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Abstract
Cancer is associated with a pro-thrombogenic state capable of platelet activation. Platelets on the
other hand can support angiogenesis, a process involved in the progression of tumor growth and
metastasis. However, it is unclear whether platelet/tumor interactions substantially contribute to
tumor physiology. We investigated whether platelets stabilize tumor vessels and studied the
underlying mechanisms. We induced severe acute thrombocytopenia in mice bearing subcutaneous
Lewis lung carcinoma or B16F10 melanoma. Intravital microscopy revealed that platelet depletion
led to a rapid destabilization of tumor vessels with intratumor hemorrhage starting as soon as 30
minutes after induction of thrombocytopenia. Using an inhibitor of GPIbα and genetically engineered
mice with platelet adhesion defects, we investigated the role of platelet adhesion receptors in
stabilizing tumor vessels. We found that a single defect in either GPIbα, VWF, P-selectin, or platelet
integrin activation did not lead to intratumor hemorrhage. We then compared the ability of transfused
resting and degranulated platelets to prevent intratumor hemorrhage. While resting platelets
prevented thrombocytopenia-induced tumor bleeding, circulating degranulated platelets did not. This
suggests that the prevention of intratumor hemorrhage by platelets relies on the secretion of platelet
granules’ content. Supporting this hypothesis, we further found that thrombocytopenia dramatically
impairs the balance between propermeability and antipermeability factors in tumor-bearing animals,
in particular depleting blood of angiopoietin-1 and serotonin. Our results show a crucial contribution
of platelets to tumor homeostasis through continuous prevention of severe intratumor hemorrhage
and consequent cell death. The study also suggests platelet function as a reasonable target for specific
destabilization of tumor vessels.
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Introduction
By 1865, Armand Trousseau had already reported the association between cancer and
thrombosis (1). The thrombogenic properties of tumors have since been widely studied. Tumor
cells promote coagulation and inflammation through various mechanisms including
overexpression of tissue factor (2), the initiator of the coagulation cascade, secretion of pro-
inflammatory cytokines (3,4) and of metalloproteinases (5) which lead to endothelial
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activation, an important step in thrombosis. In addition, sluggish blood flow, hyperpermeability
and discontinuous endothelial lining are recognized features of tumor microcirculation (6,7)
that may also contribute to the tumor thrombogenic environment. This thrombogenic
environment could activate platelets, the major orchestrators of coagulation and thrombosis.

Platelets may influence cancer progression. Both depletion of platelets and anti-platelet
treatments have been shown to reduce the number of experimental metastases, indicating that
platelets support the metastatic process (8–10). Various mechanisms have been proposed to
explain this effect. Coating of circulating cancer cells with platelets may protect cancer cells
from the immune response (8) and facilitation of cancer cell adhesion to leukocytes and
endothelial cells by platelets may promote the essential step of extravasation in the metastatic
process (8,10,11). Several studies have shown that platelets enhance the formation of capillary-
like structures by endothelial cells in vitro (12) and angiogenesis in vivo (13), a process that is
essential to tumor growth and metastasis. Platelets are a rich source of pro- and anti-angiogenic
factors (VEGF (14), platelet-derived growth factor (PDGF) (15), basic FGF (bFGF) (16), EGF
(17), TGF (18), insulin-like growth factors (19), angiopoietin-1 (20), sphingosine-1-phosphate
(21), matrix metalloproteinases (22), thrombospondin I (23), platelet factor 4 (24), plasminogen
activator inhibitor I (25) endostatin (26) and angiostatin (27)) that are released upon platelet
activation. These pro- and antiangiogenic factors have been shown to be mostly organized into
separate platelet α-granules that could be differentially released, suggesting that platelets may
actively stimulate or inhibit angiogenesis (28).

Recently, we showed that platelets and their adhesion support angiogenesis in vivo in
experimental models of angiogenesis. Platelets prevented excessive hemorrhage from the
growing vessels in Matrigel and corneal micropocket assays (29). We now investigated the
contribution of platelets to the function of tumor vessels and the mechanisms involved. We
found that platelets continuously support tumor vascular homeostasis by regulating the stability
of tumor vessels through the secretion of their granules’ content.

