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OBJECTIVE—Pharmacogenomics is a key component of per-
sonalized medicine. The Israel Cardiovascular Events Reduction
with Vitamin E Study, a prospective placebo-controlled study,
recently demonstrated that vitamin E could dramatically reduce
CVD in individuals with diabetes and the haptoglobin (Hp) 2-2
genotype (40% of diabetic individuals). However, because of the
large number of clinical trials that failed to demonstrate benefit
from vitamin E coupled with the lack of a mechanistic explana-
tion for why vitamin E should be beneficial only in diabetic
individuals with the Hp 2-2 genotype, enthusiasm for this phar-
macogenomic paradigm has been limited. In this study, we
sought to provide such a mechanistic explanation based on the
hypothesis that the Hp 2-2 genotype and diabetes interact to
promote HDL oxidative modification and dysfunction.

RESEARCH DESIGN AND METHODS—Hb and lipid perox-
ides were assessed in HDL isolated from diabetic individuals or
mice with the Hp 1-1 or Hp 2-2 genotypes. HDL function was
assessed based on its ability to promote cholesterol efflux from
macrophages. A crossover placebo-controlled study in Hp 2-2
diabetic humans and in Hp 1-1 and Hp 2-2 diabetic mice assessed
the ability of vitamin E to favorably modify these structural and
functional parameters.

RESULTS—Hb and lipid peroxides associated with HDL were
increased and HDL function was impaired in Hp 2-2 diabetic
individuals and mice. Vitamin E decreased oxidative modifica-
tion of HDL and improved HDL function in Hp 2-2 diabetes but
had no effect in Hp 1-1 diabetes.

CONCLUSIONS—Vitamin E significantly improves the quality
of HDL in Hp 2-2 diabetic individuals. Diabetes 57:2794–2800,

2008

P
harmacogenomics is a key component of person-
alized medicine (1). Therapy targeted to a spe-
cific patient based on his or her genetically
determined pathophysiology responsible for the

disease offers the possibility of significantly improving
patient care and reducing costs. However, despite the
clear public health and economic benefits that would be
attained by such an approach, this paradigm has not been
successfully applied to a common disease.

Cardiovascular disease (CVD) is responsible for 75% of
deaths among individuals with diabetes, and yearly expen-
ditures for CVD in diabetes exceed $200 billion (2).
Neither conventional risk factors nor the degree of glyce-
mic control adequately predict which individuals with
diabetes develop CVD, suggesting the existence of genetic
susceptibility factors.

A polymorphism in the haptoglobin (Hp) gene may
define which individuals with diabetes are at greatest risk
of CVD. There exist two classes of alleles at the Hp locus
denoted 1 and 2 with three possible Hp genotypes 1-1, 2-1,
and 2-2 (3). In five independent longitudinal studies per-
formed in ethnically and geographically diverse groups,
individuals with the Hp 2-2 genotype and diabetes were
found to have a two- to fivefold increased risk of CVD
compared with diabetic individuals without the Hp 2-2
genotype (4–8). The prevalence of the Hp 2-2 genotype in
the diabetic population in most Western countries is
�40%, making this a common polymorphism.

The Hp polymorphism differs from nearly all polymor-
phisms being assessed in genome-wide association studies
because it is a functional polymorphism (3). Understand-
ing functional differences between the Hp 1 and Hp 2
allelic protein products, particularly in diabetes, may
provide insight into why Hp 2-2 diabetic individuals have
more CVD and how this increased burden of disease might
be reduced. The most well-understood function of Hp is to
bind Hb released from erythrocytes (3). Each day, �6 g Hb
is released into the bloodstream due to turnover of eryth-
rocytes, and heme iron in this Hb is a powerful oxidizing
agent (9,10). Hp, which is present in a 400-fold molar
excess to free Hb under normal conditions, binds Hb,
reducing its ability to mediate oxidative modifications and
directing its removal from the blood via the monocyte/
macrophage CD163 Hp-Hb scavenger receptor (11).

More than 5 years ago, motivated by in vitro studies
demonstrating that the Hp 2-2 protein provides inferior
protection against Hb-mediated oxidative stress (9,10),
coupled with the suggested importance of oxidative stress
in diabetic atherosclerosis (12), we sought to determine
whether antioxidant therapy might be particularly benefi-
cial to the Hp 2-2 diabetic cohort. We first tested this
hypothesis by examining stored samples from the Heart
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Outcomes Prevention Evaluation (HOPE) study, which
had failed to demonstrate benefit from vitamin E (13). We
found that myocardial infarction and CVD death were
reduced by �40 and 50%, respectively, in Hp 2-2 diabetic
HOPE participants who received vitamin E (14). To pro-
spectively test the hypothesis, we initiated a double-blind
randomized placebo-controlled study of vitamin E in 1,434
Hp 2-2 diabetic individuals (Israel Cardiovascular Events
Reduction with Vitamin E [ICARE] Study). We found that
vitamin E supplementation was associated with a �50%
reduction in the combined primary outcome of stroke,
myocardial infarction, and cardiovascular death in Hp 2-2
diabetes (7).

