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Abstract
During reinforcement learning, phasic modulations of activity in midbrain dopamine neurons are
conveyed to the dorsal anterior cingulate cortex (dACC) and basal ganglia and serve to guide adaptive
responding. While the animal literature supports a role for the dACC in integrating reward history
over time, most human electrophysiological studies of dACC function have focused on responses to
single positive and negative outcomes. The present electrophysiological study investigated the role
of the dACC in probabilistic reward learning in healthy subjects using a task that required integration
of reinforcement history over time. We recorded the feedback-related negativity (FRN) to reward
feedback in subjects who developed a response bias toward a more frequently rewarded (“rich”)
stimulus (“learners”) versus subjects who did not (“non-learners”). Compared to non-learners,
learners showed more positive (i.e., smaller) FRNs and greater dACC activation upon receiving
reward for correct identification of the rich stimulus. In addition, dACC activation and a bias to select
the rich stimulus were positively correlated. The same participants also completed a monetary
incentive delay (MID) task administered during functional magnetic resonance imaging. Compared
to non-learners, learners displayed stronger basal ganglia responses to reward in the MID task. These
findings raise the possibility that learners in the probabilistic reinforcement task were characterized
by stronger dACC and basal ganglia responses to rewarding outcomes. Furthermore, these results
highlight the importance of the dACC to probabilistic reward learning in humans.
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Introduction
Optimal behavior relies on the ability to internally monitor responses and to evaluate external
reinforcements in order to learn about the appropriateness of those responses. Mounting
evidence suggests that this reinforcement learning may depend on the basal ganglia and
midbrain dopamine system. Accordingly, non-human primate studies have shown that negative
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reinforcement elicits phasic decreases in neuronal activity of midbrain dopaminergic neurons
(i.e., negative prediction error), whereas positive reinforcement elicits increases of
dopaminergic activity (i.e., positive prediction error) (Montague et al., 2004; Schultz, 2007).
These phasic modulations are thought to act as teaching signals for anterior cingulate cortex
(ACC) and basal ganglia to implement goal-directed behaviors and update predictions of
success or failure (Holroyd and Coles, 2002). This model has received support in the human
electrophysiology literature with respect to negative reinforcement (Holroyd and Coles,
2002; Holroyd and Krigolson, 2007; Hajcak et al., 2007), but fewer studies have examined
positive reinforcement. In particular, the role of the human dorsal region of the ACC (dACC)
in probabilistic reward learning is not well understood.

The dACC appears critical for encoding rewards and using reinforcement histories to guide
behavior (Akitsuki et al., 2003; Amiez et al., 2006; Ernst et al., 2004; Rushworth et al.,
2007). In non-human primates, ACC lesions impair the ability to integrate reinforcement
history over time and choose advantageous responses (Kennerley et al., 2006). In humans,
modulation of behavior by reinforcement history can be investigated using two-alternative
probabilistic reward tasks in which correct responses to the two stimuli are differentially
rewarded; the development of a response bias towards the more frequently rewarded (“rich”)
stimulus indicates reward sensitivity (Pizzagalli et al., 2005, 2008). Impaired learning on this
task has been demonstrated in anhedonic individuals (Pizzagalli et al., 2005), mood disorder
patients characterized by dysfunctional reward processing (Pizzagalli et al., in press-a, in press-
b), and in healthy participants receiving a pharmacological challenge hypothesized to disrupt
phasic DA signaling (Pizzagalli et al., 2008). This task appears thus suitable for examining
reward learning mediated by the midbrain dopamine system. Consistent with this assumption,
in a computational model of striatal-cortical function (Frank, 2005), blunted response bias was
accounted for by reduced DA bursts to reward (Santesso et al., unpublished), suggesting that
this task is sensitive to learning mediated by the midbrain DA system. The primary goal of the
present study was to examine reward learning during this task using the feedback related
negativity (FRN) as an electrophysiological index of ACC reward-related activity.

We recorded the feedback-related negativity (FRN) as an index of ACC reward-related activity.
The FRN peaks 200–400 ms following feedback and has been localized to various regions of
the cingulate cortex, including the dorsal ACC (dACC; Miltner et al., 1997; Gehring and
Willoughby, 2002), medial prefrontal cortex (Muller et al., 2005; Nieuwenhuis et al., 2005;
Van Veen et al., 2004), and the posterior cingulate cortex (PCC), particularly in response to
positive versus negative feedback (Muller et al., 2005; Nieuwenhuis et al., 2005). The FRN is
thought to reflect transmission of a DA signal from the basal ganglia (BG) (Holroyd and Coles,
2002). Although commonly used to study negative reinforcement, the FRN is reliably elicited
by positive feedback (Hajcak et al., 2005; Holroyd and Coles, in press; Muller et al., 2005;
Oliveira et al., 2007), and appears as a relatively more positive ERP deflection (compared to
that elicited by negative feedback). We predicted that (1) reward feedback delivered after
correctly identifying the rich stimulus would elicit more positive FRNs and greater dACC
activation in individuals who developed a response bias toward the rich stimulus (“learners”)
versus those who did not (“non-learners”); and (2) dACC activation would correlate positively
with reward learning and the FRN.