Materials and methods
Reagents

Fetal Bovine Serum (FBS) was from the American Type Culture Collection (ATCC, Rockville,
MD). Penicillin/streptomycin and high glucose Dulbecco’s Modified Eagle’s Medium
(DMEM) were from Gibco/Invitrogen (Carlsbad, CA). Medium titanium skinfold chambers
were from APJ Trading Co. (Ventura, CA). Polyclonal anti-GPIbα rat IgG R300 and polyclonal
non-immune rat IgG C301 were from emfret Analytics (Eibelstadt, Germany). Hematoxylin,
eosin, prostacyclin (PGI2), trypsin-EDTA and Drabkin’s reagent were from Sigma-Aldrich
(St. Louis, MO). O-sialoglycoprotein endopeptidase was from Cedarlane Laboratories
(Hornby, ON, Canada). 4′, 6-diamino-2-phenylindole (DAPI) was from Molecular Probes
Invitrogen (Eugene, OR). GPG-290, an inhibitor of the vWF/GPIbα interaction (30) was
prepared by Wyeth Research (Cambridge, MA) and was a kind gift of Dr. Gray D. Shaw (Wyeth
Research, Cambridge, MA).

Animals
All animal procedures described in this study were performed using 6 to 8 week old C57Bl/6J
female mice (purchased from the Jackson Laboratory, Bar Harbor, ME) except in experiments
using dorsal skinfold chamber for which 12-weeks-old C57BL/6J male mice were used. Mice
deficient in VWF, P-selectin and CalDAG-GEFI were bred and housed in our animal facility.
All experimental procedures involving the use of mice were approved by the Animal Care and
Use Committee of the Immune Disease Institute.
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Cell culture
Murine B16F10 melanoma cells (CRL-6475) and Lewis lung carcinoma cells (LLC,
CRL-1642) were purchased from ATCC. Cells were cultured at 37°C in a humidified
atmosphere of 5 % CO2, high glucose (4.5 g/L) DMEM supplemented with 10 % fetal bovine
serum and 1 % glutamine and were used by passage 10 for implantation into syngenic C57BL/
6J recipient mice.

Tumor cell implantation
100 μL of either LLC or B16F10 melanoma cells at 1.0 × 107/mL in Dulbecco’s phosphate-
buffered saline (PBS) were injected subcutaneously into the back of 6 to 8 week old C57BL/
6J female mice.

Induction of thrombocytopenia
Thrombocytopenia was induced at indicated time points following tumor cell implantation by
an intravenous injection of 2.5 μg/g mouse of the platelet-depleting antibody (8) (polyclonal
anti-mouse GPIbα rat IgG, emfret Analytics). Control mice were injected with a non-immune
rat polyclonal IgG (emfret Analytics). Thromboctyopenia was evaluated by flow cytometry.

The intravenous injection of the depleting antibody resulted in ≥ 97 % reduction in circulating
platelets at 1 hour post-injection in all mice.

Determination of intratumor hemoglobin content
Tumors were excised from the back of the sacrificed animals, weighed, homogenized in
Drabkin’s reagent (Sigma), centrifuged (2000 × g; 10 min) and hemoglobin content of
supernatants was measured by absorbance reading at 540 nm.

Immunohistology of LLC tumors
Subcutaneous LLC tumors were harvested from sacrificed animals, fixed in zinc-fixative (100
mM Tris-HCl containing 37 mM zinc chloride, 23 mM zinc acetate, 3.2 mM calcium acetate),
paraffin-embedded and sectioned. Tumor sections were stained with hematoxylin and eosin
(H&E) or with Terminal Deoxynucleotidyltransferase-mediated dUTP Nick End Labeling
(TUNEL, Roche Applied Science, Indianapolis, IN) to visualize DNA fragmentation. Tumor
cell mitosis was quantified by immunostaining of bromodeoxyuridine (BrdUrd) incorporation
using a BrdUrd labeling and detection kit (Roche Applied Science). Tumor sections stained
for BrdUrd incorporation or for TUNEL were counterstained with DAPI to visualize all nuclei.
After washing, the slides were mounted with Gel/Mount aqueous mounting medium (Biomeda,
Foster City, CA) and observed under an epifluorescence microscope. The proliferative and
apoptotic indexes were calculated as the percentage of either BrdUrd or TUNEL positive nuclei
relative to DAPI-stained nuclei, respectively. For HE staining, slides were mounted with DPX
Mountant (Fluka BioChemika, Buchs, Switzerland) and observed in light microscopy.

