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INTRODUCTION
Obesity is now considered a worldwide epidemic. In the US, more than 30% of the adult
population is currently obese, representing a two-fold increase since 1980 [1,2]. Concomitant
with this burgeoning obesity epidemic has been a significant increase in obesity-associated
diseases, most notably type 2 diabetes and cardiovascular disease [1,3].

Non-alcoholic fatty liver disease (NAFLD) is a newly emerging obesity-related disorder
characterized by fatty infiltration of the liver in the absence of chronic alcohol consumption
[4–6]. Similar to obesity, the prevalence of NAFLD has nearly doubled since 1980 [4,6,7].
Data from the most recent National Health and Nutrition Examination Survey (NHANES
1999–2002) suggest that the current prevalence of NAFLD is approximately 8.9% of the US
population, as indicated by elevated levels of serum alanine aminotransferase (ALT) [8].
Diagnosis based solely on ALT levels, however, has been shown to underestimate the
prevalence of NAFLD when compared to liver biopsies and radiographic techniques (e.g.
magnetic resonance spectroscopy and computed tomography) [9,10]. Using these latter
techniques, it has been estimated that NAFLD may affect 25–30% of the general population
and up to 80% of obese and diabetic individuals [11]. Perhaps most alarming, NAFLD is
emerging as a common pediatric disease, afflicting approximately 3–9% of all children in the
US and up to 50% of obese children [12].

Recent data have demonstrated that NAFLD is closely associated with visceral adiposity,
dyslipidemia and insulin resistance, and has been described as the hepatic component of the
metabolic syndrome [6]. NAFLD ranges from fat accumulation in the liver (steatosis), to
steatosis accompanied by inflammation and necrosis with or without fibrosis (non-alcoholic
steatohepatitis or NASH), to end-stage liver disease [5,7]. Individuals with NAFLD often
remain asymptomatic for decades. This indolent nature of NAFLD has contributed to an under-
appreciation of its potential hazards [5]. However, NAFLD is now recognized as the most
common cause of chronic liver enzyme elevations and cirrhosis [5,13], and more recent data
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suggest that the disease is independently associated with the development of cardiovascular
disease and overall- and obesity-related mortality [14].

In light of the increasing prevalence and health consequences of NAFLD, there is a critical
need to identify the mechanisms that mediate the development and progression of the disease.
Research over the last decade has greatly enhanced our understanding of the disease in this
regard, although numerous questions remain unanswered. For example, what metabolic
abnormalities initiate the development of NAFLD. Also, what biochemical processes mediate
the transition from simple steatosis to NASH. The current review will focus primarily on data
from our laboratory and elsewhere examining the potential role of fatty acid composition in
the progression of the disease. A putative role for the endoplasmic reticulum (ER) in the
development and progression of NAFLD will also be discussed. Finally, we will compare and
contrast the role of fatty acid composition in the pathophysiology of NAFLD with that of
alcoholic fatty liver disease (AFLD), a disease histologically identical to NAFLD but with
some intriguing differences.

TWO-HIT HYPOTHESIS
The current working model explaining the pathogenesis of NAFLD is the “two-hit” hypothesis,
first proposed by Day et al. in 1998 [15]. According to this hypothesis, steatosis represents the
“first hit”, which increases the vulnerability of the liver to various “second hits” that in turn
lead to the inflammation, fibrosis and cellular death characteristic of NASH. Consistent with
this hypothesis, administration of variously proposed second hits (e.g. endotoxin and pro-
oxidants) results in significantly greater liver damage and lethality in obese mice with fatty
liver compared to lean mice with healthy livers [16–18]. Furthermore, in humans, the severity
of steatosis is one of the strongest predictors of the development of NASH [19].

Several factors have been suggested to constitute the second hit(s), most notably oxidative
stress, pro-inflammatory cytokines and gut-derived bacterial endotoxin [4,20–22]. A detailed
discussion of each of these putative factors is beyond the scope of this paper and is available
in recent reviews [4,20–22]. It is important to note here, however, that these mechanisms are
not mutually exclusive; but instead, likely act in a coordinated and cooperative manner to hasten
the development and progression of NASH. For example, excess adiposity is associated with
increased proinflammatory cytokines and oxidative stress, as well as an exaggerated
inflammatory response to endotoxin administration [23]. Once generated, cytokines can cause
direct liver damage or act indirectly by increasing oxidative stress, which in turn can also
directly impair liver function or act indirectly by perpetuating the inflammatory response
[13]. Therefore, in environments conducive to the generation of various second hits (e.g.
obesity), a perpetuating cycle of insults may cause liver injury and culminate in NASH and,
over time, end-stage liver disease.

