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Abstract
Virtual screening by molecular docking has become a widely used approach to lead discovery in the
pharmaceutical industry when a high resolution structure of the biological target of interest is
available. The performance of three widely-used docking programs (Glide, GOLD, and DOCK) for
virtual database screening is studied when they are applied to the same protein target and ligand set.
Comparisons of the docking programs and scoring functions using a large and diverse data set of
pharmaceutically interesting targets and active compounds are carried out. We focus on the problem
of docking and scoring flexible compounds which are sterically capable of docking into a rigid
conformation of the receptor. The Glide XP methodology is shown to consistently yield enrichments
superior to the two alternative methods, while GOLD outperforms DOCK on average. The study
also shows that docking into multiple receptor structures can decrease the docking error in screening
a diverse set of active compounds.

I. Introduction
Virtual screening has become a widely used approach to lead discovery in the pharmaceutical
industry. When a high resolution structure of the biological target of interest is available, the
most common methodology for performing virtual screening involves the use of a flexible
docking algorithm, in which conformational sampling methods are used to position the ligand
in the receptor, and some sort of scoring function is applied to obtain a predicted free energy
of binding. A number of powerful software programs, e.g. GOLD1–4, FlexX5, DOCK6,7,
Glide8,9, Surflex10,11, LigandFit12, have been developed over the past several decades to
carry out docking calculations, and good success in both binding mode and binding affinity
prediction has often been achieved in selected test cases. A more challenging goal has been to
improve the robustness of the methods with regard to both structural and energetic prediction;
all of the above programs on occasion manifest both false negatives (active compounds which
are not appropriately docked or scored by the methodology) and false positives (weakly binding
compounds whose binding affinity is seriously overpredicted). A number of comparative
evaluation of docking programs, conducted over the past several years, confirm this general
picture13–17.
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One of us has recently described a new approach9 that has been implemented in the Glide
program (the extra precision, or XP, Glide methodology) which incorporates novel terms into
the binding free energy scoring function (as compared to standard scoring approaches18–23,
which are similar with regard to functional form), and appears, in preliminary tests, to
substantially enhance the ability of Glide to pick out known active compounds from a random
ligand database. Relative to the standard precision (SP) Glide scoring function8, improvements
in enrichment of roughly an order of magnitude are reported for XP Glide9, for a large and
diverse set of ligands and receptors. However, this comparison is entirely internal to the Glide
program, and does not provide any calibration as to how well, or poorly, alternative approaches
would fare with the particular data set under study. The present paper is aimed at addressing
this question, employing in addition to Glide, the DOCK and GOLD programs which are both
widely used in academia and in the pharmaceutical and biotechnology industries. We
experiment with a number of docking and scoring approaches available in each program in
order to obtain as much comparative data as possible.

In addition to evaluating the relative abilities of the various docking methods to identify known
active compounds embedded in a random database, another objective of this work is the
validation of a new approach to enrichment studies described in reference 9. In the great
majority of enrichment studies in the literature, no attempt is made to separate misdockings
due to induced fit effects from scoring errors; ligands are simply docked into a single rigid
version of the receptor, and their scores are compared with those of database ligands. However,
if the goal is to fairly calibrate the accuracy of the scoring function (or to improve the
parametrization by fitting theory to experimental data), it makes no sense to include ligands
that do not “fit” into a particular receptor structure, due to significant steric clashes, in the
enrichment test set. These ligands presumably dock in grossly incorrect poses, and would
require a substantial modification of the receptor active site conformation in order to dock
correctly. The score associated with such a grossly incorrect pose cannot be expected to
correspond to an experimentally measured value, and inclusion of such data in an “enrichment
factor” does not provide a reasonable measure of the accuracy of the scoring function when
induced fit effects are not an issue.