Metastasis
Subconfluent B16F10 melanoma cells (70–80%) were washed with PBS and detached by brief
exposure to 0.25% trypsin and 0.2% EDTA. Cells were washed twice with PBS, resuspended
in serum-free medium and kept on ice until injection. 100 μL of a tumor cell (1 × 105 cells)
suspension were injected to the lateral tail vein of mice. Ten days later, mice were injected
with either the control IgG or the platelet-depleting IgG. The day following the induction of
thrombocytopenia, lungs were harvested, perfused and washed with PBS and photographed.
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Tail bleeding time
Vehicle (PBS) or GPG-290 (5 mg/kg mouse) was injected intravenously at day 8 following
subcutaneous LLC cells implantation and tail bleeding time was assessed the following day,
prior to tumor excision. Mice were anesthetized with a mixture of ketamine (100 mg/kg) and
xylazine (10 mg/kg) before cutting 3-mm of the distal tip of the tail using a sharp razor blade.
The tail was immediately immersed in 37°C PBS and the time required for the bleeding to stop
determined. If bleeding did not recur within 15 seconds of cessation, it was considered to have
stopped. Experiments were terminated after 15 minutes if no cessation of blood flow occurred.

In vivo imaging of LLC
Dorsal skinfold chambers and surgical preparation were performed as described (31), After 2
days of recovery, 5 × 105 LLC cells were implanted in the conjunctive tissue below the striated
skin muscle layer of the remaining skin layer and allowed to grow for 5 days.

Mice were then injected intravenously with 100 μL of 5 % Evans blue and tumors were
observed through the dorsal skinfold chamber for 3 hours starting from the injection of either
the control or the platelet-depleting antibody. During in vivo microscopy, mice were
anesthetized with 100 mg/kg ketamine and 10 mg/kg xylazine. Light microscopy imaging was
performed using an upright microscope (Axioplan; Zeiss, Oberkochen, Germany) with a 2.5
× magnification objective and recorded by a digital camera (AxioCam HSc) attached to it. Data
acquisition was done with the time-lapse function in the software from the same manufacturer
(Axiovision 4.6.3).

Quantification of VEGF, angiopoietin-1 and serotonin levels
VEGF levels in platelet-poor plasma (PPP), serum and tumor were assayed using an ELISA
kit (R&D Systems, Minneapolis, MN) according to the manufacturer’s instructions.
Angiopoietin-1 levels were quantified by ELISA using glutaraldehyde-immobilized
recombinant mouse Tie2-Fc chimera (R&D Systems) for capture and a goat polyclonal to
angiopoietin-1 (Santa Cruz Biotechnology, Santa Cruz, CA) for detection. In addition, PPP
and serum samples from control and platelet-depleted mice were analyzed by SDS-PAGE (10
%, reducing conditions) and Western blotting with a goat polyclonal antibody to angiopoietin-1
(Santa Cruz Biotechnology). Serotonin levels were quantified by enzyme immunoassay (EIA)
according to the manufacturer’s instructions (Labor Diagnostika Nord GmbH & Co. KG,
Nordhorn, Germany).

Platelet preparation
Donor mice were bled from the retro-orbital venous plexus under anesthesia. Blood was
collected into polypropylene tubes containing 7.5 U/mL heparin. Platelet-rich plasma (PRP)
was obtained by centrifugation at 200 × g for 5 minutes at room temperature. The PRP was
incubated for 2 minutes with PGI2 (0.1 μg/mL) and platelets were isolated by centrifugation
at 850 × g for 5 minutes. The resulting pellet was washed and resuspended in Tyrode’s buffer
(137 mM NaCl, 2 mM KCl, 12 mM NaHCO3, 0.3 mM NaH2PO4, 5.5 mM glucose, 5 mM
Hepes, pH 7.3) containing 0.35 % bovine serum albumin.