Enthusiasm for these findings, despite the considerable
public health and economic benefits that they suggest, has
been muted. Our study comes in the wake of numerous
large clinical trials that failed to demonstrate that vitamin
E provides any protection against CVD and may be harm-
ful (13,15–20). Further hampering acceptance of this par-
adigm is the lack of a rational pathophysiological and
pharmacogenomic mechanism to explain why Hp 2-2
diabetic individuals have an increased risk of CVD and
how vitamin E mitigates this risk. In this study, we sought
to provide a rationale for the pharmacogenomic applica-
tion of the Hp genotype to prevent CVD in diabetes by
elucidating the unique structural modifications and dys-
functional nature of HDL in Hp 2-2 diabetic individuals and
how these structural and functional changes in HDL are
rapidly reversed with vitamin E.

RESEARCH DESIGN AND METHODS

Ethical approval. These studies were approved by the institutional review
boards of the Rambam Medical Center and the Technion. All participants
provided informed consent.
Human subjects. All studies except where indicated were performed with
type 2 diabetic individuals recruited from ICARE (7). The Hp type of
participants was determined by gel electrophoresis, which has a 100%
correspondence with the Hp genotype determined by PCR (21).
Animal studies. The Hp 2 allele is present only in humans. All other species
have only an Hp 1 allele, which is highly homologous with the human Hp 1
allele. We have previously described the construction of a murine Hp 2 allele
and the targeting of its insertion by homologous recombination to the murine
Hp genetic locus (22). Mice were fed normal chow. Diabetes was produced
with streptozotocin at 2 months of age and studied after a diabetes duration
of 1 month.
Measurement of the clearance rate of Hp-Hb in vivo. Hp and Hb were
labeled with 125I using chloramine T (23). 125I-labeled Hp-Hb was injected in
the tail vein of mice (one million counts per minute [cpm] corresponding to 50
ng), and counts per minute [cpm] in serum was measured at defined intervals.
Purification of HDL. Ultracentrifuge-purified HDL was prepared as previ-
ously described (24). Immunopurified HDL was prepared from human or
murine serum using a rabbit anti-apoA1 antibody and protein A/G Sepharose.
HDL-associated lipid peroxides and HDL-associated redox active iron.

Total lipid peroxides (nanomoles) associated with HDL were assessed in 1 �g
immunopurified HDL (25). For the assessment of redox active iron associated
with HDL, the time-dependent oxidation of dihydrorhodamine by immunopu-
rified HDL was assessed in the presence and absence of desferroxamine (25).
Assessment of the association of native Hp and Hb with HDL. Hp and Hb
were assessed in immunopurified HDL by Western blot with either rabbit
anti-Hp or anti-Hb antiserum and alkaline phosphatase–coupled goat anti-
rabbit antiserum for detection.
Cholesterol efflux. Serum from mice or humans treated with placebo or
vitamin E was assessed for its ability to promote the efflux of [3H]cholesterol
from macrophages (26).
Study drugs. For murine studies, vitamin E was administered in the drinking
water at 40 mg � kg�1 � day�1 for 30 days beginning 1 month after onset of
diabetes. For human studies, placebo or vitamin E (400 IU natural source d-�
tocopherol/day) capsules were provided in a double-blinded format.
Human crossover study design. The study (clinical trial reg. no.
NCT00314379) was performed in 18 Hp 2-2 diabetic individuals who were not
on antioxidant therapy at baseline (baseline characteristics provided in

supplementary Table 1 available in an online appendix at http://dx.doi.org/
10.2337/db08-0450). Blood was taken at baseline (test 1). Participants were
randomly allocated to initially receive vitamin E or placebo for 2 months, after
which another blood sample was taken (test 2), and this initial treatment was
stopped. Two weeks later, the participants were crossed over to the other
treatment, and a blood sample was taken after 2 months of treatment (test 3).
Statistical analysis. All results are reported as means � SE. Comparison
between groups was performed using Student’s t test or ANOVA and the
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FIG. 1. Hp is an HDL-associated protein. A: Hp is an HDL-associated
protein in humans. One microgram of HDL prepared from three differ-
ent individuals with diabetes by ultracentrifugation (UC) or immuno-
precipitation (IP) was subjected to Western blot analysis for Hp.
Purified Hp 2-1 protein was run as a control to indicate the location of
the Hp �-chains. M, MW marker. An immunoreactive band for Hp is
seen only in HDL prepared by immunoprecipitation. To confirm equal
loading of protein in all lanes, the same blot was subsequently devel-
oped with an anti-ApoA1 antibody. B: Increased amount of Hp 2-2
protein associated with human HDL. Hp was assessed in the HDL
immunoprecipitate by Western blotting. Hp �-chains detected by West-
ern blotting are shown. Purified Hp 2-1 protein (2-1) was run as control
to indicate the location of Hp 2-� (17 kDa) and Hp 1-� chain (11 kDa).
Samples denoted 2-2 or 1-1 represent the HDL immunoprecipitate from
six different individuals with either the Hp 2-2 or Hp 1-1 genotype.

