without the last transition to the

open state (only Ci states), and C is the vector of all Ci states:

C ¼

C1

C2

..

.

Ci
..
.

Cn

2
66666664

3
77777775
¼ C1

C2�n

� �
; Q ¼ qij

� �
¼ Q1

Q2�n

� �
: (4)

Where C2-n is a column vector of states C2 to Cn, Q1 (1 by n)

is the transition rate matrix representing the net transition to

C1 from Ci states, and Q2-n (n-1 by n) is the transition rate

matrix representing net transitions to states C2, C3, . . ., Cn
from Ci states. All the transitions to C2-n states are from Ci
states. For the C1 states, in addition to the net flux from the Ci
states, there is a net flux from the O state. Therefore, the

system equations can be written as

d

dt
C2�n ¼Q2�nC

d

dt
C1 ¼Q1C 1 F

d

dt
O ¼� F: (5)

The net flux from the open state to the permissive state can be

calculated in terms of the probability of residency in the

permissive state, A:

F ¼ �a1A 1 b1O: (6)

To solve the system equations, we need to find A in terms of

transition rates and state residencies. The state residency is the

number of channels (or subunits) that occupy that state.

However, as the total number of channels scales the state

residencies, we define the normalized residency which is the

number of channels (or subunits) in each state divided by the

total number of channels (or subunits). This is the same as

the probability of a state being occupied by a channel (or a

subunit). Therefore, the sum of the normalized residencies in

all states is one:

O 1 +
n

i¼1

Ci ¼ 1: (7)

In this article, we use normalized residency and probability of

states interchangeably and refer to both as concentration of

states.

Steady-state concentrations

As the first step for finding the concentration of states in a

cooperative Markov model, we consider the equilibrium state

(steady state) of the model. At steady state the system equa-

tions are

d

dt
C ¼ QC ¼ 0

d

dt
O ¼ �F ¼ 0: (8)

We divide the subunits into two groups: subunits in the O
state; and subunits in the Ci states. Therefore, if Oss is the

concentration of the open state at steady state, then 1-Oss is the

total concentration of all Ci states. For subunits in Ci states,

the concentration of states at steady state is governed by the

equation QC ¼ 0. Elements on the diagonal of Q are minus

the summation of all other elements in corresponding col-

umns, therefore, the sum of all rows of the matrix is a zero

vector indicating that the rows of Q are linearly dependent. As

a consequence, the determinant of the Q matrix is zero, and

this equation has a set of solutions for the C vector that are

proportional to each other and to the steady-state concentra-

tion of states. We define C* as the normalized solution:

QC� ¼ 0

+
n

i¼1

Ci� ¼ 1:
(9)

The vector C* is the concentrations of Ci states among

subunits of this group. The concentration of Ci states among

all subunits, Css, is

Css ¼ ð1� OssÞC�: (10)

As F is zero at steady state, from Eq. 6 we conclude that

Oss ¼
a1

b1

Ass: (11)

At steady state, the net flux from the open state to the per-

missive state is zero, meaning that the transition to the open

state does not have any effect on the distribution of subunits

among Ci states and consequently, the probability of a subunit

in Ci states is independent of other subunits. Therefore,

Prob:ðCi; Cj; Ck; ClÞ 6¼ Prob:ðCiÞ Prob:ðCjÞ Prob:ðCkÞ Prob:ðClÞ0
PcðCi; Cj; Ck; ClÞ 6¼ CiðtÞCjðtÞCkðtÞClðtÞ: (3)
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Ass ¼ PcssðC1; C1; C1; C1Þ ¼ ð1� OssÞðC1
�
ssÞ

4
; (12)

where C1�ss is the steady-state probability of a subunit of Ci
states residing in the C1 state; ðC1�ssÞ

4
is the probability that all

four subunit reside the in C1 state (based on their indepen-

dence). Combining Eqs. 11 and 12, the steady-state concen-

tration of the open state is

Oss ¼
a1ðC1

�
ssÞ

4

a1ðC1
�
ssÞ

4
1 b1

: (13)

Dynamic changes of state concentrations

At resting membrane potential, the concentrations of states

have reached their steady-state values that can be determined

using Eqs. 8, 9, and 12. Changing the membrane potential

changes the transition rates between states and therefore the

concentration of states is no longer equilibrated. Conse-

quently, there will be net transitions (in general) between

states toward new equilibrated concentrations associated

with the new transition rates. As the net flux from the open

state is nonzero during this transition, the concentrations of

states in different subunits are not independent. In this case,

the concentration of the permissive state, A, cannot be ex-

pressed in terms of (C1)4 and should be calculated consid-

ering this dependency.

