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We determined the complete nucleotide sequence of the intracisternal A-particle gene, IAP-H18, cloned from
the normal Syrian hamster liver DNA. IAP-H18 was 7,951 base pairs in length with two identical long terminal
repeats of 376 base pairs at both ends. On the coding strand, imperfect open reading frames corresponding to
gag and pol of the retrovirus genome were observed, whereas many stop codons were present in the region
corresponding to env. The putative H18 gag gene (809 amino acids) had a sequence homologous to the
N-terminal half of the mouse mammary tumor virus gag gene and locally to the Rous sarcoma virus gag gene.
The putative H18 pol gene (900 residues) was homologous to the Rous sarcoma virus pol gene almost throughout
the entire region. Two conserved regions among the retrovirus pol genes have been reported. One presumably
corresponds to the DNA polymerase and the RNase H domain, and the other corresponds to the DNA
endonuclease domain of the multifunctional protein pol. By the comparison of the deduced amino acid
sequences of the putative endonuclease domain of six representative oncovirus genomes, a phylogenetic tree of
the oncovirus genomes was constructed, and the intracisternal A-particle (type A) genome was found to be
more closely related to the mouse mammary tumor virus (type B) and squirrel monkey retrovirus (type D)
genomes.

Morphologically and biochemically, intracisternal A par-
ticles (IAPs) are retrovirus-like structures which are consist-
ently observed in a variety of tumor cells and in early
embryonic cells derived from normal rodents, such as mice,
rats, and Syrian hamsters (12). Mouse IAPs contain a major
gag-like protein of 73,000 daltons (8, 18), a magnesium-
dependent reverse transcriptase (31), and a polyadenylated
RNA molecule (IAP RNA) (18). DNA sequences com-
plementary to the IAP RNAs (IAP genes) are interspersedly
present on the rodent chromosomes (12) in several hundred
to a thousand copies per haploid genome (11, 13, 16, 28),
although the function of these genes in vivo is unknown.

Recently, the amplification of a particular subset of the
IAP genes (25) and activation of a proto-oncogene, c-mos,
due to the integration of an IAP gene into its coding region
close to the N terminal (2), have been observed in mouse
myeloma cells. Furthermore, the integration of an IAP gene
into the intron of an actively transcribed immunoglobulin
kappa light chain gene has been reported to cause inactiva-
tion of that gene (9). These findings indicate that a consider-
able number of IAP genes present in the rodent genome can
act as endogenous insertion mutagens which may cause
genetic diseases such as cancer.
There may be a close evolutionary relationship between

the IAP and retrovirus genes, because the molecularly
cloned IAP genes from two species of Mus and Syrian
hamster were 6 to 8 kilobases in length (10, 15, 16, 28) with
long terminal repeat (LTR) sequences of ca. 0.35 kilobases at
both ends of the gene (2, 4, 9, 16, 17). These LTRs possessed
all of the structural features commonly observed on the
retrovirus LTR, although they show no marked sequence
homology with other retrovirus LTRs. Furthermore, a pre-
sumed primer tRNA (phenylalanine tRNA) (17) for reverse
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transcription was different from known retrovirus primers.
Recently, a significant homology of the deduced amino acid
sequence in the pol region among the retrovirus genes has
been reported (3, 29). However, due to the incompleteness
of the total nucleotide sequencing, the internal structure of
the IAP gene and a definite relationship between the IAP and
retrovirus genes have yet to be clarified. Among the cloned
IAP genes, those from two Mus species were fairly
polymorphic (10, 15, 16), and a portion of the IAP gene was
missing in some of them. Those from the Syrian hamster,
however, were not markedly polymorphic, and no deletion
was observed among them (28). Thus, we chose the Syrian
hamster IAP gene H18 (28), which is a representative among
the IAP genes we have isolated, for determining the com-
plete nucleotide sequence.
The nucleotide sequence of 1AP-H18 predicted a typical

LTR-gag-pol-env-LTR structure, although many stop
codons were present in the region corresponding to env. The
computer-assisted comparison of the deduced amino acid
sequences corresponding to the putative DNA endonuclease
domain of the pol region showed 1AP-H18, mouse mammary
tumor virus (MMTV) (type B), and squirrel monkey retro-
virus (SMRV) (type D) genomes to be closely related.
Furthermore, based on the homology of the deduced amino
acid sequences corresponding to that region, we were able to
construct a phylogenetic tree of six representative members
of the oncovirus subfamily.