Treatment of platelets with O-Sialoglycoprotein endopetidase
In order to prevent clearance of transfused platelets by the anti-GPIbα antibody, the external
part of GPIbα was removed prior to transfusion by treating the platelets with O-
sialoglycoprotein endopeptidase as previously described (32). Briefly, washed platelets were
resuspended in Tyrode’s buffer containing 1mM CaCl2 and incubated at 37°C for 30 minutes
with 250 μg/ml O-sialoglycoprotein endopeptidase. Aliquots of the platelet suspensions were
analyzed by flow cytometry to assess the removal of the N-terminal domain of GPIbα alpha
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using a FITC-conjugated antibody directed against the extracellular domain of GPIbα (emfret
Analytics).

Activation of platelets
For activation, platelets pre-treated with O-Sialoglycoprotein endopetidase were stimulated
with human thrombin (1 U/mL) for 10 minutes at 37°C in the presence of 2 mM EDTA to
avoid aggregation. Hirudin (2 U/mL) was added to stop the reaction. Platelet degranulation
was confirmed by expression of P-selectin using FITC-conjugated anti–P-selectin antibody
(BD Pharmingen). EDTA and hirudin were also added to resting platelet preparations. Aliquots
of resting and activated platelets supernatant were analyzed for angiopoietin-1 content by
ELISA.

Statistical Analysis
Data are presented as mean ± SEM and were analyzed by analysis of variance (ANOVA) and
by unpaired, two-tailed Student’s t test. P values <0.05 were regarded as statistically significant.

Results
Acute thrombocytopenia induces severe tumor hemorrhage independent of the tumor type,
age, and location

Platelet depletion was induced in mice bearing subcutaneous tumors at days 4, 8, and 12
following LLC tumor cell implantation. Eighteen hours after the induction of platelet depletion,
the mice treated with the platelet-depleting antibody had less than 2.5 ± 0.9 % of normal platelet
count whereas platelet number was unaffected in mice treated with the control IgG (94 ± 7 %
of normal platelet count) as compared to non tumor-bearing untreated control mice.
Morphological examination and H&E staining of the subcutaneous tumors revealed extensive
hemorrhage in and around all tumors of platelet-depleted mice but not in mice treated with
control IgG (Fig. 1A and B). As illustrated in Fig. 1B, massive accumulation of red blood cells
was observed at the interface of the tumor and the adjacent connective tissue in the platelet-
depleted mice. Hemorrhage was not seen anywhere in areas distant from the tumor in the
thrombocytopenic mice.

Thrombocytopenia-induced tumor bleeding was independent of the age of the tumor. Induction
of thrombocytopenia at either day 4, 8 or 12 after tumor cell implantation invariably resulted
18 hours later in a 2 to 3 fold increase in intratumor hemoglobin content as compared to tumors
from control mice with normal platelet counts (Fig. 1C). This indicates that platelets are
required continuously to prevent hemorrhage from primary tumor vessels. Interestingly,
induction of acute severe thrombocytopenia also resulted in hemorrhage in subcutaneously
implanted B16F10 melanoma and in established B16F10 melanoma lung metastasis (Fig. 1D),
indicating that the requirement of platelets for the prevention of intratumor hemorrhage was
likely independent of the tumor type, age, and location.