A secondary goal of this study was to test whether “learners” and “non-learners” would differ
in brain activation in the basal ganglia, which includes the globus pallidus and three striatal
regions (nucleus accumbens, caudate, and putamen), in response to reward feedback. We were
able to address this issue because a sub-set of the ERP participants also participated in an fMRI
session that featured a monetary incentive delay (MID) task, which has been used to probe
reward-related activity in the basal ganglia (Dillon et al., 2008; Knutson et al., 2003). Relevant
to the present study, recent neuroimaging findings indicate that optimal performance in
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probabilistic reward learning tasks is accompanied by recruitment of striatal regions.
Accordingly, in a probabilistic reward learning task, learners (but not non-learners) showed
significant correlations between prediction errors and fMRI signal in dorsal and ventral striatal
regions (Schonberg et al., 2007). Along similar lines, participants who learned contingencies
between specific cues and the reward probabilities and used them adaptively in a gambling
task showed robust striatal responses to reward feedback, particularly at early stages of learning
(Delgado et al., 2005). Based on these findings, we predicted that, relative to non-learners,
learners in the probabilistic reward task would show larger basal ganglia responses to reward
feedback during the MID task.

Materials and Methods
Participants

Two hundred and thirty-seven adults between 18–40 years old (105 men, mean age = 24.5
years) were recruited from Harvard University and the surrounding community for a larger
study investigating the neurobiology and molecular genetics of reward processing. Participants
meeting the following criteria were excluded: present medical or neurological illness (ADHD,
head injury, loss of consciousness, seizures), current alcohol/substance abuse or smoking,
claustrophobia, use of psychotropic medications during the last 2 weeks, and pregnancy. All
eligible participants were right-handed (Chapman and Chapman, 1987).

The study included three sessions. During the first session, all participants completed the
probabilistic reward task at the Affective Neuroscience Laboratory, Harvard University. Sixty-
seven subjects were excluded due to failure to meet inclusion criteria (n = 31), prior task
exposure (n = 4), non-compliance and/or performance below chance level (n = 31), and outlier
status (n = 1). Of the remaining 170 eligible subjects, 47 were invited to complete an
electroencephalogram (EEG) and fMRI session (the order of which was counterbalanced).
These 47 subjects were selected to cover a wide range of individual differences in reward
learning, which was measured by a response bias difference score (block 3 – block 1; see
below). To this end, we first selected participants in the upper and lower 20% of the distribution
of reward learning; next, remaining subjects were selected in order to achieve a continuum in
reward learning, so that selected participants would be representative of the general population.
Of the 47 participants, 41 agreed to perform the probabilistic reward task while EEG was
recorded, whereas 38 completed the monetary incentive delay (MID) task during functional
scan acquisition at the Martinos Center for Biomedical Imaging. For both the EEG and fMRI
datasets, 30 participants had usable data; data from remaining participants were lost due to an
insufficient number of artifact-free EEG trials, equipment failure, incomplete data, non-
compliance, motion artifacts (fMRI), and technical difficulties. Of the 30 participants with
EEG data, 21 had usable data from all three sessions.

Participants received $5 for the first session plus $5.80 – $6.20 in earnings in the probabilistic
reward task. For the EEG session, participants received $20 plus $24.60 (fixed amount) in task
earnings. For the fMRI session, participants received $60 plus $20–$22 in earnings for the
MID task. Participants provided written informed consent. All procedures were approved by
the Committee on the Use of Human Subjects at Harvard University and the Partners-
Massachusetts General Hospital Internal Review Board.

Procedures and Tasks
Probabilistic reward task (EEG session)—During the EEG session, participants
repeated the reward-learning task used during subject selection, which has been described in
detail elsewhere (e.g., Pizzagalli et al., 2005, 2008; see also Tripp and Alsop, 1999). Briefly,
the task included 300 trials, divided into 3 blocks of 100 trials. Each trial started with the
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presentation of a fixation point for 1400 ms. A mouthless cartoon face was then presented for
500 ms followed by the presentation of this face with either a short mouth or a long mouth for
100 ms. Participants were asked to indicate whether a short or long mouth was presented by
pressing one of two keys (counterbalanced across subjects). For each block, only 40 correct
responses were followed by positive feedback (“Correct!! You won 20 cents”), displayed for
1500 ms in the center of the screen followed by a blank screen for 250 ms. [Unlike the EEG
session, 5-cent rewards were used for the behavioral pre-screening session involving 237
participants.] To induce a response bias, an asymmetrical reinforcer ratio was used: correct
responses for the rich stimulus were rewarded three times (30:10) more frequently than correct
responses for the other (“lean”) stimulus. Participants were informed at the outset that not all
correct responses would be rewarded but were not aware that one of the stimuli would be
rewarded more frequently. For 16 participants, the same stimulus (e.g., rich mouth) was
disproportionally rewarded in both sessions; for the remaining 14 participants, the more
frequently rewarded stimulus was switched across the behavioral and EEG session.

After completing the task, participants filled out various questionnaires, including the BDI-II
(Beck et al., 1996) and the 62-item version of the Mood and Anxiety Symptom Questionnaire
(MASQ; Watson et al., 1995) to assess depressive symptoms, anxiety symptoms, anhedonic
depression, and general distress.