Similar to steady-state derivation, we divide the ion

channels to two groups: the ones that are initially in the open

state with concentration O0; and those that are initially in Ci
states with a total concentration 1-O0. The net flux from the

open state, F, changes the concentration of open states ac-

cordingly to

d

dt
O ¼ �F 0 OðtÞ ¼ O0 �

Z t

0

FðtÞdt: (14)

The concentration of Ci states will change by redistribution

according to the new transition rates and also by the subunits

entering (or leaving) the Ci states with a net flux, F.

Positive flux

Assume that the net flux, F, is always positive (from O to C1)

during the transition to new steady-state concentrations. We

may divide the subunits in the Ci states into two subgroups:

the first, termed E group, includes subunits that entered to the

Ci states from the open state, and the second, termed R group,

includes subunits that were initially in Ci states. The proba-

bility distribution within subunits of the R group is Ri. As

(1-O0) of subunits are in the R group, the concentration of

Ci state in the R group is (1-O0)Ri. Similarly, the initial

concentrations of states in the R group, Ri0, are the initial

concentrations of Ci states, Ci0, divided by (1-O0). In the R

group, there is no net flux from the open state and therefore

the concentration of states in each subunit is independent of

other subunits of the ion channel. Therefore, the dynamic

changes of the concentration of states in the R group can be

derived by solving the Markov model of one subunit:

R ¼

R1

R2

..

.

Ri
..
.

Rn

2
66666664

3
77777775
; R0 ¼

R10

R20

..

.

Ri0

..

.

Rn0

2
66666664

3
77777775
¼ 1

1�O0

C10

C20

..

.

Ci0

..

.

Cn0

2
66666664

3
77777775
; Q¼ qij

� �
;

(15)

d

dt
R ¼ QR 0 RðtÞ ¼ e

QtR0: (16)

Once the concentration of states is found, the concentration

of the permissive state (in the R group) can be obtained based

on the subunit independence property. In the R group, the

probability that all four subunits reside in the C1 state (the

permissive state) is

Prob:ðC1; C1; C1; C1Þ ¼ R1ðtÞ4; (17)

and among all the subunits, it is

AR ¼ PcðC1; C1; C1; C1Þ ¼ ð1� O0ÞR1ðtÞ4: (18)

We call the equivalent of Ri for the E group Ei. Initially, the

concentrations of states in group E are zero and they increase

over time by the net influx from the open state. Similar to Eq. 15,

the concentration of states in group E can be found by solving

the differential equations of the Markov model of a subunit:

EðtÞ ¼

E1ðtÞ
E2ðtÞ

..

.

EiðtÞ
..
.

EnðtÞ

2
66666666664

3
77777777775
; E0 ¼

0

0

..

.

0

..

.

0

2
66666666664

3
77777777775
; FðtÞ ¼

FðtÞ
0

..

.

0

..

.

0

2
66666666664

3
77777777775
; Q¼ qij

� �
;

(19)

d

dt
E ¼ QE 1 F 0 EðtÞ ¼

Z t

0

e
Qðt�tÞFðtÞdt: (20)

In comparison to the R group, here the initial conditions are

zero, but the equations have a nonzero input function, F(t).
Note that the concentration of states in this group depends on

F that is not known yet. To find the concentration of the

permissive state for the subunits of this group (all four

subunits in C1 state) we use a differential method. Fig. 3

shows a schematic of a tetrameric ion channel model for

subunits in the E group. During a differential time interval

between t and t 1dt, a differential amount of states equal to

Fdt enter the C1 state (note that the C1 state of this group is

labeled by its concentration E1 in the figure). Although this
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differential amount of states is in C1 at timet, it will be

distributed among other states as time progresses. The con-

centration of states in this group can be found by integrating

the distribution of all the differential amounts that entered C1

over time. To find the distribution of a differential amount of

influx to C1 among Ci states, we need to find the concentration

of Ci states when all states are initially at C1. Assume U(t) is

the response of the Markov model of a subunit (with no input)

when all the subunits are initially at the C1 state, then

UðtÞ ¼

U1ðtÞ
U2ðtÞ

..

