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This paper reports the advantag es of coupling strong anion
exchange high-performance liquid chromatography hydride genera-
tion and atomic �uorescence spectrometry for the speciation of four
arsenic species in wine and mineral water.

The procedure developed allows the direct speciation of arsenic in
these samples with good sensitivity, selectivity, precision and
accuracy. Detection limits determined using the optimized con-
ditions were found to be between 0.16 and 2.9ng ml–1 for arsenite,
dimethylarsinic acid, monomethylarsonic acid and arsenate, while
standard addition studies showed that the procedure is f ree from
matrix interf erences. As no certi�ed ref erence materials are avail-
able for these analytes or matrices, validation was carried out by
studying spike recoveries and by comparison of results with an
alternative technique.

Introduction

For many years, it was su� cient for analysts to determine
only the total concentration of toxic elements in samples.
However, recently it has become apparent that the
toxicity, mobility and bioavailability of certain elements
depends heavily on their physiochemical form. This is
particularly true in the case of arsenic, a well-known
toxic element, which may be found in as many as 13
forms [1, 2]. In general, inorganic arsenic (arsenite and
arsenate) is more toxic than organic species, e.g. mono-
methylarsonic acid, dimethylarsinic acid, arsenobetaine ,
arsenocholine and tetramethylarsonium ion.

Arsenic’s presence in the environment is due to both
natural and anthropogenic sources. Arsenic is often found
in herbicides, pesticides and insecticides (many of which
environment protection agencies are now banning) [3],
and it is through this route that arsenic gets into wines
and other drinks. European legislation has set maximum
permissible (total) arsenic concentrations of 1 and
10 ng ml ± 1 in wine and drinking water, respectively.
Inorganic arsenic compounds, which are known carcino-
gens, are used in many manufacturing industries, e.g.
glass production, wood preservation and the production
of lead accumulators, and are metabolized in the body
prior to excretion. Organic arsenic species, which are

generally considered to be non-toxic, are often found in
® sh, seafood and mushrooms.

With the total concentration of arsenic in these samples
being so low, and the number of individual forms in
which it may be present, it is necessary to develop
methods with suitably high sensitivity and selectivity to
enable accurate determination of each individual arsenic
species.

Methods for speciation have to couple the best of separa-
tion with the best detection in order to obtain the
necessary sensitivity and selectivity. Atomic spectro-
metric methods using hydride generation have been
used frequently as this particular method of sample
introduction reduces many interferences and allows
greater sample introduction e� ciency, so allowing
lower detection limits to be reached. However, most of
the reported methods are based on atomic absorption
which does not show su� cient sensitivity for low levels of
arsenic, thus meaning that pre-concentration steps are
necessary [4± 7]. Electrothermal atomic absorption
(ETAAS) has been used frequently for the determination
of arsenic in several types of samples, as the technique
shows good sensitivity. However, the technique su� ers
from serious interference e� ects, making the use of chemi-
cal modi® ers necessary. Recent publications in the ® eld
make it obvious that hydride generation atomic ¯ uores-
cence spectrometry and hydride generation ICP-MS are
the two techniques of choice for the hydride-forming
elements, as they o� er the lowest limits of detection
[8, 9]. Although both approaches appear to o� er similar
detection limits, HG/ICP-MS is unsuitable for many
laboratories due to high initial and running costs, to-
gether with the levels of maintenance required to keep
the instrument operating. Hydride generation AFS, on
the other hand, is relatively inexpensive and maintenance
free, while o� ering unsurpassed analytical performance
in terms of linearity, sensitivity and freedom from inter-
ferences [10± 13]. Several publications on the determina-
tion of total arsenic levels in matrices ranging from sea
water [14], wines and beers [15] to hair [16] have
appeared in recent years using hydride generation atomic
¯ uorescence.

There is a large body of literature on the speciation of
arsenic using ion pair chromatography and anion ex-
change chromatography [17± 22] , usually using atomic
absorption detection and atomic ¯ uorescence spectro-
metry. However, it is strange to ® nd that there are very
few publications using hydride generation atomic ¯ uor-
escence spectrometry, and in particular, there are no
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publications on the speciation of arsenic as As (III) ,
DMA, MMA and As (V) in mineral waters and wines.