Computation of induced fit effects, in cases where the ligand does not fit into a specified
receptor conformation, is quite feasible, as we have shown in a recent publication24. However,
such an approach requires the use of a flexible receptor as well as ligand, and hence is in general
much more computationally intensive than rigid receptor docking. There are also questions
about how to compare the scores of ligands docked to different receptor conformations;
incorporation of receptor strain energy into binding affinity prediction is an area at present in
its infancy. For these reasons, we believe there is considerable value in separating the docking/
scoring problem into two components: (1) calculation of induced fit effects (including strain
energy estimation) when these are necessary to achieve a reasonable prediction of the binding
mode; (2) docking and scoring of compounds which are sterically capable of docking more or
less correctly into a specified rigid conformation of the receptor. We consider only component
(2) in the present paper (as was also done in reference 9).

An approach to implement the separation suggested above is to simply eliminate the ligands
from the training and test sets which do not dock in a “reasonable” pose (“non-fitting”) into
the receptor conformation selected for the study. This is the approach adopted in reference 9.
The assessment of docking accuracy was performed using RMSDs when a crystal structure
was available, and otherwise employing visual inspection, with the correct pose inferred by
analogy with known complexes in the PDB with ligands of a similar structure. The detailed
criteria were documented in reference 9. A possible objection to this approach is that the ligand
was misdocked specifically by Glide, but would be docked successfully with alternative
programs. In the present paper, we examine “misdocked” ligands from the data sets of reference
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9, docking these ligands with the GOLD and DOCK programs. This investigation provides an
important cross-check on our previous protocols and assumptions with regard to sorting ligands
into the categories of properly or improperly docked, reducing the bias inherent in the use of
a single program. While misdocking with multiple programs does not prove that the compound
cannot be docked into a rigid receptor, it certainly strongly suggests that this is the case, and,
additionally, provides a check on whether our assessment of misdocking was unduly influenced
by the score assigned to the ligand by Glide.

The paper is organized as follows. Section II discusses the data sets that we have assembled,
including the initial division of ligands into “fitting” and “non-fitting” into the receptor
conformation used in the study. In section III, we briefly discuss the methodologies employed
in GOLD, DOCK, and Glide, with regard to both sampling and enrichment. Section IV presents
results comparing enrichment factors, using fitting compounds only, for the various test cases.
Results obtained with all three programs for the non-fitting compounds are then separately
analyzed. Section V, the conclusion, provides a brief summary and discusses future directions.

II. Data set
We have used the same set of receptors and ligands as were employed to evaluate the Glide
XP scoring function in reference 9. This data set is divided into two components; a training
set, which was used to parametrize Glide XP, and an independent test set. Fourteen targets
which are of pharmaceutical interest are contained in the training set, as shown in Table 1a.
One of them (p38 MAP kinase) is represented by two alternative cocrystallized receptor sites.
The crystallographic resolution of all these 15 proteins is less than 3.0 Å (9 of them are less
than 2.2 Å). The receptors for these screens cover a wide variety of receptor types and therefore
provide a proper test of the docking methods. All protein structures were prepared using the
procedure as stated in the previous Glide methodology paper8.

The test set, described in Table 1b, consists of four new receptors, with appropriate sets of
cognate ligands, and two receptors (Human Cyclin Dependent Kinase 2, or CDK2, and
Thrombin) studied previously, with new sets of ligands. Among the four new receptors, two
of them (PPARγ and Vegfr2) are investigated using two different conformations of the receptor
--- a closed form and an open form – which are appropriate for binding different classes of
ligands. While a larger test set would be desirable (and will be employed in subsequent
publications), development of suitable data sets is highly labor intensive; and the current test
set is capable of providing an assessment as to whether there is large overfitting in the Glide
XP results with the training set.

For PPARγ and Vegfr2 targets, only a small fraction (from 19% to 34%) of the active
compounds can be correctly docked by Glide XP if only one form of the receptor (either the
closed or open form) is used. However, if both forms of receptor are used, 61% and 42% of
all active compounds can be correctly docked for PPARγ and Vegfr2 receptors, respectively.
Therefore, for these cases, docking into multiple receptor structures instead of a single structure
is an effective way to decrease the misdocking due to steric clashes, which is a major error in
screening a large, diverse set of active compounds.