MATERIALS AND METHODS

Clones and DNA sequencing analysis. The IAP gene clone
IAP-H18 from the Syrian hamster has been previously de-
scribed (28). DNA fragments were labeled either at 5' ends
with [y-32P]ATP (Amersham Corp., Arlington Heights, Ill.)
and T4 polynucleotide kinase or at 3' ends with [a-32P]
ddATP (Amersham Corp.) and terminal deoxynucleotidyl
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FIG. 1. Restriction map, sequencing strategy, and open reading frames of the Syrian hamster IAP gene, H18. The arrows indicate the

extent and direction of the sequence determined for the coding strand (top; +) and the noncoding strain (bottom; -). Symbols: 0, labeled
at the 5' end; 0, labeled at the 3' end; and V, determined previously (17). Stop codons in each phase of both strands are shown by the vertical
lines. Putative gag and pol regions are shown, and two mutually conserved regions, A and B, in the retrovirus pol genes are boxed. Restriction
enzyme abbreviations are as follows: Ba, BamHI; Bg, BgIlI; E, EcoRI; H, HindIII; K, Kpnl; P, Pstl; Sa, Sacl; Sc, Scal; St, Stul; and X,
XbaI.

transferase. The nucleotide sequence of the fragments was
determined by the method of Maxam and Gilbert (14), and
the sequencing strategy is shown in Fig. 1. For the compari-
sons of the deduced amino acid sequences by the homology
matrix, a computer program was used to generate diagonal
lines indicating segments of30 residues long that show homol-
ogy with a probability of occurrence by chance of less than
3 x 10-4 (29). With these matrices, the sequences were
aligned manually or by the computer-assisted method of
Sankoff (21). Amino acid sequence homology was calculated
as the percentage of the mutually identical residues at the
same position. In calculating homology, each gap was
counted as one substitution, regardless of its length.

RESULTS

Structural features of IAP-H18. IAP-H18, a representative
clone of the IAP genes present in multiple copies in the
Syrian hamster genome (13, 28), was 7,951 base pairs (bp) in
length with two identical LTRs of 376 bp at both ends (Fig.
2). On each LTR, many structural features commonly ob-
served on the retrovirus LTR, such as the CAT box,
TATAA box, and polyadenylation signal, were present (17).
About 60% homology at the nucleotide sequence level was
detected between H18 LTR and those of two Mus species
(16), whereas these IAP LTRs had little sequence homology
with either MMTV (6), Rous sarcoma virus (RSV) (22),
Moloney murine leukemia virus (Mo-MuLV) (27), or human
T-cell leukemia virus type I (HTLV-I) (24) LTRs. On the

H18 LTR, four consecutive enhancer-like direct repeats of
23 bp as a standard unit were found (DR1 in Fig. 2) (17).
Starting at position 611, eight consecutive and almost identi-
cal direct repeats of 14 bp with unknown functions were
present (DR2 in Fig. 2) in the region corresponding to the
leader sequence in the retrovirus genome. Except in the
regions mentioned above, neither direct nor inverted repeats
of more than 13 bp in length could be detected.

After translation of the H18 nucleotide sequence into the
amino acid sequence, positions of the stop codons on each
reading frame were identified (Fig. 1B). On the reading
frames of the coding strand, several open reading frames
(ORF1 to ORF7) were present in the region corresponding to
gag and pol of the retrovirus genome, whereas many stop
codons were found in the region corresponding to env. No
open reading frame of more than 140 amino acid residues in
length was detected on the reading frames of the noncoding
strand.
IAP-H18 gag gene. To elucidate the internal structure of

the H18 gene, deduced amino acid sequences of ORF1 to
ORF7 were compared with known retrovirus gag orpol gene
products by the computer-assisted graphical matrix method
as previously described (29). Deduced amino acid sequences
starting from ORF1 to ORF3 showed a meaningful resem-
blance to the RSV gag gene (22) in three regions (Fig. 3). The
first region (N-p27) of ca. 90 residues was located at the N
terminus of p27, a major structural protein of the RSV virion
core; the second region (C-p27 + N-p12) of ca. 140 residues
was positioned at the C terminus of p27 and the N terminus