Monetary incentive delay task (fMRI session)—The MID task was identical to one
recently used by our group in an independent study to dissociate anticipatory versus
consummatory phases of incentive processing and reliably elicits activity in brain reward
circuitry, including the four components of the BG (nucleus accumbens, caudate, putamen,
and globus pallidus) (Dillon et al., 2008; Knutson et al., 2003). Participants completed 5 blocks
of 24 trials. Each trial began with the presentation of one of three equally probable cues
(duration: 1.5 s) that signaled potential monetary rewards (+$), no incentive (0$), or monetary
losses (−$). Following a jittered inter-stimulus interval (ISI: 3–7.5 s), a red square was
presented; participants responded to the target with a button press. Following a second jittered
ISI (4.4–8.9 s), feedback was presented indicating a gain, no change, or loss: successful reward
trials yielded a gain (range: $1.96 to $2.34; mean: $2.15); unsuccessful reward trials yielded
no gain; successful punishment trials yielded no loss; and unsuccessful punishment trials
yielded a loss (range: −$1.81 to −$2.19; mean: −$2.00). No-incentive trials were always
followed by no change feedback. The task design and timing were optimized using a genetic
algorithm that maximized the statistical orthogonality of the conditions under investigation
(Wager and Nichols, 2003).

Participants were told that their reaction time (RT) to the target affected trial outcomes, such
that rapid RTs increased the probability of winning money on reward trials and decreased the
probability of losing money on loss trials. To achieve a balanced design, delivery of outcomes
was decoupled from RT such that 50% of reward and loss trials resulted in delivery of gains
and losses, respectively. However, to maximize task believability, target presentation duration
was different for successful and unsuccessful trials. To this end, participants were instructed
to perform a practice block of the MID task involving 40 trials while in the scanner; RT were
collected and subsequently used to titrate target duration during the experimental blocks. Thus,
when a successful or unsuccessful trial was scheduled, the target was presented for a duration
corresponding to the 85th or 15th percentiles, respectively, of RTs collected during the practice.
This subtle manipulation allowed participants to be generally “successful” on scheduled
success trials, and “unsuccessful” on scheduled unsuccessful trials. Finally, to boost task
engagement, participants were informed that good performance throughout the task would
allow them to qualify for a sixth “bonus” block (not analyzed here) involving larger gains
($3.63–$5.18) and few penalties (all participants “qualified” for this bonus block). In two prior
samples, we have shown that the combination of instructions and task parameters used in the
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current version of the MID task leads to sustained motivated behavior (i.e., significantly shorter
RT for reward and loss trials compared to no-incentive trials across the five blocks), and robust
activation in reward-related brain regions (Dillon et al., 2008).

Data collection and reduction
Behavioral data—For behavioral analyses, the main variables of interest were response bias
and reward learning during the probabilistic reward task administered at the EEG session.
Response bias (b) assesses the systematic preference for the response paired with the more
frequent reward (rich stimulus), and was computed as:

Following prior recommendations, 0.5 was added to every cell of the detection matrix to allow
calculation of response bias in cases with a zero in one cell of the formula (Hautus, 1995).
Reward learning was computed as the response bias score from block 3 minus the response
bias score from block 1, as this calculation captures the development of response bias across
the task. Negative values represent poor reward learning (i.e., failure to develop a response
bias), and have been associated with elevated self-reported anhedonic symptoms (Pizzagalli
et al., 2005) and purportedly reduced phasic dopaminergic transmission (Pizzagalli et al.,
2008), whereas positive values indicate increased sensitivity to reward feedback. On the basis
of this difference score, two groups were formed for the ERP analyses: a non-learners group
(n = 14), comprising individuals who failed to develop a response bias (i.e., a negative score);
and a learners group (n = 16), comprising those individuals displaying successful reward
learning from block 1 to block 3.

Scalp ERP data—EEG was recorded continuously using a 128-channel Electrical Geodesics
system (EGI Inc., Eugene, OR) at 250 Hz with 0.1–100 Hz analog filtering referenced to the
vertex. Impedance of all channels was kept below 50 kΩ. Data were segmented and re-
referenced off-line to an average reference. EEG epochs were extracted beginning 200 ms
before and ending 600 ms after feedback presentation during each block. Data were processed
using Brain Vision Analyzer (Brain Products GmbH, Germany). Each trial was visually
inspected for movement artifacts and manually removed followed by automatic artefact
removal with a ±75 μV criterion. Eye-movement artifacts were corrected by Independent
Component Analysis (e.g., Makeig et al., 1997). A pre-stimulus baseline between −200–0 ms
was used. The amplitude of the ERP was derived from each individual’s average waveform
for the midline sites Fz and FCz, where the FRN is typically largest, and filtered at 1–30 Hz.
The FRN was defined as the most negative peak 200–400 ms after reward feedback following
correct identification of the rich stimulus.