The aim of this study was to apply chromatographic
separation using a strong anion exchange column, fol-
lowed by hydride generation atomic ¯ uorescence spectro-
metry for the determination of As (III) , DMA, MMA
and As (V) in mineral waters and wines.

Experimental

HPLC system

A Spectra Physics System 1000 HPLC pump and a six-
port injection valve (Part No. 7125, Rheodyne, CA,
USA) were used in conjunction with a strong anion
exchange column (PRPX-100, 250 £ 4.6 mm, 10 mm par-
ticle size, Hamilton) to achieve separation of the arsenic
species. During the analysis of samples, a guard column
(GLC 4-SAX , SGE) was used to preserve the column.

Hydride generation

On-line arsine generation was obtained by use of a
peristaltic pump (PS Analytical, Kent, UK) , and various
mixing coils prepared in 0.5 mm I/D PTFE tubes. The
volatile hydrides were separated from other reaction by-
products in a gas± liquid separator (PS Analytical) .
Moisture was removed from the volatile hydrides by
passing through a membrane drying tube (Perma Pure
Products, Farmingdale, NJ, USA) .

Detection

An Excalibur atomic ¯ uorescence spectrometer (PS
Analytical) , equipped with a boosted discharge hollow
cathode lamp (Photron, Victoria, Australia) , was used
for detection. This system includes a hydrogen di� usion
¯ ame as atom cell and optical UV ® lter with a spectral
band pass of 20 nm, so allowing three resonance wave-
lengths of arsenic to be collected.

Data collection

The ¯ uorescence signal was recorded on a potentiometer
chart recorder Servoscribe RE 541.20.

Validation

In order to validate results obtained with the proposed
system for the speciation of arsenic, samples were also
analysed for total arsenic using a Millennium Excalibur
system (PS Analytical) . Data collection and treatment
was by Avalon software (PS Analytical) . Detailed ex-
planations of the instrument are given in previously
published papers [10, 16].

Reagents

All reagents were of analytical grade, and de-ionized
water was used throughout for the preparation of sol-
utions.

Standard solutions (1000 mg ml ± 1) of arsenite and ar-
senate were prepared by dissolving 0.1734 g of NaAsO2

and 0.4164 g Na2HAsO4¢7H2O, respectively, in de-io-
nized water and diluting to 100 ml. MMA and DMA
solutions (1000 mg ml ± 1) were prepared by dissolving
0.3894 g of CH3AsO(ONa) 2¢6H20 and 0.1840 g of
(CH3) 2AsHO2 in de-ionized water and diluting to
100 ml. Working solutions were made after suitable dilu-
tion in the mobile phase. This mobile phase was 10 mM
K2HPO4 and 10 mM KH2PO4 adjusted to pH 5.7. This
was prepared by dissolving 1.74 g K2HPO4 and 1.36 g
KH2PO4 in ¹950 ml H2O and adjusting the pH by drop-
wise addition of a 50% HCl solution until pH 5.7 was
obtained. This was then diluted to 1000 ml in de-ionized
water and degassed by bubbling with helium for 30 min
prior to use.

A solution of 1.4% m/v sodium borohydride in 0.1 M so-
dium hydroxide was used as the reductant and was
prepared by ® rstly dissolving 4.0 g NaOH (BDH
Merck) in ¹500 ml de-ionized water. Following this,
14.0 g NaBH4 (Aldrich) was added and dissolved before
® nally diluting the solution to 1000 ml with de-ionized
water. This solution was prepared fresh daily.

Hydrochloric acid, potassium iodide and ascorbic acid
were all of AnalaR grade (BDH, Merck) .

Procedure

Speciation of arsenic

A schematic diagram of the ion chromatography-hydrid e
generation-atomic ¯ uorescence system used is shown in
® gure 1. Optimization of the system is explained in detail
in a previous paper by Gomez Ariza et al. [20].