Comparing Table 1a and 1b, there are many more poorly-docked active compounds in the test
set than in the training set. When the training set was constructed, in many cases a relatively
small number of active compounds were included, and even in cases where a larger number
of compounds are employed, they were typically derived from a small number of literature
sources. However, for the test set, we have collected a significant number of compounds from
the literature, using a number of different literature sources. Consequently, the diversity of the
test set is significantly larger than that of the training set, leading to a larger number of
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compounds being misdocked into a given structure of the receptor. In a realistic laboratory
application of virtual screening, where the data set to be screened is typically a highly diverse
pharmaceutical compound collection, we would thus expect the fraction of misdocked
compounds for all but the most rigid receptors to be substantial. The consequences of this
observation are discussed further below.

In the present study, the same set of active ligands, including both well-docked and poorly-
docked ones, are being docked with each program. The classification of the well-docked or
poorly-docked are based on Glide XP results. As database ligands, we employed “druglike”
decoys that averaged 400 in molecular weight (the “d1-400” dataset) in all cases except
thymidine kinase (1kim). For 1kim, which has a very small active site, we used a similar (but
in this case more competitive) set with an average molecular weight of 360 (the “d1-360”
dataset). The detailed approach to creating these test databases and their property distributions
were described in a previous publication8. We believe these compounds are representative of
the chemical sample collections of pharmaceutical and biotechnology companies. As such,
they should provide a fair and stringent test of the efficacy of the docking method. Each screen
used 1000 decoy database ligands and between 4 and 253 known active binders as shown in
Table 1. All selected known binders have experimental activities less than 10 μM except those
for neuraminidase. The references for their structures and biological activities can be found in
a previous publication9. Like the database ligands, the known binders were also MMFF94s-
optimized. In these cases, we used input geometries obtained via a MacroModel25
conformational search.

While the training set described above has been used as such for parametrization of Glide XP
(and, to a small extent, Glide SP as well), it is worth pointing out that neither GOLD nor DOCK
have been trained using this data set. Thus, while comparison of Glide XP to GOLD and DOCK
is one (major) objective of the paper (and is best addressed by examining the test set
comparisons), the “training” set provides additional data with which to evaluate the absolute
level of performance of GOLD and DOCK, their performance relative to each other, and the
relative performance of the various options within each program that are evaluated below. To
our knowledge, an evaluation of GOLD or DOCK using exclusively “fitting” compounds has
not been reported in the literature; the present study provides this information using an
extensive database of such compounds, comprising all the data summarized in Table 1a and
1b.

III. Docking Methodologies
Glide (Schrodinger, Inc.)

The Glide (Grid-Based Ligand Docking With Energetics, version 4.0) algorithm approximates
a systematic search of positions, orientations, and conformations of the ligand in the receptor
binding site using a series of hierarchical filters8,9, 26. The shape and properties of the receptor
are represented on a grid by several different sets of fields that provide progressively more
accurate scoring of the ligand pose. The fields are computed prior to docking. The binding site
is defined by a rectangular box confining the translations of the mass center of the ligand. A
set of initial ligand conformations is generated through exhaustive search of the torsional
minima, and the conformers are clustered in a combinatorial fashion. Each cluster,
characterized by a common conformation of the “core” and an exhaustive set of “rotamer
group” conformations, is docked as a single object in the first stage8. The search begins with
a rough positioning and scoring phase that significantly narrows the search space and reduces
the number of poses to be further considered to a few hundred. In the following stage, the
selected poses are minimized on precomputed OPLS-AA van der Waals and electrostatic grids
for the receptor. In the final stage, the 5–10 lowest-energy poses obtained in this fashion are
subjected to a Monte Carlo procedure in which nearby torsional minima are examined, and the
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orientation of peripheral groups of the ligand is refined. The minimized poses are then rescored
using the GlideScore function, which is an expanded version of ChemScore19 with force field–
based components and additional terms accounting for solvation and repulsive interactions.
The choice of the best pose is made using a model energy score (Emodel) that combines the
energy grid score, GlideScore, and the internal strain of the ligand8. We investigated both
Standard Precision mode (SP) and Extra Precision mode (XP) of Glide in this comparative
study.