To allow participants to be exposed to the differential reinforcement schedule, primary analyses
focused on ERPs computed by averaging artifact-free EEG epochs time-locked to reward
feedback for the rich stimulus from blocks 2 and 3 (“blocks 2 & 3”). For analyses evaluating
FRN changes over time (see below), secondary analyses also considered ERP peak data from
block 1. To ensure that findings were not affected by the relatively low number of trials
available for some of the ERP averaging (e.g., 30 rewarded rich trials in block 1), analyses
were re-run by considering both rich and lean rewarded trials. Findings were essentially
identical to the ones presented in the main text (results available upon request). Given the
asymmetric reinforcement ratio used in probabilistic reward task, it was not possible to obtain
a sufficient number of trials to analyze reward feedback following lean stimuli.

Source localization of ERP data—Low Resolution Electromagnetic Tomography
(LORETA; Pascual-Marqui et al., 1999) was used to estimate intracerebral current density
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underlying the reward-related FRN following previously published procedures (e.g., Pizzagalli
et al., 2002; see Pizzagalli, 2007 for a summary of LORETA core assumptions and prior
validation findings). Current density was computed within a 200–280 ms post-feedback time
window, which captured the mean peak latency of the FRN across frontocentral sites (274 ms).
At each voxel (n = 2,394; voxel resolution: 7 mm3), current density was computed as the linear,
weighted sum of the scalp electric potentials (units are scaled to amperes per square meter, A/
m2). For each subject, LORETA values were normalized to a total power of 1 and then log-
transformed before statistical analyses.

fMRI data—The imaging protocol has been described in detail in an independent study from
our laboratory (Dillon et al., 2008). Briefly, fMRI data were acquired on a 1.5T Symphony/
Sonata scanner (Siemens Medical Systems; Iselin, NJ) using an optimized acquisition protocol
(Deichmann et al., 2003). During functional imaging, gradient echo T2*-weighted echoplanar
images were acquired using the following parameters: TR/TE: 2500/35ms; FOV: 200 mm;
matrix: 64 × 64; 35 slices; 222 volumes; voxels: 3.125 × 3.125 × 3 mm. A high-resolution T1-
weighted MPRAGE structural volume was also collected for anatomical localization and
extraction of structural regions-of-interest (ROIs) using standard parameters (TR/TE:
2730/3.31 ms; FOV: 256 mm; matrix: 192 × 192; 128 slices; voxels: 1.33 × 1.33 × 1 mm).
Padding was used to minimize head movement.

Analyses were conducted using FS-FAST (http://surfer.nmr.mgh.harvard.edu) and FreeSurfer
(Fischl et al., 2002, 2004). Functional pre-processing included motion and slice-time
correction, removal of slow linear trends, intensity normalization, and spatial smoothing with
a Gaussian filter (6 mm FWHM). A canonical hemodynamic response function (a gamma
function) was convolved with stimulus onsets, and the general linear model was used to assess
the fit between the model and the data. A temporal whitening filter was used to estimate and
correct for autocorrelation in the noise. Participants with incremental (volume-to-volume) or
cumulative head movement greater than 3.75 mm or degrees were removed from the analysis
(n = 5); for the remaining participants, motion parameters were included in the model as
nuisance regressors. Of the subjects with usable ERP data, functional MRI data for 21 subjects
were available and included in the statistical analyses

Regression coefficients (“beta weights”) indicating the fit of the model to the data were
extracted from ROIs obtained from FreeSurfer’s parcellation. For the purposes of the present
study, we focused on data from four BG ROIs (nucleus accumbens, caudate, putamen, and
globus pallidus), consistent with prior fMRI studies implicating BG regions in reward
processing and reinforcement learning (e.g., Delgado et al., 2005; Dillon et al., 2008; Knutson
and Cooper, 2005; Schonberg et al., 2007).

Statistical analyses
Test-retest reliability of behavioral data—The EEG session took place, on average,
39.30 days (S.D.: 23.88) after the initial behavioral prescreening session. In a prior study using
the same probabilistic reward task in an independent sample, we showed that the test-retest
reliability for the reward learning score (i.e., response bias block 3 minus response bias block
1) over a 38-day period was r=0.57 (p<0.004; Pizzagalli et al., 2005). In our prior study, 20 of
the 24 participants were allocated to opposite keys for the rich stimulus. Thus, for participants
allocated to a different bias across the two sessions, reward learning was used to estimate test-
retest reliability. For participants allocated to the same bias, we did not expect a significant
test-retest correlation when considering reward learning. Participants developing a strong
response bias toward the long mouth in the first session, for example, were expected to show
a robust response bias toward this stimulus already in block 1 of the second session, minimizing
the amount of additional learning that could be achieved. Accordingly, for participants
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allocated to the same bias, the overall response bias (averaged across the 3 blocks) was used
for test-retest computations.

In addition, in our prior study (Pizzagalli et al., 2005), we did not account for possible
fluctuations in mood/affect between the two sessions. Because reward learning has been found
to negatively correlate with anhedonic symptoms (e.g., Pizzagalli et al., 2005; Bogdan and
Pizzagalli, 2006), fluctuations in mood across the two sessions might diminish the test-retest
estimates. To this end, we also computed residualized reward learning scores in which variance
associated with anhedonic symptoms (MASQ AD subscore) was removed.