A portion (200 ml) of standard or sample is introduced via
the injection valve into a mobile phase of 10 mM potas-
sium phosphate (K2HPO4/KH2PO4) , pH 5.7, ¯ owing at
0.8 ml min ± 1. From here the samples pass onto the strong
anion exchange column where the four arsenic species are
separated. On elution from the column, the stream is
then acidi® ed by mixing with a stream of 1.5 M HCl
¯ owing at 1.5 ml min ± 1. The reagents then pass to a gas±
liquid separator where a stream of argon ¯ owing at
250 ml min ± 1 purges the headspace, ¯ ushing the volatile
hydrides and the hydrogen formed in the reaction
through a semi-permeable membrane (which is continu-
ously dried with air ¯ owing in the opposite direction at
2.5 l min ± 1) and to the detector. The hydrogen gas, which
is a by-product of the hydride generation reaction, is used
as fuel for the hydrogen di� usion ¯ ame, which serves to
provide free arsenic atoms. These free atoms are then
excited by the boosted discharge hollow cathode lamp
causing them to ¯ uoresce, the ¯ uorescence being detected
by the PMT and converted to a 0± 1 V output signal,
recorded on a chart recorder. Arsenic species were iden-
ti® ed on the basis of retention time. Table 1 summarizes
the chromatographic , hydride generation and atomic
¯ uorescence conditions used throughout the study.

E. Moreno et al. Arsenic speciation in beverages

34



Total arsenic determination

In order to validate the speciation results, samples
were also analysed for total arsenic. In this case, o� -line
sample pre-treatment by acidi® cation and pre-
reduction of all arsenic species to As (III) was carried
out. This was achieved by diluting the samples in
25% v/v HCl, 1% m/v KI and 0.2% m/v ascorbic acid

and leaving for 30 min. Samples and standards
were treated alike. The system used was based on
continuous ¯ ow hydride generation atomic ¯ uorescence,
and as such a reagent blank of 25% v/v HCl, 1% m/v
KI and 0.2% m/v ascorbic acid was also prepared.
In this case the reductant used was 0.7% m/v NaBH4

in 0.1 M NaOH. Operating conditions are given in
table 2.

AFS
Detector 
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Dryer Gas 
out
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Injector
200m  l
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separatorAcid Carrier
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-1
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(0.8 ml min  )-1

Figure 1. Schematic diagram of the ion chromatography HG-AFS system for arsenic speciation.

Table 1. Instrumental and chemical conditions for the speciation of arsenic using IC-HG-
AFS.

Chromatographic conditions
Guard column GLC 4-SAX (SGE)
Column PRP X-100 (SAX) , 250 £ 4.6 mm, 10 mm (Hamilton)
Mobile phase 10 mM K2HPO4 , 10 mM KH2PO4 , 0.8 ml min± 1 , pH

5.7
Injected volume 200 ml
Sample Prepared in mobile phase

Hydride generation conditions
Acid solution 1.5 M HCl, 1.5 ml min ± 1

Reductant 1.4% m/v NaBH4 in 0.1 M NaOH, 1.5 ml min± 1

Carrier gas Argon, 250 ml min± 1

Dryer gas Air, 2.5 l min ± 1

Atomic ¯ uorescence conditions
Primary current 27.5 mA
Boost current 35.0 mA

Table 2. Instrumental and chemical conditions for total arsenic using HG-AFS.

Hydride generation conditions
Reagent blank 25% v/v HCl, 1% m/v KI, 0.2% m/v ascorbic acid, 9.0 ml min ± 1

Reductant 0.7% m/v NaBH4 in 0.1 M NaOH, 4.5 ml min ± 1

Sample in 25% v/v HCl, 1% m/v KI, 0.2% m/v ascorbic acid, 9.0 ml min ± 1

Carrier gas Argon, 235 ml min± 1

Dryer gas Air, 2.5 l min ± 1

Atomic ¯ uorescence conditions
Primary current 27.5 mA
Boost current 35.0 mA
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Results and discussion

Characteristics of the proposed method

For the purpose of this study, the proposed system was
calibrated from 0 to 10 ng ml ± 1 As (III) , DMA, MMA
and As (V) . Typical equations of calibration curves and
correlation coe� cients are given in table 3, while limits of
detection and quanti ® cation in various sample matrices
are shown in table 4. These limits were calculated as
three and 10 times the standard deviation of 10 runs of a
2 ng ml ± 1 standard, respectively. Results show that the
best sensitivity was shown for As(III) followed by MMA,
DMA and ® nally As(V) . Although this is partially
related to the chromatography, it is mainly due to the
hydride generation step where it is well known that
As(III) forms a hydride more e� ciently than As(V) .