The Glide XP methodology has been described in detail in reference 9; we briefly summarize
the important features here. The starting point for XP scoring is a modified version of
ChemScore, as in the case of SP; however, novel terms are used to handle physical effects that
are missing from ChemScore. Desolvation penalties are applied by docking explicit waters
into the highest scoring docked complexes, and evaluating the solvation of polar and charged
ligand and protein groups by counting the number of neighboring waters and comparing these
values to statistics extracted from a database of correctly docked active ligands. Molecular
recognition motifs based on the concept of hydrophobic enclosure of the ligand by the protein
are defined, and incremental increases in binding affinity are added to the ligand score when
the appropriate motifs are recognized. In order to properly evaluate these new terms, a
considerable augmentation of the sampling algorithm, which is carried out at higher resolution,
is required; the algorithm itself, based on growing side chains from core positions identified
by SP docking, is discussed further in reference 9. Additional terms involving special treatment
of salt bridges, pi-cation interactions, and various other specialized medicinal chemistry motifs,
are described in reference 9. The XP scoring function has been parametrized using the training
set of 15 receptor structures and cognate “fitting” ligands, as is discussed further below.

GOLD (Cambridge Crystallographic Data Center)
Version 2.2 of the GOLD (Genetic Optimization for Ligand Docking) docking program was
evaluated in the present study. The GOLD program uses a genetic algorithm (GA) to explore
the full range of ligand conformational flexibility and the rotational flexibility of selected
receptor hydrogens1–4. The mechanism for ligand placement is based on fitting points. The
program adds fitting points to hydrogen-bonding groups on the protein and ligand, and maps
acceptor points in the ligand on donor points in the protein and vice versa. Additionally, GOLD
generates hydrophobic fitting points in the protein cavity onto which ligand CH groups are
mapped. The genetic algorithm optimizes flexible ligand dihedrals, ligand ring geometries,
dihedrals of protein OH and NH3 groups, and the mappings of the fitting points. The docking
poses are ranked based on a molecular mechanics–like scoring function. There are two different
built-in scoring functions in the GOLD program — GoldScore and ChemScore. Note that the
ChemScore function implemented in GOLD4 is an optimized version of the original chemscore
function developed by Eldridge et al.19. In parallel, the performance of two combined docking
protocols was also studied. In the first combined protocol, “GoldScore-reChemScore”, the
dockings produced with the GoldScore function are rescored and reranked using the
ChemScore function; in the second combined protocol, “ChemScore-reGoldScore”, the
docking produced with the ChemScore function are rescored and reranked using the GoldScore
function. In both protocol, the Simplex algorithm (local optimization) is used to relax each
docking in the alternative scoring function. We also compared two different speed modes —
default settings (1x) and 7–8 times speedup settings (8x). In the present work, the binding site
was defined as a spherical region which encompasses all protein atoms within 5.0 Å of each
crystallographic ligand atom. Protein and ligand input structures were prepared as described
above. Default GA settings were used for all calculations.
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DOCK(UCSF)
The version 5.2.0 of DOCK6,7 was used in these studies. DOCK characterizes concavities on
a protein surface using sets of spheres positioned on top of a Connolly surface generated on
the binding pocket. The centers of these spheres characterize positions where ligand atoms can
be found in the binding pocket. DOCK uses a graph matching algorithm to position the atoms
of a ligand onto the centers of the spheres. A minimization of the ligand poses is performed
allowing DOCK to refine the ligand position in the binding pocket. Flexibility of the ligands
is modelled by treating the ligand as a series of fragments, where a central fragment (the anchor)
is docked first followed by sequentially docking the outer fragments around the anchor. As
each fragment is docked, neighbor fragments are combined.