ERP data—For the primary analyses, mixed-model ANOVAs were used to analyze the FRN
collapsed across blocks 2 and 3 with Group as a between-subject factor and Site (Fz, FCz) as
a within-subject factor. Moreover, to examine the temporal characteristics of reward learning,
a secondary mixed-model ANOVA was performed using Group as between-subject factor and
Learning Phase (early: block 1 vs late: blocks 2 & 3) as the within-subject factor. For the
LORETA data, the groups were contrasted on a voxel-wise basis using unpaired t-tests
comparing current density in response to rewarded rich trials at the time of the scalp FRN.
Statistical maps were thresholded at p<0.020 with a minimum cluster size of 5 contiguous
voxels (1.715 cm3), and displayed on a standard MRI template. Pearson correlations were
performed among behavioral, scalp ERP, LORETA, and fMRI data.

fMRI data—Although the MID task has been used to dissociate anticipatory versus
consummatory phases of incentive processing (e.g., Dillon et al., 2008), our interest in reward-
related reinforcement learning led us to focus exclusively on responses to outcomes (gains
versus no gains) on reward trials in the present study. For each participant, mean beta weights
were extracted from the four BG ROIs for delivery of monetary gains (successful reward trial,
or “win”) and omission of potential gains (unsuccessful reward trial, or “no-win”) and entered
into a Group (learners, n = 12; non-learners, n = 9) × Region (caudate, putamen, pallidus,
nucleus accumbens) × Outcome (win, no win) × Hemisphere (left, right) mixed-model
ANOVA.

Across the analyses of the behavioral, ERP, and fMRI data, the Greenhouse-Geisser correction
was used when applicable. Significant ANOVA effects were follow-up by Newman-Keuls
post-hoc tests.

Results
Demographic and behavioral data

Learners (n = 16) and non-learners (n = 14) did not differ with respect to age (21.38±2.01 vs.
21.51±4.51 years; t(28)=0.11, p>0.90), education (14.69±1.30 vs. 14.21±1.81 years; t(28)=
−0.83, p>0.40), sex ratio (9 male/7 females vs. 8 males/6 females; χ2(1)=0.002, p>0.90),
ethnicity (75% vs. 71.4% Caucasian; χ2(2)=2.06, p>0.36), employment status (87.5% vs.
85.7% undergraduate students; Fisher’s exact test p>0.39), and length between the behavioral
pre-screening and EEG session (36.06±24.06 vs. 43.00±23.45; t(28)=−0.80, p>0.40). One non-
learner had a past history of major depressive episode, whereas 2 learners had a past history
of subthreshold major depressive episode; no participants had received psychotropic
medication in the past 6 months.

Replicating prior findings from an independent sample (Pizzagalli et al., 2005), non-learners
reported higher anhedonic symptoms at the EEG session, as assessed by an anhedonic BDI-II
subscore [loss of pleasure (item #4), loss of interest (item #12), loss of energy (item #15), and
loss of interest in sex (item #21)] (0.68±0.82 vs. 0.25±0.45; t(28)=1.74, p=0.049, one-tailed)
and MASQ anhedonic subscore (51.57±17.02 vs. 43.16±9.98; t(28)=1.62, p=0.06, one-
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tailed).Groups did not differ in general distress (MASQ General Distress Anxiety: 15.86±4.52
vs. 15.25±3.47; t(28)=0.42, p=0.68; General Distress Depression: 20.07±10.54 vs. 15.44±2.73;
t(28)=1.62, p=0.12) or anxiety symptoms (MASQ anxious arousal: 19.79±5.25 vs. 18.19±1.56;
t(28)=1.16, p=0.26). Per design, learners had significantly higher response bias difference
scores (block 3 – block 1) than non-learners (0.15±0.13 vs.−0.17±0.14; t(28)=4.43 p<0.00001).

For participants allocated to a different bias for the behavioral and EEG session, the test-retest
correlation for reward learning over the two sessions was r=0.50 (p=0.068, n = 14). When
residualized reward learning values were considered, in which variance associated with
anhedonic symptoms (MASQ AD scores) was removed, the test-retest correlation was r=0.56
(p<0.035). As expected, for participants allocated to the same bias, overall response bias
(r=0.62, p<0.12, n = 16) but not reward learning (r=−0.02, p> 0.55) was significantly correlated
across the two sessions.