.

UiðtÞ
..
.

UnðtÞ

2
666666664

3
777777775
¼ e

Qt

1

0

..

.

0

..

.

0

2
66666664

3
77777775
: (21)

As the system is a linear time invariant system, the distribution

among Ci states of F(t)dt states, that are in C1 at time t, will

be F(t)dt Ui(t� t) at a later time t. The concentration of states

can be found by integrating these differential concentrations

and is the same as Eq. 20. Using the differential method we

can also determine concentrations of the permissive state for

subunits in the E group. In this approach the subunits of group

E are modeled with an infinite number of differential distri-

butions. In each of these differential distributions there is no

additional flux to C1 other than the differential amount added

at timet. Therefore, the four subunits are independent and the

probability that all four reside in C1 for each differential

distribution is

Prob:ðC1; C1; C1; C1Þ ¼ U1ðt � tÞ4: (22)

This probability can be scaled by the number of subunits in

each differential distribution to find the probability of the

permissive state in that distribution within all subunits,

dAE ¼ PcðC1; C1; C1; C1Þ ¼ FðtÞdtU1ðt � tÞ4; (23)

and can be integrated over time to find the permissive state

concentration in subunits of the E group (among all subunits),

AEðtÞ ¼
Z t

0

FðtÞU1ðt � tÞ4dt: (24)

The total concentration of Ci states, Ci, and total concen-

tration of the permissive state, A, can be found by combining

these concentrations for subunits of groups E and R:

Ci ¼ Ei 1 ð1� O0ÞRi; (25)

A ¼ AR 1 AE ¼ ð1� O0ÞR1ðtÞ4 1

Z t

0

FðtÞU1ðt � tÞ4dt:

(26)

Equations 6, 14, and 26 can be solved to find the three

unknown functions: O(t), A(t), and F(t). Substituting for A
from Eq. 26 and for O from Eq. 14 in Eq. 6 results in the

following integral equation for F:

FðtÞ1
Z t

0

FðtÞ a1U1ðt � tÞ4 1 b1

� �
dt

¼ �a1ð1� O0ÞR1ðtÞ4 1 b1O0: (27)

Note that R1 and U1 are known functions.

Negative flux

In the previous section we assumed that during the transient

response F is always positive, meaning that the net transition

is always from the open state to the permissive state. How-

ever, the net flux, F, may be negative as well. Assume that

during the time interval between t and t 1dt the net flux is

negative and a differential amount of states jFjdt exit the

permissive state to the open state. If these states would have

remained among Ci states, they would have been distributed

according to jFjdt Ui(t � t). Therefore, we should subtract

this distribution from the distribution of Ci states, or simply

include F with a negative sign in the equations above and add

the negative resultant concentration of Ci states in the E group

to the concentration of Ci states in the R group.

SIMULATIONS AND RESULTS

A cooperative Markov model consisting of one open state and

three linearly connected Ci states was chosen to test the new

formulation for direct solution of the tetrameric model (Fig.

2 a). This Markov structure has been used to model various ion

channels, including the Shaker potassium channel (27,30) and

slow delayed rectifier potassium channels (IKs) (16). The

dynamic changes of the concentrations of subunit states are

simulated for a voltage-clamp test and compared with the

prediction of the expanded model. This provides a validation

test for the new direct formulation, as both methods are ex-

pected to predict identical dynamics for the ion channel.

However, the direct solution of the tetrameric structure pre-

dicts the concentration of subunit states while the expanded

model predicts the concentration of channel states. In the

following, we first derive the relationship between the con-

FIGURE 3 The ion channel model of subunits in the Ei group. These

subunits are initially in the open O state and enter Ci states with a rate F.
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centration of subunit states, Ci, and the concentration of

channel states, Hi. We then compare the predictions of the two

approaches for the steady-state values and dynamic variations

of the concentrations of subunit states.

Relation between concentrations of subunit
states and channel states

The concentration of each subunit state can be calculated by a

weighted summation of the concentration of channel states

where the weights are the repeats of that specific subunit state

in the channel states. If the number of repeats of the subunit

state Ci in the channel state Hj is kij, then the concentration of

subunit states is

CiðtÞ ¼ 1

4
+

j

kijHjðtÞ: (28)

The factor of one-fourth is required as there are four subunit

states in each channel state. The concentration of a subunit

open state and the channel open state is the same, as either all

or none of the four subunits of a channel are in the open state.