For each target, the Connolly molecular surface was calculated using a probe radius of 1.4 Å.
Inside the binding pocket, spheres are generated therein with the DOCK program SPHGEN.
SPHGEN outputs the spheres in clusters that overlap each other. Clusters were examined for
each target, and the cluster covering the known binding site was chosen by selecting those
spheres within 7.5 Å of the the co-crystalized ligand. Compounds were docked allowing for
ligand flexibility, using the grid-based energy scoring option for minimization after initial
placement in the site. The box for the scoring grid was defined such that all spheres were
enclosed with an extra 5.0 Å added in each dimension. Scoring grids for contact and energy
scores were calculated with a grid spacing of 0.3 Å. The bump check was set such that
compounds with atoms closer than half the sum of the van der Waals radii of the respective
atoms were rejected. A 6–12 Lennard-Jones van der Waals potential was used along with a
Coulomb potential using a distance-dependent dielectric constant of 4r to simulate solvation
effects. The energy cutoff was 10.0 Å. The radii used were those in the
vdw_AMBER_parm99.defn set. Ligand atoms were matched to receptor spheres using the
anchor first search with the anchor size set to 10 atoms. The automatic matching option was
used, and conformations were generated on the fly with the torsion drive option.

IV. Results and Discussions
The objective of the present study is to compare how well three widely-used molecular docking
programs perform during virtual database screening when applied to the same protein target
and ligand set. In the context of virtual screening, the measure of performance is the ability of
the program to prioritize seeded active compounds for a particular target relative to the decoy
compounds in the database. We have obtained enrichment data for the training set and the test
set as described above.

Figure 1 displays the percent of known actives recovered as a function of the percent of the
ranked database sampled for Glide XP, Glide SP, DOCK, GOLD 1xGoldScore and GOLD
1xChemScore, for all test cases in the training set and test set. The enrichment curves show
that Glide XP gives the best performance for six out of eight cases when evaluated on the test
set. On the training set with 15 cases, Glide XP outperforms the other methods in database
enrichment ability for 13 cases.

Figure 2a shows the average enrichment curves over all 15 training set targets for all 11 docking
methods in the present study. All docking methods could identify active compounds from the
ligand database since all enrichment curves are significantly better than the random selection
curve. GOLD methods have similar performance as DOCK. They found between 30% and
55% of known actives in the top 10% of the ranked database on average. Glide SP found 67%
of actives in the top 10% of the ranked database. Glide XP achieves better enrichment than the
other methods, unsurprisingly since this training set was used to parametrize Glide XP. On
average, Glide XP found 92% of the known actives in the top 10% of the ranked database. For
the GOLD program, the performance of GoldScore is somewhat better than ChemScore. The
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known actives found in the top 10% of the ranked database are 55% and 45% for 1xGoldScore
and 1xChemscore, respectively. However, the docking speed of GoldScore mode (8.5 minutes
per ligand for 1x settings) is about 3 times slower than the Chemscore mode(2.8 minutes per
ligand for 1x settings). The combined docking protocols which correspond to docking with
one scoring function and rescoring with the other do not improve the performance relative to
the single scoring functions. The average docking time for each method is listed in Table 2.

Figure 2b presents the average enrichment curves for the independent test set (Table 1b) for
Glide XP and SP, DOCK, and the four non-composite GOLD methods. DOCK achieves
slightly better results for the test set than the training set (38% vs. 33% of the known actives
in the top 10% of the ranked database. This difference likely corresponds to statistical variation
based on sample size). On average, DOCK performs similarly to the GOLD results for the test
set. They found between 32% and 51% of the known actives in the top 10% of the ranked
database. Glide SP found 62% of the actives in the top 10% of the ranked database. Glide XP
achieves the best enrichment. On average, for the test set Glide XP found 85% of the known
actives in the top 10% of the ranked database. In summary, compared with training set results,
there is some quantitative degradation in the enrichment for all methods except DOCK, but no
significant overfilling is found at this percentage of active compound recovery. In fact, it is
possible that the slight degradation in performance of XP (seen for GOLD as well) is not
because of overfitting, but because one is dealing with a more challenging set of receptors and/
or active compounds. A further discussion of XP performance on the test set will be presented
below.