FIG. 2. Nucleotide sequence of the Syrian hamster IAP gene, H18. The DNA sequence of the coding strand is given. LTRs are enclosed
by brackets. The CAT box, TATAA box, and polyadenylation signal are boxed. A presumed primer-binding site (PBS) and short direct
repeats (DR1 and DR2) are underlined. Nucleotides differing from a standard 14 bp of DR2 are shown by A. In the putative gag region,
deduced amino acid sequences homologous to the RSV gag gene are presented in the box. In the putative pol region, deduced sequences of
the two conserved regions, A and B, are presented in the box.
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FIG. 3. (A) Alignment of the putative gag gene product of H18 with the MMTV and RSV gag gene. The deduced amino acid sequences

of the putative H18 gag gene homologous to the MMTV or RSV gag gene are aligned. Amino acids are abbreviated as follows: A, alanine;
C, cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M, methionine;
N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine, V, valine; W, tryptophan; and Y, tyrosine. Asterisks (*) indicate
identical residues. Favored (conservative) amino acid substitutions are shown by (+). Favored substitutions are defined (23) as pairs of
residues both belonging to the same group. The groups are as follows: A, G, P, S, and T; D, E, N, and Q; H, K, and R; I, L, M, and V; and
F, W, and Y. Gap (-) is inserted to increase similarity. Two highly conserved stretches of sequence in the putative p15 of H18 and RSV as
reported by Toh et al. (submitted for publication) are boxed. A highly divergent region is presented by (... .). (B) Schematic representation
of the putative H18 and RSV gag genes. Homologous regions are indicated by areas of similar shading.

of p12, a basic protein forming a complex with genome
RNA. The third region (C-p15) was found at the C terminus
of p15, which has a protease activity for the processing of
polyprotein precursor into the mature form. In these regions,
the amino acid sequence homology between the H18 and
RSV gag gene product was calculated as 34% in N-p27, 28%
in C-p27 + N-p12, and 32% in C-p15. The putative H18 p15
region had two highly conserved stretches of the sequence
(Fig. 3A) commonly observed in retrovirus genomes such as
Mo-MuLV, HTLV-I, and 17.6 (a copia-like mobile genetic
element in Drosophila spp.) and cauliflower mosaic virus
genomes. These may form the active site of acid protease-
like activity (H. Toh, R. Kikuno, H. Hayashida, T. Miyata,
and K. Saigo, submitted for publication).

Reported N-terminal 353 residues of the putative MMTV
gag gene (7) could be aligned with the sequence deduced
from ORF1 by the insertions of gaps into each sequence,
whereas the N-terminal 236 residues of the RSV gag gene
could not be aligned with the ORF1 sequence. In this region,
the sequence homology between ORFi sequence and
MMTV gag gene product was 27%, whereas in the N-p27
region the homology was calculated to be 35%. ORF1 to
ORF3 was thus concluded to be the H18 gag region.
IAP-H18 pol gene. The deduced amino acid sequence

starting from ORF4 to ORF7 was found to be significantly
homologous to the entire pol region of the RSV genome, so
we tentatively designated this region as H18 pol (Fig. 1 and
2). The sequence alignment of this region is shown in Fig. 4.
In addition, H18 pol had distant but detectable homology to
the Mo-MuLV pol gene product in two regions. The first
region (A) corresponds to 230 residues, starting from the N
terminus of the RSV pol gene, whereas the other (B)
corresponds to ca. 170 residues, starting from the 576th
residue of the RSV pol gene. The observed sequence homol-
ogy among these three pol gene products was 1.2 to 1.4 times
higher in region A than B.