Therefore, O represents both the concentration of the channel

and subunit open state. Table 1 lists the coefficients kij for the

cooperative Markov model of Fig. 2. Eq. 28 is valid for

steady-state conditions as well as during the dynamic changes

of states.

To validate our direct approach for a tetrameric model of

subunits against the expanded model of channel states, both

models should start from equivalent initial concentrations of

states. If the initial concentrations of channel states, Hj0, are

given, then the initial concentrations of subunit states, Ci0, can

be calculated using Eq. 28. However, it is possible to calculate

Hi0 from Ci0 knowing that initially the ion channel is at the

steady state associated with its resting potential. It can be

shown that (Appendix B) if the channel state, Hj, consists of m
repeats of C3, n repeats of C2, and p repeats of C1 then, at

steady state, concentration of this channel state can be derived

in terms of the concentrations of subunit states as

Hjss ¼ Kmnp

C3
m

ssC2
n

ssC1
p

ss

ð1� OssÞ3
; (29)

where

Kmnp ¼

1 for ðm; n; pÞ any combination of 4; 0; 0

4 for ðm; n; pÞ any combination of 3; 1; 0

6 for ðm; n; pÞ any combination of 2; 2; 0

12 for ðm; n; pÞ any combination of 2; 1; 1

:

8>><
>>:

(30)

Note that m, n, and p are 0, 1, 2, 3, or 4 and m 1 n 1 p ¼ 4.

Steady-state concentrations

We first validate the direct method for steady-state conditions.

In the simulation, the following transition rates were assigned

to the model:

a1 ¼ 10; b1 ¼ 1;
a2 ¼ 4; b2 ¼ 2;
a3 ¼ 7; b3 ¼ 4:

(31)

Therefore, the Q matrix for the Ci states is

Q ¼
�7 4 0

7 �8 2

0 4 �2

2
4

3
5: (32)

Unit of transition rates is 1/ms. The normalized steady-state

concentrations of these states is the Eigenvector associated to

Eigenvalue 0 of the Q matrix:

½Ci
�
ss� ¼

0:5600

0:2800

0:1600

2
4

3
5: (33)

OSS can be calculated from Eq. 13,

Oss ¼ 0:4958; (34)

and from Eq. 10, the steady-state concentrations of Ci states

are

½Ci
�
ss� ¼

0:2823

0:1412

0:0807

2
4

3
5: (35)

The steady-state concentrations of channel states can be

found similarly from the 16 3 16 transition rate matrix, QC,

and are

H1ss ¼ 0:0003; H2ss ¼ 0:0023; H3ss ¼ 0:0061;
H4ss ¼ 0:0071; H5ss ¼ 0:0031; H6ss ¼ 0:0046;
H7ss ¼ 0:0243; H8ss ¼ 0:0425; H9ss ¼ 0:0248;

H10ss ¼ 0:0243; H11ss ¼ 0:0850; H12ss ¼ 0:0744;
H13ss ¼ 0:0567; H14ss ¼ 0:0992; H15ss ¼ 0:0496;
H16ss ¼ 0:4958:

(36)

H16 in the expanded model is the open state and its steady-

state concentration, H16ss, is the same as open state concen-

tration, Oss, derived using the new direct approach for the

tetrameric model. In our direct solution of Ci subunit states we

calculate the concentrations of all other channel states using

Eq. 29 and the results match the concentrations of the

expanded channel model in Eq. 36. Inversely, the subunit

TABLE 1 kij, the number of repeats of the subunit state Ci in the channel state Hj

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 1 1 1 1 2 2 2 3 3 4

2 0 1 2 3 4 0 1 2 3 0 1 2 0 1 0

3 4 3 2 1 0 3 2 1 0 2 1 0 1 0 0
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concentrations, Ci, can be calculated from the channel state

concentrations in the expanded model using Eq. 28 and are

the same as the subunit concentrations derived directly from

the tetrameric model in Eq. 35. This provides validation for the

direct approach under steady-state conditions.