Scalp ERP data
The FRN was larger at FCz compared with Fz, as evident from a main effect of Site, F(1,28)
=10.56, p<0.004, partial η2=0.37. A main effect of Group also emerged: as hypothesized,
learners had significantly more positive FRNs to rich reward feedback than non-learners across
sites, F(1,28)=5.23, p<0.035, partial η2=0.16. Follow-up post-hoc Newman-Keuls tests
confirmed that learners had more positive FRNs compared with non-learners at Fz (1.72±2.89
μV vs.−0.14±2.15 μV; p<0.010) and FCz (0.76±3.33 μV vs. −1.59±2.13 μV; p<0.005) (Fig.
1A). An ANOVA considering FRN values at Fz as a function of learning phase revealed a
significant Group by Learning Phase interaction, F(1,28)=4.29, p<0.050, partial η2=0.13. As
shown in Fig. 1B, the FRN became more negative from early (block 1) to later phases (blocks
2 & 3) of the task for non-learners (p<0.050), whereas the FRN did not change for learners
(p>0.39). Group differences emerged only for the later phase (p<0.001). An analogous
ANOVA on FRN values at FCz revealed only a main effect of Group, F(1,28)=4.20, p<0.05,
partial η2=0.15; learners had a significantly more positive FRN than non-learners, particularly
at later phases of learning (block 1: p=0.051; blocks 2 & 3: p<0.002). Finally, Pearson
correlations confirmed that the amplitude of the FRN to rich reward feedback correlated
positively with differences in response bias over time [i.e., response bias (blocks 2 & 3 - block
1)] at Fz (r=0.46, p<0.01) and FCz (r=0.35, p=0.06), indicating that the positivity of the FRN
is a reliable index of reward learning.

Source localization data
LORETA was used to estimate intracerebral current density underlying the FRN, specifically
during blocks 2 and 3 compared with block 1. As hypothesized, learners showed relatively
higher activity to rich reward feedback than non-learners in the dACC (Brodmann areas (BAs)
24, 32, 33; t(28)=2.769, p<0.009) (Table 1, tFig. 2). By contrast, non-learners showed relatively
higher activity in the posterior cingulate cortex (PCC; BAs 29, 30, 31; (28)=3.074, p<0.005).

Inter-correlations among behavioral and ERP variables
Because the dACC is implicated in representing reinforcement histories to guide behavior
(Amiez et al., 2006; Holroyd and Coles, in press; Kennerley et al., 2006), a positive correlation
between dACC activation to reward feedback and the ability to develop a response bias was
expected. As shown in Fig. 3, higher current density in the dACC region was indeed associated
with greater reward learning [response bias (blocks 2 & 3 - block 1)] (r=0.40, p<0.030). Also,
more positive FRNs were associated with higher current density in the dACC (Fz: r=0.41,
p<0.030; FCz: r=0.38, p<0.040). In contrast, higher current density in the posterior cingulate
was associated with poor reward learning (r=−0.43, p<0.020). No correlations emerged
between PCC current density and FRNs.
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fMRI data
No differences emerged between learners and non-learners with respect to the 15th (275.42
±35.09 ms vs. 267.89±34.20 ms; t(19)=0.49, p>0.62) and 85th (382.50±47.47ms vs. 393.44
±69.14ms; t(19)= −0.43, p>0.65) percentile RTs, which were used to titrate target duration for
“unsuccessful” and “successful” trials, respectively. As in a prior study using this version of
the MID task (Dillon et al., 2008), the differences between the short and long duration targets
(learners: Δ=107.08 ms; non-learners: Δ=125.55 ms) were different enough to foster task
engagement while being similar enough to elicit a comparable BOLD response.

In addition, a Group × Trial Type (reward, loss) ANOVA performed on the percentage of trials
with a mismatch between RT and outcome revealed no significant effects (all Fs<1.21, all
ps>0.29). Thus, no behavioral differences emerged between learners and non-learners during
the MID task (% mismatched loss trials: 0.21±0.08 vs. 0.19±0.15; % mismatched reward trials:
0.20±0.07 vs. 0.22±0.13), indicating that fMRI findings were not confounded by group
differences in performance during the MID task.

For the fMRI data, the Group × Region × Outcome × Hemisphere ANOVA revealed a main
effect of Condition, F(1,19)= 9.36, p<0.007, partial η2=0.33, due to significantly higher
activation following win than no-win feedback. More importantly, this effect was qualified by
a significant Group × Condition interaction, F(1,19)=6.57, p<0.02, partial η2=0.26. Neuman-
Keuls post-hoc tests indicated that, as hypothesized, learners had significantly higher BG
activation than non-learners in response to wins (0.080±0.074 vs. 0.025±0.045; p<0.002) but
not no-win feedback (0.019±0.039 vs. 0.018±0.053; p>0.91). Moreover, learners (p<0.004)
but not non-learners (p>0.73), had significantly higher activation to win compared to no-win
feedback (Fig. 4). Although group differences for win feedback were significant for both
hemispheres (ps<0.0003), the strongest differentiation was seen in the right hemisphere, as
evident from a significant Group × Condition × Hemisphere interaction, F(1,19)=4.68,
p<0.045, partial η2=0.20. The only other effect to emerge was a significant Region ×
Condition interaction, F(3,54)=10.02, p<0.001, partial η2=0.35, which was not explored
further because it did not involve Group. No significant correlations emerged between (1) BG
activation to wins, and (2) behavioral or ERP variables.