On average, in the top 2% of the ranked database, Glide XP found 68% and 38% of known
actives for the training set and test set, respectively. There are several possible explanations
for the significant decrease in performance seen at this level of accuracy, which is a highly
demanding one (i.e. ranking active compounds ahead of nearly all of the decoy ligands). Firstly,
at least some of the difference could be due to overfitting of Glide XP for the active ligands in
the training set (thus enabling training set ligands to be ranked higher than they would be
otherwise). Secondly, it is possible that there are novel molecular recognition motifs in one or
more of the additional receptors in the test set, which have not been incorporated into the Glide
XP scoring function as of yet. Glide XP is a combination of physics based approach (to
determine functional forms of the scoring terms) with an expert system component (to identify
particular chemistries/geometries that should be rewarded or penalized as compared to
“normal” scoring); the expert system performance is dependent upon having relevant examples
in the training set. The existence of novel examples missing from the training set is a problem
distinct from “overfitting”, which in fact would represent a very different sort of difficulty
(recognition of motifs identified from previous targets which should not be rewarded or
penalized with the same weights in the current targets). Analysis of which problem described
above is dominant awaits further investigation.

To characterize the overall performance of each docking method for database screening, Table
3 reports, for both training and test sets, a new measure of enrichment defined as the average
number of database decoys outranking the active compounds in the database. Specifically, the
number of database decoys with a score that is superior to each active is tabulated, these values
are summed, and the result is then divided by the total number of active compounds in the data
set. We believe that this metric is superior to standard definitions of enrichment, which punish
active ligands when they are outranked by other active ligands; this is a particularly serious
problem when the active test suite contains a large number of compounds. A “perfect” score
based on this metric would thus be zero (no database ligands outranking any active
compounds), and smaller numbers are better. Also, this metric can differentiate the following
two circumstances with the same enrichment factor: suppose there are 10 actives in the top 50
database rankings, (a) in one situation, the ranks of 10 actives are from 1 to 10; (b) in the other,
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the ranks of 10 actives are from 41 to 50. Obviously, the former is better. This new metric (0
vs, 40) can clearly distinguish these two situations. The average metric for all 15 targets in
Table 3a indicates the following order of performance Glide XP, Glide SP, GOLD, DOCK.
Compared with the training set results in Table 3a, Glide XP results for the test set (Table 3b)
are significantly degraded (20 for the training set vs. 39 for the test set), but it is still the best
method in the test set by a significant margin. Surprisingly, the performance of DOCK
improves on the test set (341 for the training set vs. 265 for the test set).

In order to check the consistency of our new measure of enrichment with the standard
definition, the average standard enrichment factors at 10% of ranked database are shown in
Table 4. The standard enrichment factor (EF) is defined as: EF=(HITSsampled/HITStotal)/
(Nsampled/Ntotal)

Here, Ntotal is the number of ligands in the docked database, Nsampled is the number of ligands
in the docked database to be examined, HITStotal is the total number of the known active
ligands, and HITSsampled is the number of known active ligands found in the top Nsampled
ligands of the docked database. Compared to the last rows in Table 3a and Table 3b, the new
enrichment metric and the standard enrichment factor give very similar trends with regard to
the performance. The advantage of the new enrichment metric, however, is that it is not
dependent on the total number of active ligands making a better comparison between different
databases possible.