A typical chromatogram, obtained using the conditions
outlined in table 1, for a mixed solution of 2.5 ng ml ± 1 As
(III) , DMA, MMA and As (V) is shown in ® gure 2. The
retention times for each species were found to be 2.25,
3.20, 5.20 and 9.15 min for As (III) , DMA, MMA and

As (V) , respectively. These retention times were used to
identify arsenic species in unknown samples.

The precision of the proposed method was studied by
carrying out repeated injections …n ˆ 10† of a mixed
2 ng ml ± 1 standard containing As (III) , DMA, MMA
and As (V) . Precision was studied not only in aqueous
standards, but also in sample matrix, i.e. white wine and
mineral water. Table 5 summarizes the results, which
show that overall the best precision (expressed as per cent
relative standard deviation, RSD) is found for As(III) ,
with RSDs ranging from 1.35% in white wine to 4.20%
in mineral water. The best precision was found for
As(III) in white wine, although this is probably due to
the fact that this was due to the As(III) found in the
sample ( i.e. not a spiked concentration) which was
actually 5.51 ng ml ± 1 instead of 2 ng ml ± 1 which was the
concentration studied for all other species. The results
also show that the precision for As(V) is also notably
lower in the mineral water than in white wine or the
aqueous standard, again probably due to the fact that the
As(V) in the mineral water was present at 15.40 ng ml ± 1

as opposed to 2 ng ml ± 1. Overall, however, the precision
ranges from 1.35 to 8.75%.

Applications of the proposed method

The proposed method was applied to the determination
of arsenic species in wines and mineral waters. Figure 3
shows typical chromatograms for various samples, show-
ing that the only species present in the samples were
As(III) and As(V) . Figure 3 shows that As(III) was
found in all the wine samples tested but none of the
mineral water samples. As(V) , however, was found in
only one of the white and one of the red wines. More
surprisingly it was found at a relatively high concentra-
tion (15.41 ng ml ± 1) in one of the mineral water samples
(French) but not in the other (Scottish) . When analysing

Table 3. Performance characteristics of the proposed method for aqueous standards.

Concentration Correlation LODa LOQb

Species (ng ml± 1) Equation coe� cient, r2 (ng ml± 1) (ng ml± 1)

As(III) 0± 10 y ˆ 2:049x ¡ 0:06 0.9994 0.16 0.54
DMA 0± 10 y ˆ 0:987x ‡ 0:08 0.9939 0.33 1.11
MMA 0± 10 y ˆ 1:540x ‡ 0:70 0.9969 0.32 1.08
As(V) 0± 10 y ˆ 0:745x ‡ 0:14 0.9965 0.57 1.90

Table 4. Limits of detection and quanti�cation for various matrices.

Aqueous White wine Mineral water

LODa LOQb LODa LOQb LODa LOQb

Species (ng ml± 1) (ng ml± 1) (ng ml ± 1) (ng ml± 1) (ng ml± 1) (ng ml± 1)

As(III) 0.16 0.54 0.37 1.24 0.32 1.06
DMA 0.33 1.11 0.46 1.53 0.30 1.00
MMA 0.32 1.08 0.72 2.41 0.33 1.13
As(V) 0.57 1.90 0.87 2.90 0.47 1.57

aLOD calculated as 3¼n¡1 of 2 ng ml± 1 …n ˆ 10†.
bLOQ calculated as 10¼n¡1 of 2 ng ml± 1 …n ˆ 10†.

Figure 2. Chromatogram under optimum conditions for a mixed
2.5 ng ml -1 standard.
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Figure 3. Chromatograms for wine and water samples.
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the samples, two- and ® vefold dilutions were carried out
on each sample, in order to detect the presence of matrix
interferences. No matrix e� ects were observed. Results
for the concentrations of the di� erent species found are
shown in table 6.

No wine or water reference materials with certi® ed
arsenic species are currently available , and so in order

to validate the method, two approaches were used.
Firstly, samples were spiked with known concentrations
of each of the arsenic species and the recoveries calcu-
lated. Secondly, samples were analysed for total arsenic
using an alternative technique.

All samples were spiked with both 2.5 and 5 ng ml ± 1 of
each of the four arsenic species, and some with 7.0, 10.0

Table 5. Precision for arsenic species in dif ferent samples.

Precision (% RSD) a

Sample As(III) DMA MMA As(V)

Aqueous 2.39 5.19 5.18 7.75

Mineral water (France)
[15.41 ng ml± 1 As(V)] 4.20 2.37 4.50 1.95

White wine (France 1)
[5.51 ngml± 1 As(III)] 1.35 7.77 8.75 6.36

a Percentage relative standard deviation based on 10 runs of 2 ng ml± 1 spikes (unless stated
otherwise) .