Intravital observation of subcutaneous LLC tumors through a dorsal skinfold chamber (Fig.
2A) revealed that plasma protein leakage, detected by extravasation of Evans blue, occurs
continuously and excessively in both control and thrombocytopenic mice (Fig. 2B and Suppl.
Movies). In contrast, tumor hemorrhage was observed only in the thrombocytopenic mice. First
signs of tumor hemorrhage occurred as soon as 35 minutes following the injection of the
depleting antibody (Fig. 2B and Suppl. Movie 2). In depleted animals, plasma protein leakage
and hemorrhage were observed both from intratumor vessels and from post-capillary venules
directly surrounding the tumor (Fig. 2B and C). Altogether, these results show that platelets
continuously help prevent excessive tumor vessel fragility.
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Acute thrombocytopenia reduces tumor cell proliferation and increases tumor necrosis
Induction of acute thrombocytopenia leads to severe tumor hemorrhage, an event that is likely
to affect tumor cell viability. We therefore studied the effect of acute thrombocytopenia on
tumor growth and survival. Mice bearing 8 day old LLC tumors were injected with either the
control or the platelet-depleting antibody and tumors were allowed to grow for two more days.
No significant differences in wet and dry weight could be found between the excised tumors
of thrombocytopenic and control mice (not shown). Interestingly however, quantitation of
tumor cell mitosis by BrdUrd incorporation and in situ immunostaining revealed a decrease in
the proliferative index of tumors from thrombocytopenic mice as compared to tumors from
control mice (0.9 % ± 0.14 vs 2.3 % ± 0.47, p<0.004). Less proliferation was observed in areas
both distant and proximal to the hemorrhage (Fig. 3A).

H&E staining of LLC tumors from thrombocytopenic mice revealed that tumor necrosis could
be observed in the area next to the hemorrhage as indicated by morphological changes such as
nuclear condensation and fragmentation (Fig. 3C, upper panel). This observation was further
confirmed by quantitation of apoptotic cells by TUNEL staining (Fig. 3B and C). The TUNEL
apoptotic index in the non-hemorrhagic areas of tumors from platelet-depleted mice (0.8 ± 0.9
%) was not significantly different (p=0.1) from that of tumors from control mice (0.1 ± 0.05
%). In contrast, the TUNEL apoptotic index in the hemorrhagic areas of tumors from platelet-
depleted mice was significantly increased as compared to non-hemorrhagic regions (6.01 ±
4.03 %, p<0.001, Fig. 3B). This indicates that thrombocytopenia-induced tumor bleeding is
injurious to the cancer cells.

Prevention of tumor-associated hemorrhage by platelets does not rely on their ability to form
thrombi

We asked whether the continuous requirement of platelets to prevent tumor hemorrhage was
dependent on their capacity to adhere to the vessel wall and to form thrombi. To determine
this, we first studied the effect of GPG-290, a soluble competitive inhibitor of the platelet
GPIbα/VWF interaction (30), on intratumor hemoglobin content. GPIbα-mediated platelet
adhesion was previously found by our group to play a role in preventing hemorrhage during
experimental angiogenesis not associated with tumors (29). However, although the GPG-290-
treated mice could not arrest their bleeding as indicated by their increased tail bleeding time
(Fig. 4A), no increase in their tumor hemoglobin content was found as compared to control
mice (Fig. 4B). This indicates that prevention of tumor-associated hemorrhage by platelets is
independent of platelet GPIbα/VWF interaction. This was further confirmed by the absence of
severe hemorrhage in LLC tumors implanted in VWF−/− mice (0 hemorrhage in 5 tumors
examined) that also have prolonged tail bleeding time (33). Besides VWF, P-selectin mediates
platelet rolling on the activated vessel wall (34). As for VWF−/− mice, no severe hemorrhage
was found in LLC tumors grown in P-selectin−/− mice (0 hemorrhage in 6 tumors examined),
thus indicating that P-selectin was also not crucial for the prevention of intratumor hemorrhage
by platelets.

Mouse platelets lacking CalDAG-GEFI are severely compromised in integrin-dependent
platelet aggregation since CalDAG-GEFI is a key signal integrator in the cascade leading to
the activation of the integrin αIIbβ3 (35). LLC tumors grown in CalDAG-GEFI−/− mice did
not show hemorrhage (0 hemorrhage in 7 tumors examined) as compared to LLC tumors grown
in wild-type mice. This suggests that platelet integrin activation is also not required to prevent
hemorrhage from angiogenic tumor vessels. Moreover, immunofluorescent staining using anti-
GPIbα and anti-αIIbβ3 antibodies as well as H&E staining of Lewis lung carcinoma sections
did not reveal any platelet aggregates or significant numbers of platelets adhering to the lumens
of tumor vessels (not shown). Altogether, these results suggest that the classical mechanisms
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of platelet adhesion and aggregation involved in primary hemostasis/thrombus formation might
not be required for the prevention of intratumor hemorrhage by platelets.