Discussion
This study investigated the contribution of the dACC to probabilistic reward learning in
humans. As predicted, relative to non-learners, learners generated more positive FRNs and
greater dACC activity in response to reward feedback following correct identification of the
more frequently rewarded stimulus. Consistent with prior studies underscoring the sensitivity
of FRN amplitude to learning (e.g., Muller et al., 2005), group differences were largest in later
phases of the probabilistic reward task, by which time learners had established a robust response
bias. Furthermore, FRN amplitude was positively correlated with current density in the dACC,
and both FRN amplitude and dACC activation were positively correlated with reward learning.
These correlations support the conclusion that dACC responses to reward feedback are a useful
marker of reinforcement learning. Reward-related modulation of activity in the dACC is
hypothesized to reflect a DA signal conveyed by the BG (Holroyd and Coles, 2002). Although
the limitations of the electrophysiological technique precluded measuring BG activity during
the probabilistic reward task, we found that relative to non-learners, learners showed a stronger
BG response to rewarding outcomes in the MID task. Potentiated recruitment of BG regions
in subjects developing a response bias toward the rich stimulus is consistent with the hypothesis
that BG regions are critically implicated in feedback-based learning (Delgado, 2007;
O’Doherty et al., 2004; Seymour et al., 2007). Collectively, the present findings extend a well-
established model of human learning (Holroyd and Coles, 2002) into the domain of positive

Santesso et al. Page 9

Neuroimage. Author manuscript; available in PMC 2009 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reinforcement, and highlight the importance of the human dACC in probabilistic reward
learning.

The observation of relatively greater dACC activation in learners, as well as the relationship
between dACC activation and reward learning, is consistent with emerging animal and
neuroimaging evidence implicating the dACC in encoding reward probability and mediating
the link between reinforcement history and upcoming behavior (Akitsuki et al., 2003; Amiez
et al., 2005; Ernst et al., 2004; Ito et al., 2003; Nishijo et al., 1997; Shima and Tanji, 1998;
Rushworth et al., 2007). First, Ito and coworkers (2003) described dACC neurons that were
particularly responsive to unexpected reinforcement; learners in the current study may have
recruited this population of neurons, as only 40% of trials in the probabilistic reward task were
rewarded. Second, Shima and Tanji (1998) identified a region of the rostral cingulate motor
area (rCMA) that fired when monkeys voluntarily switched from one response to another in
order to obtain greater reward, and this finding has been replicated in humans (Bush et al.,
2002). The human homologue for rCMA is the anterior motor cingulate cortex (BA 24b; Vogt,
2005), thus these findings suggest that the human dACC — specifically, BA 24 — might play
an important role in updating response selection based on reward feedback. Indeed BA 24 is
the region identified by LORETA as more strongly activated by rewards in learners versus
non-learners (Fig. 2). Third, Nishijo et al. (1997) identified dACC neurons that not only
responded to rewarding objects but whose magnitude of response correlated with the monkey’s
object preferences. This result mirrors the present demonstration of a positive correlation
between dACC activation and response bias.

Although the current results are consistent with findings highlighting the role of the dACC in
using reward information to optimize behavior, we note that the positive relationship between
FRN amplitude and dACC activation observed here appears inconsistent with an influential
model of the FRN (Holroyd and Coles, 2002). The model proposes that the dACC is tonically
inhibited by dopaminergic BG signals, such that when an event is worse than expected
(negative prediction error), the resultant DA dip disinhibits the dACC and a relatively negative
FRN is generated. The same model predicts that when events are better than expected (positive
prediction error), the resultant DA burst will yield a more positive FRN (Holroyd and Coles,
in press). Although a relationship between the dACC and basal ganglia data presented here
must be considered speculative given important differences between the probabilistic reward
learning and MID tasks, this is essentially what was observed in the current study: learners,
who showed a more vigorous basal ganglia response to unpredictable rewarding outcomes than
non-learners (Fig. 4), also showed more positive FRNs (Fig. 1). However, along with more
positive FRNs, learners also showed relatively greater dACC activation (Fig. 2). This seems
to contradict the model (Holroyd and Coles, 2002), because although it is not explicitly stated
that the relationship between DA bursts and more positive FRNs must be mediated by inhibition
of the dACC, this seems logically implied by the fact that excitation of the dACC yields a more
negative FRN.

We are not currently able to resolve this discrepancy, but it should be noted that we have
observed this pattern of results previously. Using the same paradigm, we found that
administration of a DA agonist (hypothesized to activate DA autoreceptors and thus decrease
reward-related DA bursting) impaired reward learning and led to a more negative FRN along
with decreased dACC activity (Santesso et al., unpublished). By contrast, participants who
received a placebo demonstrated better reward learning, a more positive FRN, and greater
dACC activity. Thus, in two studies examining probabilistic reward learning, we have observed
positive correlations between dACC activity and FRN amplitude, rather than the negative
correlation that has been described in situations when performance and/or outcomes are worse
than expected (Holroyd and Coles, 2002). Future research will be needed to specify how the
relationship between DA signals, dACC activation, and scalp FRN differs for unpredicted
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negative vs positive outcomes. Positive and negative prediction errors appear to be partially
segregated to different regions of the striatum, with ventral anterior regions relatively more
implicated in positive prediction errors and dorsal posterior striatal regions relatively more
involved in negative prediction errors (Seymour et al., 2007); this raises the possibility that
different subregions within the dACC may mediate FRNs to unpredicted positive vs negative
outcomes.