Table 6. Results for real samples.

Concentration found (ng ml± 1)

Sample As(III) DMA MMA As(V) Totala As total by comparisonb

White wine (France 1) 5.36 § 0.24 ND ND ND 5.36 § 0.24 5.04 § 0.25
White wine (Italy) 12.18 § 0.26 ND ND 3.88 § 0.28 16.06 § 0.54 16.17 § 0.01
White wine (France 2) 8.77 § 0.12 ND ND ND 8.77 § 0.12 8.44 § 0.03
Red wine (Germany) 9.07 § 0.32 ND ND 1.41 § 0.20 10.48 § 0.52 9.50 § 0.05
Mineral water (France) ND ND ND 15.40 § 0.28 15.40 § 0.28 14.80 § 0.06
Mineral water (Scotland) ND ND ND ND ND ND

ND, not detected.
a Calculated as the sum of the individual species, identi® ed on the basis of retention time.
b Determined using the Millennium Excalibur system for total arsenic.

Table 7. Results for spike recoveries.

Spike recoveries (ng ml± 1)

As(III) DMA MMA As(V)

Sample Added Found Added Found Added Found Added Found

White wine (France 1) 2.5 2.65 § 0.18 2.5 2.20 § 0.16 2.5 2.67 § 0.24 2.5 2.02 § 0.28
5.0 4.87 § 0.19 5.0 5.35 § 0.15 5.0 4.91 § 0.22 5.0 5.37 § 0.27

10.0 10.03 § 0.18 10.0 9.92 § 0.17 10.0 10.04 § 0.19 10.0 9.91 § 0.20
20.0 20.25 § 0.22 20.0 19.61 § 0.11 20.0 20.40 § 0.17 20.0 19.83 § 0.12

White wine (Italy) 2.5 2.38 § 0.06 2.5 2.69 § 0.10 2.5 2.69 § 0.09 2.5 2.40 § 0.58
5.0 5.06 § 0.03 5.0 4.91 § 0.12 5.0 4.89 § 0.11 5.0 5.05 § 0.09
7.0 6.56 § 0.17 7.0 6.90 § 0.03

White wine (France 2) 2.5 2.33 § 0.23 2.5 2.68 § 0.25 2.5 2.75 § 0.13 2.5 2.40 § 0.07
5.0 4.99 § 0.06 5.0 4.98 § 0.15 5.0 4.92 § 0.12 5.0 5.07 § 0.01

Red wine (Germany) 2.5 2.42 § 0.15 2.5 2.30 § 0.26 2.5 2.58 § 0.12 2.5 2.46 § 0.13
5.0 5.03 § 0.02 5.0 4.98 § 0.14 5.0 4.92 § 0.11 5.0 5.07 § 0.02

Mineral water (France) 2.5 2.50 § 0.02 2.5 2.90 § 0.06 2.5 2.50 § 0.11 2.5 2.48 § 0.04
5.0 5.00 § 0.02 5.0 5.08 § 0.11 5.0 4.95 § 0.07 5.0 5.00 § 0.06
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and 20.0 ng ml ± 1. The spike recoveries, shown in table 7,
show quantitative recoveries of all species, showing that
the method is free from interferences.

For analysis of total arsenic, a PSA 10.055 Millennium
Excalibur system (PS Analytical) was used. This system,
which has been described elsewhere [10, 16], is based on
hydride generation atomic ¯ uorescence. Samples must
® rst be acidi® ed to 25% v/v HCl, following which KI
and ascorbic acid must be added in order to convert all
arsenic in the sample to As (III) to facilitate hydride
generation. Results for total arsenic concentrations are
also given in table 6. In all cases good agreement is
observed with the results using the proposed IC-HG-AFS
system.

Conclusions

Atomic ¯ uorescence is an extremely sensitive detection
system for arsenic which can be easily coupled to an ion
chromatography system, allowing the determination of
individual arsenic species. The results reported here show
that the proposed method is accurate and sensitive
enough to carry out arsenic speciation in wines and
mineral water. In addition, the method shows high
selectivity, needs no sample pre-treatment and is free
from interferences.
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