Thrombocytopenia leads to an altered balance between pro- and anti-permeability factors
Platelets are an important source of angiogenic factors and of regulators of vascular
permeability such as VEGF, angiopoietin-1 and serotonin (14,20,36). Both VEGF and
angiopoietin-1 have been previously reported to affect blood vessel maturation and stability
as well as vascular permeability in adult mice (37). We therefore investigated whether the
absence of platelets could substantially affect the concentrations of these factors in platelet-
poor plasma, serum and tumor, thus resulting in a modification of the balance between pro-
and anti-permeability factors. VEGF was found most abundantly in tumors and its levels in
platelet-poor plasma, serum and tumor were not significantly affected by thrombocytopenia
(Fig. 5A). Angiopoietin-1 and serotonin were mostly found in serum in tumor-bearing mice
(Fig. 5B and C) and were found in similar levels in serum of non-tumor-bearing animals (not
shown). In contrast to VEGF (Fig. 5A), angiopoietin-1 and serotonin levels in serum were
dramatically decreased in tumor-bearing thrombocytopenic mice as compared to tumor-
bearing control mice (Fig. 5B and C). Similarly, thrombocytopenia led to the disappearance
of serum angiopoietin-1 and serotonin in mice without tumors (not shown). This indicates that
the serotonin- and angiopoietin-1-load in platelets accounts for the majority of the circulating
levels of these two key regulators of vascular permeability. Thus, whereas the potent pro-
permeability factor VEGF is consistently produced by the LLC tumor and relatively little is
found in plasma or serum, the two anti-permeability factors angiopoietin-1 and serotonin are
primarily found in platelets and not in tumors. Our results document that severe acute
thrombocytopenia leads to an altered balance between the platelet-derived pool of anti-
permeability factors and the tumor-derived pro-permeability factor VEGF, also known as
vascular permeability factor.

Degranulated platelets are unable to prevent thrombocytopenia-induced tumor bleeding
In order to investigate the role of platelet granules’ content in preventing tumor hemorrhage,
we compared the ability of transfused resting platelets and thrombin-stimulated platelets (with
released granules) to rescue tumor bleeding in thrombocytopenic tumors. Thrombin-activated
platelets have been previously shown to rapidly lose surface P-selectin when transfused but to
continue to circulate and function (38,39). To avoid clearance of the transfused platelets by the
depleting anti-GPIbα antibody, platelets lacking the extracellular domain of GPIbα were used.
The removal of the extracellular domain of GPIbα was performed with O-sialoglycoprotein
endopeptidase prior to transfusion (32). Degranulation of thrombin-stimulated platelets was
verified by FACS analysis of P-selectin surface expression and by the presence of
angiopoietin-1 in platelet supernatants (Fig. 6A and B). While transfusion of resting platelets
could prevent tumor bleeding in thrombocytopenic mice, transfusion of degranulated (P-
selectin-positive) platelets could not (Fig. 6C and D), indicating that prevention of tumor vessel
bleeding by platelets likely relies on the local release of a soluble factor from platelet granules
rather than on the formation of platelet plugs.

Discussion
In the present report, we addressed the contribution of platelets to tumor vascular homeostasis.
We show that platelets are crucial regulators of tumor vessel stability that are continuously
needed to prevent severe tumor hemorrhage. In fact, absence of platelets leads to an immediate
destabilization of tumor vessels with intratumor hemorrhage starting within the first hour
following the induction of thrombocytopenia. This thrombocytopenia-induced tumor bleeding
appears to be independent of the tumor type and location since it could be seen in subcutaneous
LLC tumors, B16F10 melanoma, and in lung metastasis (Fig. 1). We recently reported that
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absence of platelets leads to high susceptibility to hemorrhage in blood vessels during
inflammation (40). In this previous study, we showed that in thrombocytopenic mice
inflammation induces hemorrhage at the inflamed site indicating that platelets prevent tissue-
damaging hemorrhage in inflamed organs (40). Solid tumors often show signs of chronic
inflammation. These include the presence of leukocyte infiltration, the expression of cytokines
such as tumor necrosis factor-α or interleukin-1, chemokines and active tissue remodeling
(41,42). We hypothesize that the requirement of platelets for the prevention of tumor
hemorrhage might not only include their supportive role in angiogenesis (29) but also their
ability to prevent inflammation-induced vascular injury (40).