In region A, the estimated sequence homology between
the H18 and RSV pol genes was 51%, and 70% of the
residues were homologous when we included favored sub-
stitution for estimation. The sequence homology between
the H18 and Mo-MuLV pol genes in region A was calculated
as 30%, which is about the same (33%) as that between the
RSV and Mo-MuLV pol genes in this region. The H18 pol
gene was 37% homologous to the RSV pol gene in region B,
where the significant sequence homology among the pol gene
products of RSV, MMTV, and SMRV has been reported
(see below). Assuming that the N terminus of the H18 pol
gene starts at the same position as that of the RSV pol gene
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FIG. 4. Alignment of the putative pol gene product of H18 with RSV and Mo-MuLV pol genes. The putative H18 pol gene is aligned with
the entire regidn of the RSV pol gene. Two conserved regions, A and B (boxed), between H18 and Mo-MuLV pol genes are also aligned.
Definitions for amino acid abbreviations, (*), (+), and (-) are the same as described in the legend to Fig. 3. A stop codon is indicated as (x).
The coding frame is shifting in the region starting at position 274 to 314 of the RSV pol gene.

and ends with Lys located just before the two stop codons
(Fig. 4), the number of residues of the H18 pol gene was
calculated as 900, a value about the same as the RSV pol
gene (895 residues).
No significant homology of the deduced amino acid se-

quence in the env region could be detected between the H18
gene, including two open reading frames capable of encoding
ca. 150 amino acid residues in the reading frame 1 on the
coding strand, and MMTV, RSV, Mo-MuLV, or HTLV-I
gene.

Close relationship among A-, B-, and D-type oncovirus
genomes. By a comparison of the amino acid sequences
corresponding to either the A or B region (Fig. 4) in which
significant homology was observed in a variety of pol gene
products (3, 29; Toh et al., submitted for publication), we
tried to make a phylogenetic tree of the oncovirus subfamily.
Although, as mentioned previously, the sequence homology
in the A region was usually ca. 1.3 times higher than that in
the B region, the available sequences of five representative
oncovirus pol gene products were those of the B region,
which is known as the putative DNA endonuclease domain
of the pol. Therefore, we aligned these sequences as shown
in Fig. 5. At 21 positions of 172 residues of the RSV pol gene,
deduced amino acid residues from all six oncovirus genomes
were identical, and at 70% of these positions, the residues of
more than three oncogene products were identical.
From Fig. 5, the sequence homology was calculated

(Table 1). A combination with the highest detectable homol-
ogy (54%) was observed between MMTV and SMRV. The
second highest homology was found in H18 versus MMTV
and H18 versus SMRV, with ca. 50%, which was higher than
any other combination including H18. We could thus con-

clude that, among the five representative oncovirus
genomes, the IAP-H18 genome is closely related to both the
MMTV and SMRV genomes in the putative endonuclease
domain of pol.
Based on the sequence homology shown in Table 1, a

phylogenetic tree of the oticovirus genomes was constructed
(Fig. 6). Assuming the lower sequence homology to be due
to earlier divergence from the common progenitor, mam-
tnalian type C oncovirus was considered to have first di-
verged from the progenitor of the oncovirus, then from the
HTLV type, avian type C, and then from type A oncovirus
in that order. Finally, types B and D diverged from each
other.

DISCUSSION
In this study, we determined the entire nucleotide se-

quence of the representative clone, H18, of the Syrian
hamster IAP genes and clarified the structure of the gag and
pol regions of the retrovirus-like IAP gene.
The positions of both the N and C termini of the H18 gag

gene have yet to be determined. Since the codon next to the
C-terminal Glu was TAC (Tyr) in the putative H18 gag p15
and the stop codon TAG was positioned next to the C-
terminal Leu in RSV p15, G--C conversion seems to give
rise to the inconsistency of the C-terminal position between
the H18 and RSV gag gene. Supposing that the N terminus
of the HiS gag starts at the same position as the MMTV gag
gene (Fig. 2 and 3) and ends with the C-terminal Glu of
putative H18 p15, we calculated the number of residues of
the H18 gag gene to be 809, which is 108 residues more than
the RSV gag gene (701 residues).
The many stop codons present in the enlv region of H18
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FIG. 5. Alignment of the putative DNA endonuclease domain of six representative oncovirus genomes. Deduced amino acid sequences
of the pol regions corresponding to the region starting at position 576 to 747 of the RSV pol gene (total of 172 residues) are aligned. Identical
residues at the same position are indicated as [ ] or ( ). Gap (-) is inserted to increase similarity. Also indicated are the position in which the
residues of all six genes are identical (:), the position in which the residues of more than three genes are the same (+), and the stop codon
(x).