Besides the well-docked active set, we also compare the performance of all methods for the
set that was poorly-docked by Glide XP. We visually inspect the binding modes of these known
actives generated by docking programs and find they are quite different or missing some key
interactions compared with their experimental binding modes or analogues. For example, as
shown in Figure 3a, docking of ligand 1293-1 into the 1fm6 (PPARγ closed form) structure
yields a ligand pose with an RMSD of 10.9 A when compared to the structure of 1293-1 in its
cognate receptor 1fm9 (PPARγ open form). The primary reason is that 1fm6 was cocrystallized
with a much smaller ligand 1241-2, in which some side-chain atoms of a number of residues
protrude into the binding site, thus blocking binding of the larger ligand (1293-1) in the correct
pose. The most significant differences between the two structures are Phe363, Phe282 and
Gln286, which in 1fm6 is rotated to a conformation that in rigid docking would block the
terminal phenyl groups of 1293-1 (Figure 3b). Table 5 reports the number of poorly-docked
active compounds in the top 10% of the ranked database. For the training set, Glide XP
prioritizes most poorly-docked actives for 7 targets of 10. From the total number of poorly-
docked actives in the top 10% of the ranked database (as shown in the last row of Table 5a),
Glide XP and SP appear to outperform other methods in ranking poorly-docked actives.

For the test set, the advantage displayed by Glide XP in ranking poorly docked actives
disappears, and that of Glide SP is significantly diminished. This suggests that the somewhat
better ability to recognize partially correct structures may be more dependent upon the fitting
data set than the performance of the scoring function for well-docked actives. The principal
conclusion is that none of the programs tested performed very well when assessing the ability
to rank poorly docked compounds in the top 10% of the ranked database.

V. Conclusion
We have carried out extensive comparisons of several docking programs and scoring functions
using a large data set of pharmaceutically interesting targets and active compounds. The Glide
XP methodology was shown to consistently yield enrichments superior to the alternative
methods, not only for the training set (Table 1a) used to develop XP, but also for the
independent test set (Table 1b). Glide SP scoring shows improvement as compared to the
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scoring in GOLD and DOCK, presumably in part because it has some component of XP scoring
mixed in with the more standard terms originally derived from ChemScore (the same starting
point as was used to develop GOLD). Most versions of GOLD significantly outperform DOCK
on average, although results vary for individual receptors; the various scoring options in GOLD
do equally well, with the exception of “rescoring” with GOLD which appears to result in
degradation of performance. These conclusions apply to well docked compounds; for
misdocked compounds, based on the test set results, all methods perform roughly equally
poorly.

From the point of view of computational efficiency, the CPU time required on average for
Glide XP calculations (7.0 minutes per ligand) is larger than other methods except the most
accurate version of Goldscore (8.5 minutes per ligand). This extra cost for Glide XP is the
trade-off for the higher enrichment factors obtained. Glide SP delivers the second best overall
enrichment performance while providing a considerable speedup (0.42 minute per ligand) as
compared to all approaches with the exception of the fast version of GOLD Chemscore setting.