One important aspect of the two hit hypothesis is that steatosis per se is not causal in the
development of NASH; but rather, it sensitizes the liver to the damaging effects of second hits
such that stressors innocuous to a healthy liver lead to the development of NASH in the steatotic
liver. As will be discussed, however, an increasing body of literature suggests that the
deposition of fat in the liver, and more specifically the type of fat that is deposited, may in fact
directly damage the liver and precipitate the development of NASH.

LIPIDS AND NASH
Hepatocyte apoptosis is a salient feature and independent predictor of NASH [24,25]. In 1998,
Unger et al. [26,27], first introduced the concept of lipoapoptosis, whereby over accumulation
of lipids in non-adipose tissues leads to cell dysfunction and death. More recent data collected
in various experimental models suggest that lipid-induced cell toxicity and apoptosis is specific
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to or made more severe by saturated fatty acids [28–32]. These data predict that the presence
of increased circulating and/or hepatic saturated fatty acids, but not polyunsaturated fatty acids,
may promote the development and progression of liver damage, in part via activation of
apoptosis. Recent studies by our laboratory and others have tested this prediction [33–37].

To examine the ability of individual fatty acids to induce apoptosis in liver cells, we exposed
H4IIE hepatoma cells to either saturated (palmitate or stearate) or unsaturated (oleate or
linoleate) fatty acids. Only palmitate and stearate increased caspase-3 activity and induced
DNA fragmentation (Fig. 1A). Inclusion of the general caspase inhibitor Z-Val-Ala-Asp-
fluoromethylketone prevented palmitate and stearate-induced DNA laddering, demonstrating
that saturated fatty acid-induced apoptosis was caspase-dependent. Notably, co-incubation of
palmitate with oleate or linoleate reduced palmitate-mediated apoptosis (Fig. 1B). This latter
finding is consistent with previous data in pancreatic β cells, Chinese hamster ovary cells
(CHO), and cardiomyocytes and suggests that the ratio of saturated-to-unsaturated fatty acids
in cells is an important determinant of cell viability [30,34,38,39].

To examine whether an increased ratio of saturated-to-unsaturated fatty acids could induce
liver injury in vivo, we utilized dietary models of hepatic steatosis [40,41]. Male Wistar rats
were fed diets enriched with starch (STD), sucrose (HSD), polyunsaturated fat (HPUFA), or
saturated fat (HSAT) for 1,4 or 24 weeks (only 4 and 24 wk data are shown in figures) [33].
Liver triglycerides were increased to a similar extent in HSD, HPUFA, and HSAT compared
with STD at 4 and 24 weeks; however, saturated fatty acid content of triglycerides and
microsomal membranes was increased in HSD and HSAT compared with HPUFA (Fig. 2A).
Liver caspase-3 activity and plasma markers of liver injury were significantly higher in HSD
and HSAT compared to STD and HPUFA (Fig. 2B). In addition, HSD and HSAT were
characterized by reduced proliferative capacity following partial hepatectomy and increased
liver injury in response to lipopolysaccharide compared to HPUFA. Thus, an increased
saturated-to-unsaturated fatty acid ratio in the steatotic liver not only induced liver injury but
also reduced proliferative capacity and increased the susceptibility of the liver to endotoxin.
Importantly, increased liver injury in these dietary models was observed independently of
differences in cytokines and insulin action. These data are consistent with the notion that the
composition of fatty acids delivered to and stored within the liver is an important determinant
of liver cell integrity, and potentially an independent risk factor for progression to NASH.

