Skip to main content
The BMJ logoLink to The BMJ
. 1995 Sep 2;311(7005):598–602. doi: 10.1136/bmj.311.7005.598

Predictors of neonatal encephalopathy in full-term infants.

S J Adamson 1, L M Alessandri 1, N Badawi 1, P R Burton 1, P J Pemberton 1, F Stanley 1
PMCID: PMC2550662  PMID: 7663254

Abstract

OBJECTIVE--Preliminary investigation of the contribution of adverse antepartum and intrapartum factors to neonatal encephalopathy in singleton neonates born full term. DESIGN--Matched case-control study based on incidence density sampling of controls. SETTING--Two major teaching hospitals (one paediatric and one obstetric) and three peripheral maternity hospitals in Perth, Western Australia (population 1.2 million). SUBJECTS--89 cases, all the full term singleton neonates born during an eight month period in 1992 who fulfilled one or more of six criteria during the first week of life (seizures, abnormal conscious state, persistent hypertonia or hypotonia, and feeding or respiratory difficulties of central origin). One full term control infant without neonatal encephalopathy was matched to each case by sex, hospital of delivery, time of day and day of the week of birth, and maternal health insurance status. MAIN OUTCOME MEASURES--Odds ratio estimates of relative risk of neonatal encephalopathy associated with antepartum and intrapartum factors. RESULTS--Estimated incidence of moderate or severe encephalopathy in first week of life was 3.75 per 1000 full term live births. Thirteen cases and no controls had evidence suggestive of important intrapartum hypoxia, and in only five of these cases was the neurological condition at birth attributed to events during the intrapartum period. Univariate conditional logistic regression analysis identified significant differences between cases and controls for maternal vaginal bleeding in pregnancy, maternal thyroxine treatment, congenital abnormalities, induction of labour, interval from membrane rupture to delivery, maternal pyrexia in labour, augmentation of labour, abnormal intrapartum cardiotocograms, and meconium in labour. Family history of convulsions also approached significance. CONCLUSIONS--Our preliminary results suggest that intrapartum hypoxia, according to currently used criteria, was not the cause of neonatal encephalopathy in most cases in this population. Our findings suggest that many aetiologies of neonatal encephalopathy originate in the antepartum period.