must cause the production of prematurely terminated IAP
env protein, even when the transcription and processing of
the active env mRNA advance normally. This situation is
also apparent in other IAP genes, since the presence of
env-like proteins encoded by IAP RNA and associated with
the TAPs has yet to be reported. Therefore, one probable
reason for the inability of IAP genes to produce budding of
the infectious virus particles through plasma membranes
might be the lack of the env protein synthesis.
From the morphological, biochemical, and molecular bio-

logical standpoints, we can divide the oncovirus subfamily of
the retrovirus family into six representative types, namely,
A, B, avian C, mammalian C, D, and HTLV. The relation-
ship among these members is still unclear. Recently, repre-
sentative oncovirus genes have been cloned, and some of

TABLE 1. Amino acid sequence homology in the putative DNA
endonuclease domain of the retrovirus pol genes'

% Homology with:
Virus genome (type)

SMRV MMTV IAP RSV HTLV-I MuLV

SMRV (D) 100
MMTV (B) 54 100
IAP (A) 50 49 100
RSV (avian C) 38 39 37 100
HTLV-I 36 30 32 31 100
MuLV (mammalian C) 27 28 25 23 32 100

a Sequence homology is indicated as a percentage of the mutually identical
residues at the same position shown in Fig. 5. Each gap was counted as one
substitution, regardless of its length.

them have been sequenced. Based on filter hybridization
experiments with cloned genes, Chiu et al. (3) found the
sequence homology between the avian type C and type A, B,
or D oncovirus genomes and determined the homologous
region and extent of their homology. Instead of the IAP

20

40

I I I JIOOSMRV MMTV IAP RSV HTLV I MuLV
(D) (B) (A) (A-C) (M-C)

FIG. 6. Phylogenetic tree of oncovirus genomes. Abscissa rep-
resents the amino acid sequence homology indicated as a
percentage.
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gene, they used the M432 gene, assumed to be a recombinant
between an IAP gene in the Mus genus and an unknown
retrovirus gene (1). Their results, though qualitative, agree
well with ours. To clarify the interrelationship of these
members, attempts are presently being made to determine
the homology among the cloned oncovirus genomes mainly
at the deduced amino acid sequence level. A distant but
significant homology of the deduced amino acid sequence in
the pol region between RSV and Mo-MuLV was first de-
scribed by Toh et al. (29). Later, Chiu et al. (3) reported the
deduced amino acid sequence homology in the B region of
pol among MMTV, SMRV, and RSV. Based on the deduced
amino acid sequence homology in the pol B region, we were
finally able to determine the interrelationship of the six
representative oncovirus genomes.
The retrovirus pol gene product is a multifunctional pro-

tein (5, 30) possessing not only DNA polymerase activity but
that of RNase H and DNA endonuclease as well. Thus,
conserved regions such as A and B in pol are considered to
form a domain having the same characteristic activity. The
domain bearing both DNA polymerase and RNase H activity
seems to be located in the A region, whereas the endonucle-
ase domain possibly having a significant role in the integra-
tion of the retrovirus genome into the chromosome may
quite possibly be in the B region. These intrinsic activities of
the pol protein appear to be very essential for reverse
transcription and integration of the retrovirus genome. Con-
sequently, eucaryotic mobile genetic elements such as copia-
like elements in Drosophila spp. and Ty elements in yeast
cells, which were found to share similarities with the
retroviral provirus genome (19, 26), have heen reported to
possess the region having such activities. Recently, Saigo et
al. (20) reported the complete nucleotide sequence of a
copia-like 17.6 element and found three open reading frames
presumably corresponding to gag, pol, and env. In the 17.6
putative pol gene, they found the deduced amino acid
sequence homologous to both the A and B regions of the
Mo-MuLV pol gene (20; Toh et al., submitted for publica-
tion). Since the copia-like element and IAP gene have been
reported to share similar biological features (such as rare
gene expression in normal tissue except for embryos and the
inability to produce infectious particles budding from plasma
membranes) and the usual gene expression in cultured or
malignant cells was infrequently followed by translocation,
the common structural and biological features between these
two genes strongly suggest that the copia-like elements have
been derived from an ancestor common to the retrovirus
gene and formed by a mechanism similar to that of IAP genes
accumulated in the rodent genomes.
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