Dynamic changes of the concentrations of states

We compare the solution of both methods for the dynamic

changes of subunit states and channel states during an arbi-

trary voltage-clamp test. We assume that the channel is al-

ready at rest with an initial distribution of states and then

subjected to a test potential for which the transition rates of the

model are given in Eq. 31. The initial concentrations of sub-

unit states at rest (associated to the transition rates at the

resting potential) are chosen to be

Ci0 ¼
0:3
0:1
0:4

2
4

3
5 O0 ¼ 0:2; (37)

and the initial concentrations of channel states, Hj0, are

calculated from these values using Eq. 29 to set both the

expanded model and tetrameric model at equivalent initial

conditions.

The channel state concentrations of the expanded model

can be calculated as

HjðtÞ½ � ¼ e
tQC Hj0½ �: (38)

H16 is the open state in the expanded model (Fig. 2 a) and so

the open probability is H16(t). In the direct approach we first

find the two auxiliary functions: the response of the Markov

structure of one subunit (without an open state) to the

normalized initial concentrations of states, R1(t), and its

response when all the subunits are initially in the C1 state,

U1(t). R1(t) and U1(t) are calculated according to Eqs. 16 and

21, and are shown in Fig. 4. Once these auxiliary functions

are known, we can compute the net flux from the open state,

F(t), using Eq. 27. This is a nonlinear integral equation that

we solve numerically using a finite difference method.

Substituting the integral with a summation of rectangular or

trapezoidal approximations over small intervals enables

finding an approximation for F at the nth interval from its

approximated values on previous n-1 intervals. The initial

value of F is required for this finite difference method and can

be derived from Eq. 27 by setting t ¼ 0:

Fð0Þ ¼ �a1ð1� O0ÞR1
4

0 1 b1O0: (39)

Once F is known, the concentration of the permissive state,

A, is calculated using Eq. 26. The permissive state in the

expanded model is H15 (Fig. 2) and its concentration is given

by Eq. 38. Knowing the concentrations of the open state (O [

H16) and permissive state (A [ H15), we compute F in the

expanded model through Eq. 6. Fig. 5 shows the net flux from

the open state, F, and the concentration of the permissive

state, A. As expected, the net flux from the open state and

concentration of the permissive state calculated from the

direct solution of the tetrameric model or from the expanded

model are identical. Knowing F(t), the concentrations of

subunits in the E group, Ei(t), in the R group, Ri(t), and in the

open state, O(t), are calculated using Eqs. 20, 16, and 14,

respectively. The concentrations of Ci subunit states, Ci(t),

FIGURE 4 The two auxiliary functions (a) R1(t) and (b) U1(t) calculated

for the voltage-clamp test of the tetrameric model presented in this article.

FIGURE 5 (a) Net flux from the open state, F(t), in the voltage-clamp test

and (b) concentration of the permissive state, A(t). Dotted curves resulted

from direct solution of the tetrameric model; shaded curves resulted from the

expanded model of the ion channel. Note that the curves are superimposed,

demonstrating complete equivalence of the direct and expanded methods.
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are calculated from Ei(t) and Ri(t) through Eq. 25 and from

the expanded model through Eq. 28. These concentrations

are shown in Fig. 6.

The direct approach presented here is developed to find the

concentrations of the open state, O, and subunit states Ci in

the tetrameric model. However, if desired, the concentrations

of channel states (any four combinations of subunit states)

can be found as well. The approach is similar to that used for

calculating the concentration of the permissive state, A. Note

that the permissive state is a channel state with a (C1; C1; C1;

C1) combination of subunit states. If the channel state, Hj,
consists of m repeats of C3, n repeats of C2, and p repeats of

C1, then the dynamic concentration of this channel state can

be computed through the equation

HjðtÞ ¼ Kmnpð1� O0ÞR3ðtÞmR2ðtÞnR1ðtÞp

1 Kmnp

Z t

0

FðtÞU3ðtÞmU2ðtÞnU1ðtÞpdt; (40)

where Kmnp is defined by Eq. 30.

The ion-channel concentrations have been calculated us-

ing Eq. 40 and are compared with the solution of the ex-

panded model in Fig. 7.

SUMMARY AND CONCLUSIONS

In this article, we present an algorithm for finding the prob-

ability distribution (concentrations) of states in a cooperative

tetrameric model of an ion channel. Cooperative Markov

models have been proposed to model ion channels based on

their tetrameric structure that consists of four identical repeats

of transmembrane segments. Such models can be used to

relate the channel function to its molecular structure. As the

transition of the channel to the open state requires a coop-

erative transition of all four subunits, the common approach

for solving Markov models cannot be applied in this case.