Full text

PDF
598

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blair E. A research definition for 'birth asphyxia'? Dev Med Child Neurol. 1993 May;35(5):449–452. [PubMed] [Google Scholar]
  2. Blair E., Stanley F. Aetiological pathways to spastic cerebral palsy. Paediatr Perinat Epidemiol. 1993 Jul;7(3):302–317. doi: 10.1111/j.1365-3016.1993.tb00406.x. [DOI] [PubMed] [Google Scholar]
  3. Blair E., Stanley F. When can cerebral palsy be prevented? The generation of causal hypotheses by multivariate analysis of a case-control study. Paediatr Perinat Epidemiol. 1993 Jul;7(3):272–301. doi: 10.1111/j.1365-3016.1993.tb00405.x. [DOI] [PubMed] [Google Scholar]
  4. Burton P. R. Helping doctors to draw appropriate inferences from the analysis of medical studies. Stat Med. 1994 Sep 15;13(17):1699–1713. doi: 10.1002/sim.4780131702. [DOI] [PubMed] [Google Scholar]
  5. Coorssen E. A., Msall M. E., Duffy L. C. Multiple minor malformations as a marker for prenatal etiology of cerebral palsy. Dev Med Child Neurol. 1991 Aug;33(8):730–736. doi: 10.1111/j.1469-8749.1991.tb14952.x. [DOI] [PubMed] [Google Scholar]
  6. DeMott R. K., Sandmire H. F. The Green Bay cesarean section study. I. The physician factor as a determinant of cesarean birth rates. Am J Obstet Gynecol. 1990 Jun;162(6):1593–1602. doi: 10.1016/0002-9378(90)90925-w. [DOI] [PubMed] [Google Scholar]
  7. Ergander U., Eriksson M., Zetterström R. Severe neonatal asphyxia. Incidence and prediction of outcome in the Stockholm area. Acta Paediatr Scand. 1983 May;72(3):321–325. doi: 10.1111/j.1651-2227.1983.tb09722.x. [DOI] [PubMed] [Google Scholar]
  8. Gluckman P. D., Williams C. E. When and why do brain cells die? Dev Med Child Neurol. 1992 Nov;34(11):1010–1014. doi: 10.1111/j.1469-8749.1992.tb11407.x. [DOI] [PubMed] [Google Scholar]
  9. Hagberg G., Hagberg B., Olow I. The changing panorama of cerebral palsy in Sweden 1954-1970. III. The importance of foetal deprivation of supply. Acta Paediatr Scand. 1976 Jul;65(4):403–408. doi: 10.1111/j.1651-2227.1976.tb04906.x. [DOI] [PubMed] [Google Scholar]
  10. Henderson-Smart D. Throwing the baby out with the fetal monitoring? Obstetric care, birth asphyxia and brain damage. Med J Aust. 1991 May 6;154(9):576–578. [PubMed] [Google Scholar]
  11. Inselman L. S., Mellins R. B. Growth and development of the lung. J Pediatr. 1981 Jan;98(1):1–15. doi: 10.1016/s0022-3476(81)80524-0. [DOI] [PubMed] [Google Scholar]
  12. Levene M. I., Sands C., Grindulis H., Moore J. R. Comparison of two methods of predicting outcome in perinatal asphyxia. Lancet. 1986 Jan 11;1(8472):67–69. doi: 10.1016/s0140-6736(86)90718-x. [DOI] [PubMed] [Google Scholar]
  13. Levene M. L., Kornberg J., Williams T. H. The incidence and severity of post-asphyxial encephalopathy in full-term infants. Early Hum Dev. 1985 May;11(1):21–26. doi: 10.1016/0378-3782(85)90115-x. [DOI] [PubMed] [Google Scholar]
  14. Meyer B. A., Dickinson J. E., Chambers C., Parisi V. M. The effect of fetal sepsis on umbilical cord blood gases. Am J Obstet Gynecol. 1992 Feb;166(2):612–617. doi: 10.1016/0002-9378(92)91685-4. [DOI] [PubMed] [Google Scholar]
  15. Miller G. Minor congenital anomalies and ataxic cerebral palsy. Arch Dis Child. 1989 Apr;64(4):557–562. doi: 10.1136/adc.64.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mulligan J. C., Painter M. J., O'Donoghue P. A., MacDonald H. M., Allan A. C., Taylor P. M. Neonatal asphyxia. II. Neonatal mortality and long-term sequelae. J Pediatr. 1980 May;96(5):903–907. doi: 10.1016/s0022-3476(80)80575-0. [DOI] [PubMed] [Google Scholar]
  17. Nelson K. B., Ellenberg J. H. Antecedents of cerebral palsy. I. Univariate analysis of risks. Am J Dis Child. 1985 Oct;139(10):1031–1038. doi: 10.1001/archpedi.1985.02140120077032. [DOI] [PubMed] [Google Scholar]
  18. Nelson K. B., Ellenberg J. H. Obstetric complications as risk factors for cerebral palsy or seizure disorders. JAMA. 1984 Apr 13;251(14):1843–1848. [PubMed] [Google Scholar]
  19. Nelson K. B., Leviton A. How much of neonatal encephalopathy is due to birth asphyxia? Am J Dis Child. 1991 Nov;145(11):1325–1331. doi: 10.1001/archpedi.1991.02160110117034. [DOI] [PubMed] [Google Scholar]
  20. Pharoah P. O., Connolly K. J., Ekins R. P., Harding A. G. Maternal thyroid hormone levels in pregnancy and the subsequent cognitive and motor performance of the children. Clin Endocrinol (Oxf) 1984 Sep;21(3):265–270. doi: 10.1111/j.1365-2265.1984.tb03468.x. [DOI] [PubMed] [Google Scholar]
  21. Sarnat H. B., Sarnat M. S. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976 Oct;33(10):696–705. doi: 10.1001/archneur.1976.00500100030012. [DOI] [PubMed] [Google Scholar]
  22. Stanley F. J., Blair E. Why have we failed to reduce the frequency of cerebral palsy? Med J Aust. 1991 May 6;154(9):623–626. doi: 10.5694/j.1326-5377.1991.tb121226.x. [DOI] [PubMed] [Google Scholar]
  23. Steer P. J., Eigbe F., Lissauer T. J., Beard R. W. Interrelationships among abnormal cardiotocograms in labor, meconium staining of the amniotic fluid, arterial cord blood pH, and Apgar scores. Obstet Gynecol. 1989 Nov;74(5):715–721. [PubMed] [Google Scholar]
  24. Tucker J. M., Hauth J. C. Intrapartum assessment of fetal well-being. Clin Obstet Gynecol. 1990 Sep;33(3):515–525. doi: 10.1097/00003081-199009000-00017. [DOI] [PubMed] [Google Scholar]

Articles from BMJ : British Medical Journal are provided here courtesy of BMJ Publishing Group

RESOURCES