INTRACELLULAR SIGNALS MEDIATING SATURATED FATTY ACID-INDUCED TOXICITY
Despite unequivocal evidence that saturated fatty acids induce apoptosis in a number of cell
types [28–32,38], including liver and hepatocytes [33,34,37], the mechanisms by which they
do so are unclear. Ceramide accumulation, which can occur via enhanced de novo synthesis
using palmitate or increased sphingomyelin breakdown, has been linked to both insulin
resistance and apoptosis [42–45]. In pancreatic β cells and bovine retinal pericytes, saturated
fatty acids not only increase ceramide levels, but inhibition of ceramide production prevents
saturated fatty acid-induced apoptosis [26,46]. To determine the role of ceramide in saturated
fatty acid-mediated apoptosis in liver cells, we incubated H4IIE cells with palmitate in the
absence or presence of the ceramide synthetase inhibitor fumonisin B1 [34]. Palmitate
significantly increased ceramide concentration in the absence of fumonisin B1, and the presence
of fumonisin B1 prevented this increase. However, the presence of fumonisin B1 did not reduce
palmitate-mediated apoptosis. These data are consistent with previous findings in CHO cells
[29], and suggest that intracellular mediators of saturated fatty acid-induced apoptosis are cell
specific, and that factors other than ceramide mediate the apoptotic effect in the liver.

It has been suggested that the accumulation of intrahepatic fatty acids can promote redox
imbalance and the formation of reactive oxygen intermediates. A study performed in CHO
cells demonstrated that palmitate-induced apoptosis required the generation of reactive
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intermediates [29]. In addition, other studies have found that reactive intermediates play a
primary role in the activation stage of apoptosis [47–50]. Preliminary data (unpublished
observations) from our laboratory suggest that both α-tocopherol (200 μM) and taurine (1%)
reduce, but do not prevent, saturated fatty acid-induced apoptosis. Thus, other as yet
unidentified intracellular signals, in addition to reactive intermediates, contribute to saturated
fatty acid-induced apoptosis in liver cells.

The mitogen-activated protein kinase family of proteins is critical for the cellular response to
a variety of stresses [51,52]. In particular, c-Jun NH2 terminal kinase (JNK) has emerged as a
central metabolic regulator in obesity-related insulin resistance, appears to be a direct target
of ceramide, and is activated by lipids [37,43,53,54]. Furthermore, a recent study demonstrated
that saturated fatty acid-induced apoptosis in both primary mouse hepatocytes and HepG2 cells
was mediated in part by activation of JNK [37]. Data from our laboratory supports an important
role for JNK in saturated fatty acid-induced apoptosis in the liver [36]. In this study, we
examined insulin-mediated protection against saturated fatty acid-induced apoptosis in the rat
hepatoma cell line, H4IIE and in primary rat hepatocytes [36]. Cells were provided a control
media (no fatty acids) or the same media containing 250 μmol/L of albumin-bound oleate or
palmitate for 16 h. Insulin concentrations were 0, 1, 10 or 100 nM. Palmitate, but not oleate,
activated caspase-3 and induced DNA fragmentation in the absence of insulin. Insulin reduced
palmitate-mediated activation of caspase-3 and DNA fragmentation in a dose-dependent
manner. PI3-kinase inhibitors abolished these effects of insulin. Palmitate, but not oleate,
increased JNK activity in the absence of insulin. Insulin or SP600125, a chemical inhibitor of
JNK, blocked palmitate-mediated activation of JNK and reduced apoptosis. These data not
only support a role for JNK in palmitate-mediated apoptosis, but also suggest that insulin is an
important determinant of saturated fatty acid-induced apoptosis in liver. Thus, these findings
may have implications for fatty acid-mediated liver cell injury in insulin deficient and/or
resistant states.

THE ENDOPLASMIC RETICULUM IS A TARGET FOR SATURATED FATTY ACIDS
The endoplasmic reticulum (ER) is one of the largest cellular organelles, its membranes
representing as much as one half of the total membranes in a cell [55]. The ER lumen comprises
over 10% of the cell volume and is characterized by a unique environment that includes the
highest concentration of calcium within the cell and an oxidative environment to support
disulfide bond formation [55,56]. An essential function of the ER is the proper assembly of
proteins that are ultimately destined for intracellular organelles and the cell surface. The status
of protein assembly and folding is monitored and relayed to the cytosol and nucleus by the
unfolded protein response (UPR) [56–59]. A variety of stressors, including loss of the luminal
oxidizing environment, imbalance in calcium homeostasis, and aberrant N-glycosylation
disrupt ER homeostasis and lead to the accumulation of unfolded proteins and protein
aggregates in the ER lumen, both of which can be detrimental to cell survival. Disruption of
ER homeostasis, collectively termed ER stress, activates the UPR. In mammals, ER stress is
sensed and the UPR activated by three ER transmembrane proteins, PERK (RNA-dependent
protein kinase-like ER eukaryotic initiation factor-2α kinase), ATF6 (activating transcription
factor 6), and IRE1 (inositol-requiring ER-to-nucleus signaling protein 1) (Fig. 3A). PERK
activation leads to phosphorylation of the α-subunit of the translation initiation factor eIF2 and
subsequent attenuation of translation initiation, and increases the expression and selective
translation of activation transcription factor 4 (ATF4). Increased expression of GADD34, a
member of the growth arrest and DNA damage family of proteins, is involved in
dephosphorylation of eIF2α and, therefore, reversal of translational attenuation. Upon UPR
activation, ATF6 is transported to the Golgi where it is cleaved and subsequently migrates to
the nucleus, as a 50 kDa fragment, and activates transcription of UPR target genes. Activation
of IRE1 promotes the splicing of X-box-binding protein-1 (XBP1) mRNA and subsequent
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transcription of molecular chaperones (e.g. GRP78) and genes involved in ER-associated
degradation [(e.g., ER mannosidase (EDEM)] [56,60–66]. Thus, activation of the UPR serves
to attenuate global protein synthesis and enhance the capacity for protein folding and
degradation. Failure of the UPR to re-establish ER homeostasis can lead to programmed cell
death [56,67].