Platelets are known to carry biologically active agents, such as, angiopoietin-1 and serotonin,
that have been shown to promote endothelial integrity and barrier function in vitro and in
vivo (36,37,43–46). Angiopoietin-1 is known to stabilize blood vessels, inhibit vascular
permeability and to have anti-inflammatory properties (47–49). Serotonin was shown to
prevent red blood cell extravasation in thrombocytopenic hamsters (46). In contrast, tumors
release destabilizing factors, the most prominent being VEGF, and activated endothelium, as
would be found in tumors, secretes angiopoietin-2 another potent destabilizer of vasculature
(50). Angiopoeitin-2 action is through competitive inhibition of angiopoietin 1 (50). We
hypothesize that the balance between the tumor and platelet-derived agents is regulating tumor
vessel stability. Indeed, our study reveals the crucial contribution of the platelet-derived
products in the prevention of tumor hemorrhage. We show that platelet depletion leads to a
dramatic decrease in both angiopoietin-1 and serotonin levels in serum, while VEGF levels
remain unaffected. This illustrates that severe acute thrombocytopenia leads to an impaired
balance between available pro- and anti-permeability factors that may contribute to tumor
vessel destabilization. It is of note, however, that systemic intravenous infusion of platelet
releasate did not prevent tumor bleeding in thrombocytopenic mice (not shown). We speculate
that the platelet-derived factors responsible for tumor vessel stabilization have to be delivered
by platelets to the tumor site for optimal activity.

Surprisingly, prevention of severe intratumor hemorrhage by platelets does not seem to require
platelet plug formation, which relies on platelet adhesion receptors GPIbα/VWF and activation
of the integrin αIIbβ3. Although CalDAG-GEFI−/−, VWF−/− or GPIbα inhibitor-treated mice
all have a severe bleeding phenotype, manifesting a highly prolonged bleeding time upon
injury, severe intratumor hemorrhage did not occur in any of these animals. Thus, similar to
the prevention of hemorrhage in inflamed tissues (40), tumor vessel stabilization by platelets
might require neither platelet adhesion to the vessel wall nor platelet aggregation. These
observations are in agreement with those of Manegold and colleagues who could not detect an
increase in platelet adhesion in tumor vessels (51). The fact that genetic inhibition of platelet
adhesion and aggregation did not affect their capacity to stabilize tumor vessels raises questions
about how platelets deliver vasoactive compounds to tumor vessels. As previously
hypothesized by Folkman and colleagues (52), platelet/tumor interactions might be facilitated
by the impaired blood flow (51,53–55) and the localized granular release by the procoagulant
environment of the tumor (56–58).