The equivalent expanded model of the entire channel can be

used for obtaining the concentration of channel states.

However, the number of states in expanded models is much

larger than the number of subunit states, as the expanded

model includes all possible combinations of the states of the

four subunits. Therefore, in practice the application of ex-

panded models has been limited to models that incorporate

up to three states in each subunit. Conformational changes of

subunits during channel gating involve several degrees of

freedom. Representation of these changes requires several

states per subunit. Implementing the expanded model for

several subunit states is extremely difficult and computa-

tionally very expensive. In comparison, implementation of

the algorithm presented in this article is simple and its

computational time is orders-of-magnitude shorter than the

equivalent expanded model. For example, if the conforma-

tional changes of an ion channel subunit during gating can be

approximated by only three independent degrees of freedom

and each degree of freedom is assigned only four Markov

states, then each subunit has 64 Markov states. The size of the

Q matrix in the direct approach is 64 3 64¼ 4096, which can

be implemented and solved on a personal computer in a

reasonable time. The equivalent expanded model requires

27,405 Markov states and the size of the Qch matrix is 27,405 3

27,405 ¼ 751,034,025, which is extremely difficult to im-

plement and requires a supercomputer to solve.

Implementation for variable voltage tests

The direct approach can be generalized for variable voltage

conditions, enabling the tetrameric models to be integrated

into models of the action potential. For a variable voltage, we

FIGURE 6 Concentrations of subunit states: (a) O, (b) C1, (c) C2, and (d)

C3 as a function of time in the voltage-clamp test. Dotted curves resulted

from direct solution of the tetrameric model; shaded curves from the

expanded model of ion channel. The curves are superimposed.

FIGURE 7 Concentrations of channel states: (a) H5, (b) H10, (c) H11,

and (d) H13 as a function of time in the voltage-clamp test. Dotted curves

resulted from direct solution of the tetrameric model; shaded curves from the

expanded model of ion channel. The curves are superimposed.
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cannot find F(t) independently from R1(t) and U1(t) because

the transition rates and so the Q matrix depends on the

membrane potential and varies with time. In this case, the

variations of state concentrations are calculated during the dt
interval between t and t 1 dt in terms of the concentrations,

transition rates, and net flux from the open state at time t and

then integrated to find concentrations of subunit states at time

t 1 dt. Knowing the concentrations of states and F at time t,
the variations in the concentrations of states within dt are

dC ¼ ðQðtÞCðtÞ1 FðtÞÞdt

dOðtÞ ¼ �FðtÞdt;
(42)

where

CðtÞ ¼

C1ðtÞ
C2ðtÞ

..

.

CiðtÞ
..
.

CnðtÞ

2
666666664

3
777777775

; FðtÞ ¼

FðtÞ
0

..

.

0

..

.

0

2
66666664

3
77777775
: (43)

Calculating F depends on the concentration of the permissive

state, which can be computed in a similar way. Equation 26

can be rewritten as

A ¼ ð1� O0ÞR1ðtÞ4 1

Z t

0

FðtÞU1ðt; tÞ4dt; (44)

where R1(t) is the concentration of the C1 state calculated

using Eq. 42 by setting F ¼ 0 and using the normalized

concentrations of Ci states as initial conditions. U1(t,t) is the

concentration of the C1 state calculated using Eq. 42 by

setting F¼ 0 and setting the initial concentrations of C1 to one

and all other Ci states to zero at time t ¼ t. This provides the

distribution of the differential amount of subunits that entered

to C1 at time t as a function of time, t. Unlike the voltage-

clamp test, U1 here is a two-dimensional function, as the

system characteristics defined by the transition rates vary with

time (autonomous system). Clearly U1 is zero if t , t. If the

transition rates vary according to specific functions of time,

the concentration of each subunit state approaches to a

specific function of time (in comparison to a constant value

when transition rates are constant) regardless of the initial

concentration of states. Consequently, at any time t� 0 the

distributions of the subunit states that have been initially in Ci
states and those that have entered C1 at times t � t will

eventually be the same:

Uiðt; tÞ/RiðtÞ if t � t � 0: (45)

Combining Eqs. 6, 14, and 44 results in the following

equation for F(t):

FðtÞ1
Z t

0

FðtÞ½a1U1ðt; tÞ4 1 b1�dt

¼ �a1ð1� O0ÞR1ðtÞ4 1 b1O0: (46)

This equation is the same as Eq. 27 for the voltage-clamp test,

except that U1(t � t) is replaced with U1(t,t). However,

unlike in the voltage-clamp test, U1(t,t) should be computed

simultaneously with F(t) as it depends on the variation of

membrane potential which in turn is determined knowing F.