Several studies have linked ER dysfunction and the UPR to impairments in glucose
homeostasis and diabetes. For example, PERK −/− mice develop diabetes due to a rapid and
progressive decline in endocrine and exocrine pancreatic function [68]. Conversely, mice with
a homozygous mutation of serine 51 on eIF2α die within 18 h of birth as a result of
hypoglycemia and impaired induction of genes involved in hepatic gluconeogenesis [69].
Programmed cell death in response to ER stress is mediated, in part, through transcriptional
activation of CCAAT/enhancer binding homologous protein (CHOP) [70,71]. Targeted
disruption of the CHOP gene in Akita mice, a mouse line that spontaneously develops
hyperglycemia with reduced β-cell mass, delayed the onset of diabetes [72]. Thus, it has been
proposed that chronic disruption of ER homeostasis may contribute to the attrition of β-cell
function and to impaired regulation of glucose homeostasis in diabetes [73–75].

An elegant study also identified the UPR as a molecular link between obesity and deterioration
of insulin action in liver and adipose tissue [76]. However, this study did not examine how
obesity led to disruption of ER homeostasis. The ER membrane is characterized by a low
concentration of cholesterol and a high concentration of polyunsaturated fatty acids, a lipid
environment consistent with a “disordered” membrane [77]. Recent evidence has demonstrated
that cholesterol loading activates the UPR and induces apoptosis in macrophages, suggesting
that the UPR senses changes to the membrane cholesterol environment [78]. To determine
whether the UPR senses changes in the fatty acid environment, we exposed H4IIE hepatoma
cells to either saturated (palmitate or stearate) or unsaturated (oleate or linoleate) fatty acids
[34–36]. Incubation with palmitate or stearate resulted in a significant increase in the expression
of biochemical markers of the UPR (GRP78, ATF4, GADD34, CHOP) and XBP1 splicing at
concentrations ranging from 100 to 500 μM [34,35]. Saturated fatty acid-activation of the UPR
preceded apoptosis [34,35]. Neither oleate nor linoleate altered any markers of UPR activation,
and co-incubation of palmitate with oleate or linoleate reduced palmitate-induced UPR
activation [34]. To determine whether saturated fatty-acids compromise ER homeostasis in
vivo, we measured several markers of ER stress in the aforementioned study in which male
Wistar rats were fed diets enriched with starch (STD), sucrose (HSD), polyunsaturated fat
(HPUFA), or saturated fat (HSAT) for 1,4 or 24 weeks (Fig. 2) [33]. Livers and hepatocytes
from HSD and HSAT rats, but not STD or HPUFA, were characterized by the presence of
spliced XBP-1 mRNA and increased GRP78 and CHOP protein [33]. These results suggest
that the UPR may sense and respond to the fatty acid environment and also indicate that the
ratio of saturated to unsaturated fatty acids may be an important determinant of hepatic ER
homeostasis. Future studies are necessary to determine whether ER stress and activation of the
UPR are causally linked to saturated fatty acid-induced apoptosis and liver injury.