Relative to learners, non-learners unexpectedly showed relatively greater activation in the
posterior cingulate cortex (PCC) in response to rewards. The PCC is connected with reward-
related areas of the brain such as the ACC, medial PFC, and caudate nucleus (Vogt et al.,
1992). Furthermore, PCC activity has been noted during the expectation and delivery of reward
in monkeys (McCoy et al., 2003) and in response to positive compared with negative feedback
in humans (Marco-Pallares et al., 2007; Nieuwenhuis et al., 2005), and implicated in the
acquisition of response-outcome associations in rodents (Tabuchi et al., 2005). However, the
reason for a stronger PCC response to rewards in non-learners versus learners is currently
unclear and will require additional research.

The present study has five main limitations. First, negative feedback was not included in the
probabilistic reward task. The FRN deflection is notably larger following negative versus
positive feedback, and FRNs elicited by positive and negative feedback may be generated by
distinct areas in the medial PFC/ACC (Nieuwenhuis et al., 2005); because our task involved
only positive feedback, we could not test this hypothesis. Second, although we were able to
investigate the spatio-temporal dynamics of brain mechanisms underling reinforcement
learning with millisecond time resolution, we could not examine activity in subcortical regions
(e.g., BG), or interactions between basal ganglia and cingulate regions, during the probabilistic
reward task. Thus, while we show that relative to non-learners, learners demonstrated increased
dACC and BG activation to reward feedback, it is important to emphasize that these data came
from different tasks, only one of which (the probabilistic reward task) has a learning
component. Although the disparate nature of the tasks might explain the lack of correlations
between the EEG and fMRI data, we note that one of the strengths of the present study was
our ability to show that non-learners were characterized by reduced activation in brain regions
implicated in reinforcement learning (BG and ACC) in two rather distinct tasks, highlighting
convergence and promising generalizability across the findings. Nevertheless, the implied
relationship between the ERP and fMRI data is tentative and must be interpreted with caution.
Third, while the LORETA algorithm has received important cross-modal validation
(Pizzagalli, 2007), the spatial resolution of this source localization technique (1–2 cm) remains
relatively coarse. Fourth, recent studies focusing on individual differences in reinforcement
learning have provided compelling evidence that genetic variations affecting dopaminergic
function can have profound influences on behavior (Frank et al., 2007) and brain activation
(Klein et al., 2007), critically extending theoretical models of reinforcement learning.
Unfortunately, for the present analyses, genetic information was not available. Finally, no data
were collected about socioeconomical status – a variable that has been found to modulate
monetary reward prediction error responses in a recent fMRI study (Tobler et al., 2007).
However, among these 30 participants, 26 were Harvard undergraduate students (12 non-
learners and 14 learners), 3 were graduate students, and one had graduated from college and
was employed. Despite these similarities, results should be replicated with samples s directly
evaluated with respect to economic status.

Nonetheless, the present study provides important electrophysiological evidence of the critical
role of the dACC in positive reinforcement learning in humans, and suggests that the
differences in dACC activity in learners versus non-learners may be related to differences in
the vigor of BG responses to rewards. The positive relationship between FRN amplitude and
dACC activation is at odds with a prominent model of human reinforcement learning (Holroyd
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and Coles, 2002). Overall, however, the findings are consistent with two of the model’s main
hypotheses: (1) that phasic DA bursts act as signals that reinforce rewarding behaviors (Bayer
and Glimacher, 2005; Garris et al., 1999), and (2) that these signals “teach” the dACC to select
among various response options (Holroyd and Coles, 2002). Moreover, these results add to
emerging evidence indicating that the dACC plays an important role in integrating
reinforcement history over time guide adaptive behavior (Amiez et al., 2006; Kennerley et al.,
2006; Rushworth et al., 2007).
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Fig. 1.
(A) Averaged ERP waveforms at Fz and FCz from 200 ms before to 600 ms after the
presentation of reward feedback for the rich stimulus during the probabilistic reward task for
learners (light line) and non-learners (heavy line) in the probabilistic reward task; and (B)
amplitude of the FRN at Fz during early (block 1) and late phases (blocks 2 & 3) of learning.
Error bars refer to standard errors.
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Fig. 2.
Results of voxel-by-voxel independent t-tests contrasting current density for the learners and
non-learners in response to reward feedback for the rich stimulus on the probabilistic reward
task. Red: relatively higher activity for learners. Blue: relatively higher activity for non-
learners. Statistical map is thresholded at p<0.020 (minimum cluster size: 5 voxels) and
displayed on the MNI template.
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Fig. 3.
Scatterplot and Pearson correlation between increases in dACC activation and response bias
from early (block 1) to late phases (blocks 2 & 3) of learning. Relatively increased dACC
current density in response to reward feedback for the rich stimulus is associated with greater
reward learning (r=0.40, p<0.030). When the subject with the lowest reward learning was
omitted, the correlation was r=0.59, p<0.001.
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Fig. 4.
(A) Parcellation of basal ganglia structures in a representative participant; only the caudate,
putamen, and globus pallidus are shown in this coronal slice. (B) Mean beta weights (averaged
across regions and hemispheres) in response to win feedback and no-win feedback in learners
and non-learners (significant Group × Outcome interaction). Error bars refer to standard errors.
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