The identification of the tumor vessel stabilizing factor(s) delivered by platelets to solid tumors
could lead to new therapeutic strategies. Inhibition of these platelet-derived factors may allow
selective induction of tumor bleeding and thus decrease tumor viability and/or growth (Fig. 3)
without affecting the immediate function of blood vessels in other tissues. Induction of tumor
hemorrhage may also facilitate the selective delivery of chemotherapeutic agents to tumors
and enhance antitumor immunity through better exposure of tumor antigens to circulating
immune cells. Alternatively, mimicking the stabilizing effect of platelets on tumor vessels
might help to normalize the tumor vasculature and its function, a strategy that was shown to
have a synergistic effect when combined with cytotoxic therapy (55).
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Acute thrombocytopenia induces tumor bleeding independently of the tumor type, age,
and location
A. At day 8 after subcutaneous implantation of LLC tumor cells, mice were injected with either
the control IgG (control) or the platelet-depleting IgG (depleted) and tumors were
photographed 18 hours later. Bar = 5 mm. B. H&E staining of the LLC tumors showed massive
accumulation of red blood cells in the tumor stroma only in platelet-depleted mice (arrows).
Bars = 100 μm. C. Thrombocytopenia was induced at day 4, 8, or 12 following subcutaneous
LLC implantation. 18 hours later, intratumor hemoglobin content was determined and
compared to control IgG-treated tumors (n = 4). D. 10 days following either subcutaneous
(upper panel) or intravenous (lower panel) injection of B16F10 melanoma cells, mice were
injected with either the control IgG (control) or the platelet-depleting IgG (depleted). 18 hours
later, photographs of skin and lungs were taken. Hemorrhage was observed only in tumors
from platelet-depleted mice (arrows). Bars = 5 mm.
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Figure 2. Kinetics and localization of tumor bleeding in platelet-depleted mice
A. Mouse carrying a dorsal skinfold chamber. B. Mice bearing 5 day old LLC tumors were
injected with Evans blue and either the control (upper panel) or the platelet-depleting antibody
(lower panel) at time 0. Tumors were observed through the dorsal skinfold window for 3 hours.
Times post-infusion are indicated. Bar = 500 μM. C. LLC tumor viewed 3 hours after induction
of thrombocytopenia. White arrow: intratumor hemorrhage, black arrow: hemorrhage
occurring from vessels surrounding the tumor. Bar = 500 μM.
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Figure 3. Thrombocytopenia reduces cancer cell proliferation and locally affects tumor viability
At day 8 after subcutaneous implantation of LLC tumors, thrombocytopenia was induced and
48 hours later, tumors were harvested and sectioned. A. Mice were injected with BrdUrd 3
hours before sacrifice and the proliferative index was calculated as the percentage of BrdUrd
positive nuclei relative to DAPI-stained nuclei (n = 10 microscopic fields out of 4 tumors for
each). B. The apoptotic index was calculated as the percentage of TUNEL positive nuclei
relative to DAPI-stained nuclei (n = 10 microscopic fields out of 5 tumors for each). C. H&E,
DAPI and TUNEL staining of non-hemorrhagic and hemorrhagic areas of the LLC tumors.
Arrows indicate fragmented and condensed nuclei. Bars = 20 μm.
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Figure 4. Prevention of tumor hemorrhage by platelets is independent of platelet GPIbα
PBS or the GPIbα chimera (GPG-290) was injected intravenously at day 8 following
subcutaneous LLC tumors implantation. A. Tail bleeding time was assessed 18 hours after
GPG-290 injection. B. Comparison of hemoglobin content of control and GPG-290-treated
tumors (n = 5). No difference in hemoglobin content was found between the two groups.
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Figure 5. Platelet depletion effects on serum concentrations of VEGF, angiopoietin-1 and serotonin
A. Comparison of VEGF levels in LLC tumor-bearing control and platelet-depleted mice (n =
5). B. Comparison of angiopoietin-1 levels between control and platelet-depleted mice (n = 5).
Inset. Western blot detection of angiopoietin-1. Lane 1: platelet poor plasma from control
mouse, lane 2: plasma from platelet-depleted mouse, lane 3: serum from control mouse, lane
4: serum from platelet-depleted mouse. Arrow indicates angiopoietin-1. C. Comparison of
serotonin levels between control and platelet-depleted mice (n = 4–6). Platelet depletion led
to disappearance of serotonin and angiopietin-1 from serum without affecting VEGF levels.
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Figure 6. Degranulated platelets are unable to prevent thrombocytopenia-induced tumor bleeding
A. Degranulation of thrombin-stimulated platelets was assessed by FACS analysis of P-selectin
surface expression and by B. Quantitation of angiopoietin-1 in platelet supernatants by ELISA.
C. At day 8 after tumor cells implantation, mice were injected with either the control IgG
(control) or the platelet-depleting IgG (depleted). A subset of mice was transfused 30 minutes
prior to the induction of thrombocytopenia with tyrode buffer (no transfusion) or with 7 ×
108 of either resting (resting platelets) or activated platelets (activated platelets) and
subcutaneous LLC were photographed 18 hours later. Bar = 5 mm. D. Comparison of the
hemoglobin content of control tumors and platelet-depleted tumors from mice transfused with
either tyrode buffer, resting platelets, or activated platelets (n = 17–20).
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