It is presently unclear how saturated fatty acids induce ER stress. Saturated fatty acids disrupt
ER homeostasis and induce apoptosis in liver cells via mechanisms that do not appear to involve
ceramide accumulation [34]. Several studies suggest that saturated fatty acids-induce
cytotoxicity and/or disrupt ER homeostasis via selective, structural effects to the ER. For
example, in vitro data suggest that palmitoyl CoA can inhibit ER assembly and propagate ER
membrane fission [79]. In pancreatic β-cells, Busch et al [80] demonstrated that saturation per
se provoked cytotoxicity. In INS1 cells, palmitate was converted in the ER to solid tripalmitin,
thus induction of ER stress and apoptosis was attributed to physicochemical properties of these
“saturated” triglycerides [81]. In a highly innovative series of experiments, Borradaile et al.
[82] demonstrated that palmitate-induced ER stress in CHO cells and H9c2 cardiomyocytes
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was associated with the rapid incorporation of palmitate into lipid components of the rough
ER followed by disruption of ER structure and function. Thus, it is possible that the trafficking
of saturated fatty acids to the ER membrane may be an important determinant of ER
homeostasis [38,82]. Further work is necessary to determine whether selective lipid trafficking
to the ER is a component of saturated fatty acid-induced ER stress in hepatocytes.

A DILEMMA: SATURATED FATTY ACIDS ARE PROTECTIVE IN ALCOHOL-
INDUCED FATTY LIVER DISEASE

Alcoholic fatty liver disease (AFLD) affects nearly 50% of alcohol abusers and is a major cause
of illness and death among these individuals [83]. AFLD shares numerous similarities with
NAFLD. The natural history of both diseases is characterized by an initial over accumulation
of fat in the liver, which progresses in some individuals to steatohepatitis and cirrhosis. Obesity
and insulin resistance, the two principal risk factors for NAFLD, appear to also increase the
incidence of all stages of AFLD in heavy drinkers [84,85]. Histologically, the two diseases are
indistinguishable, and pathologically, the two diseases appear to share at least two mechanistic
pathways, oxidative stress and pro-inflammatory cytokines [86,87].

Recent evidence also suggests that AFLD is associated with ER stress. Using a murine model
of intragastric ethanol feeding, Ji et al., found that the development of steatosis following 6
weeks of ethanol ingestion was accompanied by increases in several ER stress-related proteins,
including GRP78, GRP94, CHOP and caspase 12 [88,89]. The induction of ER stress was
mediated, in part, by hyperhomocysteinemia, and was independent of TNF-α. In a subsequent
study by the same group, CHOP null mice were protected against ethanol-induced apoptosis
despite the development of fatty liver, suggesting a causal role for this transcription factor in
alcohol-related cell death [90].

Despite the numerous similarities between AFLD and NAFLD, some notable differences exist.
One of the more intriguing relates to the role of fatty acid composition in the development of
liver injury. In liver and hepatocytes not exposed to alcohol, saturated fatty acids appear to
promote apoptosis and liver injury [33,34,37,91]. In contrast, the opposite appears to be true
in AFLD; that is, saturated fatty acids reduce/prevent and unsaturated fats promote alcohol-
related liver injury [91–94]. The protective effect of saturated fatty acids was initially observed
in an intragastric rat feeding model of alcoholic liver disease, in which ethanol in combination
with a liquid diet containing corn oil produced severe liver pathology, whereas equicaloric
liquid diets containing either beef tallow or lard produced no or minimal to moderate pathology,
respectively [91]. In fact, this study suggested that linoleic acid may be an essential factor in
the development of AFLD. Notably, the protective effects of saturated fatty acids in this model
of ALFD appear to be associated with a reduction of steatosis via a combination of reduced
fatty acid synthesis and increased fatty acid oxidation and lipid export [94].