While the XP scoring function can be improved, the dominant error at this point in screening
a large, diverse set of active compounds with a single receptor is clearly going to be misdocking
due to steric clashes which arise because the receptors are modeled as rigid structures. If virtual
screening is to deliver reliable results, covering a wide range of chemotypes, this problem has
to be successfully attacked. There are various approaches that are promising, including docking
into multiple receptor structures (illustrated here by the PPARγ and Vegfr2 cases - note that
the fractions of compounds misdocked into both closed and open forms of PPARγ receptors
and Vegfr2 receptors are quite small) and also using induced fit techniques24. The multiple
receptor structures could be obtained from multiple X-ray crystal structures or structurally
diverse high quality models generated using a torsion angle sampling tool27. An extensive
investigation as to how well these alternative possible solutions work will be necessary in order
to make significant progress.
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Figure 1.
Percent of known actives found (y axis) vs percent of the ranked database screened (x axis)
for Glide XP(XP, red solid), Glide SP (SP, green dash), DOCK (DOCK, blue dash dot), GOLD
GoldScore1x (gold1x, Cyan dash dot dot) and GOLD ChemScore1x (chem1x, Magenta short
dash). Black dotted lines (rand) show results expected by chance. The listed PDB codes are
defined in Table 1. (a) Glide training set; (b) Glide test set.
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Figure 2.
Average percent of known actives found over training set or test set (y axis) vs percent of the
ranked database screened (x axis) for Glide XP (XP, red solid), Glide SP (SP, green dash),
DOCK (DOCK, blue dash dot), GOLD GoldScore1x (gold1x, Cyan dash dot dot), GOLD
ChemScore1x (chem1x, Magenta short dash), GOLD GoldScore8x (gold8x, yellow short dot),
GOLD ChemScore8x (chem8x, dark yellow short dash dot), GOLD GoldScore1x-
reChemScore (rechem1x, Navy solid), GOLD ChemScore1x-reGoldScore (regold1x, purple
solid), GOLD GoldScore8x-reChemScore (rechem8x, wine solid), GOLD ChemScore8x-
reGoldScore (regold8x, Olive solid). Black dotted lines (rand) show results expected by
chance, (a) Glide training set; (b) Glide test set.
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Figure 3.
An example of misdocked ligand due to steric clashes, (a) Misdocked pose (carbon atoms are
colored in grey) generated by Glide XP for ligand 1293-1 docking into 1fm6 crystal structure
(carbon atoms are colored in grey). The “correct pose” (carbon atoms are colored in green) is
shown for comparison, (b) Crystal structure of the binding site of 1fm9 (PPARγ open form)
with its native ligand 1293-1 (carbon atoms are colored in green) superimposed on the 1fm6
(PPARγ closed form) structure with its native ligand 1241-2 (carbon atoms are colored in grey).
Only residues that involve steric clashes with ligand are shown. Hydrogen atoms are not shown.
The molecular representations for ligands and proteins are “tube” and “ball and stick”,
respectively. The color schemes for elements are Carbon (grey or green), Oxygen (red) and
Nitrogen (blue).
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Table 1
Data set used to compare virtual database screening. All active compounds have experimental activities less than 10
μM except those for neuraminidase.

(a) Glide training set
PDB code description num. well-docked actives num. poor-docked actives

1fjs Factor Xa 9 4
1bji Neuraminidase 9 0
1hpx HIV-1 Protease 9 5
1cx2 Cyclooxygenase-2 13 0
1e66 Acetylcholinesterase 20 0
1ett Thrombin 15 1

1kim Thymidine Kinase 4 0
1aq1 Human Cyclin Dep. Kinase 6 4
1bl7 p38 Map Kinase 27 9
1kv2 Human p38 Map Kinase 10 0
1ml7 EGRF Tyrosine Kinase 107 10
1qpe Lck Kinase 87 34
1rt1 HIV Reverse Transcriptase 23 6
1tmn Thermolysin 5 1
3ert Human Estrogen Receptor 8 2

(b) Glide test set
PDB code description num. well-docked actives num. poor-docked actives

1m4h BACE 34 43
1dan Factor VIIa 40 53
1fm6 PPARγ (closed form) 32 61
1fm9 PPARγ (open form) 25 68
1y6b Vegfr2 (closed form) 21 90
1ywn Vegfr2 (open form) 26 85
1aq1 Human Cyclin Dep. Kinase 143 110
1ett Thrombin 15 25
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Table 2
Average docking time (minutes) per ligand on a 2.2 GHz AMD (Athlon MP 2800+) single processor. Times for
combined “GoldScore-reChemScore” are identical to these for the GoldScore functions. Times for combined
“ChemScore-reGoldScore” are identical to these for the ChemScore functions.

method description minute per ligand
XP Glide XP 7.0
SP Glide SP 0.42

DOCK DOCK 4.0
1xgold GOLD GoldScore 1x 8.5
1xchem GOLD ChemScore 1x 2.8
8xgold GOLD GoldScore 8x 1.0
8xchem GOLD ChemScore 8x 0.35

1xrechem GOLD GoldScore1x-reChemScore 8.5
1xregold GOLD ChemScore1x-reGoldScore 2.8
8xrechem GOLD GoldScore8x-reChemScore 1.0
8xregold GOLD ChemScore8x-reGoldScore 0.35
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