Note that although U1 (or any Ui) is a two-dimensional

function, we do not need to save all the values of the function.

We only need the most current value at time t for all t from 0 to

t, which requires a one-dimensional function that is updated

at each time step. Appendix C provides a pseudo code for

implementing this approach in whole cell action potential.

Model with multiple open states or multiple
permissive states

The model we presented here has one permissive state and one

open state. The analysis can be generalized for multiple open

states, multiple permissive states, or both. If there is one

permissive state and multiple open states (and possibly in-

activated states connected to the open states) with only one

cooperative transition from the permissive state to an open

state termed O1, then the approach is very similar to that

presented here. In this case, the concentrations of open states

will be calculated using the transition rate matrix of the

Markov structure of open states considering the cooperative

flux, F, as an input function. In Eq. 6, O should be replaced by

O1 which, in turn, can be expressed in terms of F. Equation 26

still holds for the concentration of the permissive state, except

that O0 is the sum of all initial concentrations of open states.

Substituting for A and O1 in terms of F in Eq. 6 results in an

integral equation that can be solved to find F(t) and conse-

quently the concentration of states.

For cases with multiple permissive states and one open state,

there will be multiple cooperative transitions that should be

modeled with more than one cooperative flux. For example, if

channel states that are formed by any combinations of C1 and

C2 states are considered as permissive states (five permissive

states), then the approach requires considering two net fluxes

from the open state: F1 and F2, which represent the average net

flux from the open state to the C1 and C2 states, respectively. In

this case, Eq. 6 will become two equations, let term, Eq. 6a for

F1 and Eq. 6b for F2. These equations express F1 and F2 in

terms of concentrations of the O state and all five permissive

states A1–A5. Concentrations of the permissive states and O
state can be calculated in terms of both F1 and F2 using the

Markov model equations and can be substituted into Eqs. 6a

and 6b to derive two coupled integral equations for F1 and F2.

From F1 and F2 the concentrations of states can be computed.

APPENDIX A: NUMBER OF CHANNEL STATES
IN EXPANDED MODELS

Assume a tetrameric Markov model consisting of n subunit closed states and

one cooperative transition to the open state from the permissive state. The

expanded model has one channel open state associated with all subunits in

the open state and Nch channel closed states associated with all combinations
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of closed states of the four subunits. Any combination of closed states of the

four subunits fall in one of the following categories:

1. All of the subunits are in the same state.

2. Three of the subunits are in one state and the fourth is in a different

state.

3. Two of subunits are in one state and the other two in another state.

4. Two of the subunits are in one state and the other two are in two

different states.

5. Four subunits are in four different states.

Clearly there are n combinations in group 1 as there are n subunit closed

states. In group 2, the three subunits in the same state can be in any of n states

and the fourth subunit can be in any of the remaining n-1 states. Therefore

there are n(n-1) or n
�

n� 1

1

�
combinations in this group. The number of

combinations in other groups can be derived similarly and are n
�

n� 1

2

�
;

�
n
2

�
; and

�
n
4

�
for groups 3, 4, and 5, respectively. The total number of

channel closed states is

Nch ¼ n 1 n
n� 1

1

� 	
1 n

n� 1

2

� 	
1

n

2

� 	
1

n

4

� 	

¼ nðn2
1 1Þ

2
1

nðn� 1Þðn� 2Þðn� 3Þ
24

: (47)