The mechanism(s) by which saturated fats protect against alcohol-induced liver injury are
unclear. A large body of literature supports a role for oxidative stress in AFLD. Cytochrome
P450 2E1, which assists in alcohol metabolism during excessive or chronic alcohol
consumption, can contribute to oxidative stress via formation of oxygen radicals and lipid
peroxidation [95]. Therefore, it is of note that saturated fats reduced alcohol-induced lipid
peroxidation and upregulation of CYP2E1 [96]. However, upregulation of CYP2E1 by dietary
saturated fat has not been a universal finding [94]. Saturated fats have also been shown to
reduce proinflammatory mediators, including TNF-α, cyclooxygenase-2 and NFκB [92,93]. It
has also been suggested that dietary saturated fat alleviates ALFD, in part, via upregulation of
adiponectin expression and production in adipose tissue [97]. These changes in adiponectin,
in turn, may contribute to the enhancement of fatty acid oxidation and thus reduced steatosis.
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Collectively, the existing data provide compelling evidence that saturated fatty acids protect
against the development and progression of AFLD. The mechanisms by which they elicit these
protective effects are unclear, although reductions in the magnitude of steatosis, oxidative stress
and inflammatory pathway activation appear to be involved. Since long chain saturated fatty
acids promote oxidative stress and activate inflammatory pathways in cells and tissues not
exposed to alcohol [29,37,46,98–100], it seems likely that the presence of alcohol alters
metabolism of specific fatty acids within tissues. Subsequent studies that directly compare the
effect of saturated fatty acids in models of alcoholic- and nonalcoholic fatty liver disease are
needed to address these discrepancies.

SUMMARY AND PERSPECTIVE
NAFLD has emerged as a serious and widespread obesity-related disorder. The full spectrum
of NAFLD ranges from hepatic fat accumulation in the absence of major histological
aberrations to fat accumulation accompanied by fibrosis and necrosis. The two-hit hypothesis
postulates that hepatic fat accumulation per se is not injurious, but rather, secondary insults
(e.g. ROS, inflammatory cytokines) imposed upon the fatty liver are necessary for progression
to steatohepatitis. However, a growing body of literature strongly suggests that hepatic fatty
acid composition may impact the degree of liver injury and therefore disease progression. We
propose that an increased ratio of saturated-to-unsaturated fatty acids delivered to or stored
within the liver may contribute to progression from simple steatosis to NASH. Therefore,
within the context of the two-hit hypothesis, saturated fatty acids may represent an intrinsic
second hit that hastens the development of NASH.

It is important to emphasize that cellular and murine models of NAFLD are far removed from
the free living conditions in which people typically develop the disease. Thus, it is important
to determine if the cytotoxic effects of saturated fatty acids observed in animal and cell culture
models are relevant to the development of the disease in humans. In this context, it has recently
been found in NAFLD patients that a considerable portion of hepatic triglycerides are derived
from the diet [101]. Given that saturated fatty acids and simple sugars constitute a significant
portion of the American diet [102–105], and that at least some patients with NASH consume
more saturated fat and carbohydrate and less unsaturated fats than healthy weight-matched
controls [106–108], it is reasonable to speculate that the amount of saturated fat in the liver of
NAFLD patients that progress to NASH may be increased. Indeed, the presence of increased
saturated fatty acids in serum cholesterol esters has been observed in individuals with type 2
diabetes [109]. In future studies, it will be important to examine the relationship between
circulating and intrahepatic fatty acid composition and liver damage in patients with NAFLD.
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Figure 1.
Caspase activity and DNA fragmentation in H4IIE liver cells. A) Caspase-3 activity and DNA
fragmentation were measure in liver cells following 6 or 16 hours of exposure to a control
media (LG) or a control media supplemented with thapsigargin (Th, positive control), oleate
at 500 μM (O500), palmitate at 500 μM (P500), linoleate at 500 μM (L500), or stearate at 500
μM (S500). B) DNA fragmentation was measured in liver cells following 16 hours of exposure
to control media (LG) or control media supplemented with the noted concentrations of fatty
acids. *, significantly different from LG and O500 or LG and L500 (p<0.05) [34].
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Figure 2.
Liver triglycerides, saturated fatty acid composition, caspase-3 activity and liver enzymes in
dietary models of hepatic steatosis. Rats were fed a high starch (STD), high sucrose (HSD),
high polyunsaturated fat (HPUF) or high saturated fat (HSAT) diet for 4 or 24 weeks. A) Liver
triglyceride (TG) concentration and the sum of saturated fatty acids in triglycerides (SatTG)
and microsomal membranes (SatMem). B) Liver caspase-3 activity and plasma concentrations
of alanine aminotransferase (AAT) and aspartate aminotransferase (AST). *, significantly
different from STD and HPUF (p<0.05) [33].
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Figure 3.
A) Schematic diagram depicting major components of the unfolded protein response as
described in text. B) Schematic diagram depicting (bold and italics) the components of the
UPR that are known to be activated in response to long chain saturated fatty acids.
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Figure 4.
Schematic diagram depicting disease progression in NAFLD and hypothesized second hits.
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