APPENDIX B: STEADY-STATE
CONCENTRATIONS OF CHANNEL STATES
(EXPANDED MODEL) IN TERMS OF
CONCENTRATIONS OF SUBUNIT STATES

Assume three subunit closed states C3, C2, and C1 and a channel closed state,

Hj, consisting of m repeats of C3, n repeats of C2, and p repeats of C1 where

m 1 n 1 p¼ 4. At steady state, there is no net flux from the open state and the

concentrations of subunit states are independent of each other. We define

Kmnp as the number of permutations of a channel state that includes m repeats

of C3, n repeats of C2, and p repeats of C1. Given the independence of subunit

concentrations at steady state, the probability of each of these permutations

among the closed states is C3�mss C2�nss C1�pss :C3�ss;C2�ss; and C1�ss are the steady-

state concentrations of subunit states C3, C2, and C1 among the closed states,

C1
�
ss ¼

C1ss

ð1� OssÞ
; C2

�
ss ¼

C2ss

ð1� OssÞ
; C3

�
ss ¼

C3ss

ð1� OssÞ
;

(48)

where C3ss; C2ss; and C1ss are the steady-state concentrations of subunit

states C3, C2, and C1. Therefore, the concentration of the Hj channel state at

steady state is

Hjss ¼ KmnpC3
�m
ss C2

�n
ss C1

�p
ss ð1� OssÞ ¼ Kmnp

C3
m

ssC2
n

ssC1
p

ss

ð1� OssÞ3
:

(49)

There is one permutation when all four subunits are in the same state (C3, C2

or C1). There are four permutations when three of the subunits are in one state

and one is in a different state as the one in the different state can be in any of the

four subunits. When two of the four subunits are in one state, these two

subunits can be selected in
�

4

2

�
¼ 6 different ways. For each of these

choices, if the other two subunits are in different stats there are two ways for

assigning the two states to the two remaining subunits. Therefore, the number

of permutations of a channel state that includes two subunits in one state and

two in another state is 6, and the number of permutations of a channel state that

includes two subunits in one state and two in two different states is 12. The

number of permutations of a channel state is summarized in the following:

Kmnp ¼

1 for ðm; n; pÞ any combination of 4; 0; 0

4 for ðm; n; pÞ any combination of 3; 1; 0

6 for ðm; n; pÞ any combination of 2; 2; 0

12 for ðm; n; pÞ any combination of 2; 1; 1

:

8>><
>>:

(50)

Note that if there are three subunit closed states, in any channel state one

subunit state has been repeated at least twice.

APPENDIX C: PSEUDO CODE TO IMPLEMENT
DIRECT APPROACH IN WHOLE CELL AP MODEL
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Oks Probability that IKs channels are in the open state.

Iks Current through IKs channels.

Ik Sum of potassium currents.

INa Sum of sodium currents.

ICa Sum of calcium currents.

V Potential across the membrane.

C Membrane capacitance.

M The number of time steps required to reach the

steady-state condition (usually equivalent to

a few seconds).

a1Func Transition rate to open state as a function of V.

b1Func Transition rate from open state as a function of V.

C10,

C20, Initial probability of IKs subunit states.

C30,

Oks0

QMatrix The transition rate matrix for subunit states:

1 R ¼ 1/(1-Oks0)*[C10 C20 C30]T

2 U ¼ [1 0 0]T

3 Oks ¼ Oks0

4 S ¼ 0

5 F(1) ¼ �a1*(1-Oks0)*R[1] ^ 4 1 b1*Oks0

6 for i ¼ 1 to number of timesteps

7 Oks ¼ Oks-F(i)*dt
8 Ik ¼ Ikr 1 Iks 1 Ik1 1 . . .

9 Ik ¼ Ikr 1 Iks

10 Iion ¼ INa 1 ICa 1 Ik

11 V ¼ V-1/C *Iion* dt
12 Q ¼ QMatrix(V)

13 a1 ¼ a1Func(V)

14 b1 ¼ b1Func(V)

15 R ¼ R 1 Q*R*dt

16 U ¼ [[U 1 Q*U*dt], [1 0 0]T]

17 Ftemp ¼ 0

18 for k ¼ 1 to Minfi,Mg
19 Ftemp ¼ F(k)*(a1*U(1,k) ^ 4 1 b1)*dt

20 end

21 Ftemp ¼ �a1*(1-Oks 1 S)*R(1) ^ 4

1 b1*(Oks-S) � Ftemp

22 F(i 1 1) ¼ Ftemp/(1 1 dt*(a1 1 b1))

23 if i . ¼ M

24 S ¼ S 1 F(1)*dt
25 F ¼ F(2:M 1 1)

26 U ¼ U(:,2:M 1 1)

27 end

28 end
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No. RO1-HL 49054 (to Y.R.) and Children’s Discovery Institute Fellow-
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