TABLE 1
Half-life of the Hp 1-1–Hb and Hp 2-2–Hb complex in nondiabetic
and diabetic mice and rats

Animal strain Diabetes n

Hp-Hb
complex

Half-life
(min)

Hp 1 mice � 5 Hp 1 20.4 � 1.7
Hp 1 mice � 4 Hp 1 22.9 � 2.1
Hp 1 mice � 5 Hp 2 57.8 � 2.8
Hp 1 mice � 4 Hp 2 78.2 � 4.1
Hp 2 mice � 5 Hp 1 24.5 � 1.8
Hp 2 mice � 6 Hp 1 18.6 � 1.8
Hp 2 mice � 5 Hp 2 53.8 � 3.3
Hp 2 mice � 6 Hp 2 103 � 3.9
Rat � 4 Hp 1 17.3 � 2.1
Rat � 4 Hp 2 48.0 � 3.8

Data are means � SE. In the absence of diabetes, the half-life of the
Hp 2-Hb complex was significantly increased compared with the Hp
1-Hb complex in all animals and strains studied (P � 0.0001).
Diabetes had no effect on the half-life of the Hp 1-Hb complex.
However, the half-life of the Hp 2-Hb complex was significantly
increased in both Hp 1 and Hp 2 diabetic mice compared with that
observed in Hp 1 mice or Hp 2 mice without diabetes (P � 0.015
comparing the Hp 2-Hb complex in Hp 1 nondiabetes vs. Hp 1
diabetes; and P � 0.0001 comparing the Hp 2-Hb complex in Hp 2
nondiabetes vs. Hp 2 diabetes). Moreover, the half-life of the Hp 2-Hb
complex was increased to a greater degree in Hp 2 diabetic mice
compared with Hp 1 diabetic mice (103 � 3.9 vs. 78.2 � 4.1 min, P �
0.005).
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Tukey-Kramer honestly significant difference method for comparisons of
means test as appropriate, with a P value of �0.05 considered significant.

RESULTS

The half-life of the Hp 2-2–Hb complex is markedly
increased in diabetes. We sought to test the hypothesis
that clearance of Hp-Hb from the plasmatic compartment
is both Hp genotype and diabetes dependent. We tested
this hypothesis by injecting 125I-Hp-Hb into Hp 1-1 or Hp
2-2 mice with or without diabetes. The half-life of Hp
1-1–Hb was �20 min with or without diabetes. The half-life
of Hp 2-2–Hb was �50 min in mice without diabetes and
�100 min in mice with diabetes (Table 1).
Hp is an HDL-associated protein in humans. Hp has
been shown by some but not all investigators to be an
HDL-associated protein (24,27–29). Critical analysis of
these prior studies suggested that the key difference in
these studies was in the manner in which the HDL was
prepared. We assessed the presence of Hp in human HDL

prepared from serum by either ultracentrifugation or
immunoabsorbtion (Fig. 1A). We found that Hp is present
in the HDL when the HDL is prepared by immunoabsorb-
tion but not if the HDL is prepared by ultracentrifugation.
Although we found that Hp is present in the HDL of all
individuals, because the Hp 2-2 protein is made up of 3–10
disulfide-linked Hp monomers compared with the Hp 1-1
protein, which is made up of only 2 disulfide-linked Hp
monomers (3), significantly more Hp was detected in the
HDL of Hp 2-2 individuals (Fig. 1B).
The amount of Hb associated with HDL is increased
in Hp 2-2 diabetic individuals. The binding of Hp to HDL
and the high affinity of Hp for Hb suggested that Hp may
tether Hb to HDL. Furthermore, the impaired clearance of
Hp 2-2–Hb in diabetes would suggest that there might be
more of the complex associated with HDL in Hp 2-2
diabetic mice or humans. We first investigated this possi-
bility by assessing 125I-Hp-Hb in the HDL immunoprecipi-
tate and found a dramatic increase, representing �25% of
all injected cpm, in the amount of Hp 2-2–Hb associated
with HDL in Hp 2-2 diabetic mice (Fig. 2A). However, in
mice genetically deficient for Hp (Hp knockout), no
125I-Hb was found associated with HDL (zero cpm in HDL
immunoprecipitate), demonstrating that Hp is critical for
binding of Hb to HDL.

Parallel studies were performed in humans. First, we
incubated serum from Hp 1-1, Hp 2-2, or Hp 0 (individ-
uals in whom Hp was not detectable by gel electro-
phoresis) with 125I-Hb and assessed the amount of
radioactive label in the HDL immunoprecipitate. We
found significantly greater Hb associated with HDL in
Hp 2-2 serum (Fig. 2B).

We then assessed the amount of endogenous Hb asso-
ciated with HDL in Hp 1-1 and Hp 2-2 mice and humans
with and without diabetes by Western blot. We detected
substantial amounts of Hb associated with HDL in �90% of
Hp 2-2 diabetic individuals but failed to find Hb associated
with HDL in any Hp 1-1 diabetic individuals or in any
individuals (Hp 1-1 or Hp 2-2) without diabetes (Fig. 3A).
Similarly, we found a marked increase in the amount of
endogenous Hb associated with HDL in Hp 2-2 diabetic
mice (Fig. 3B).
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FIG. 2. The association of 125Hp-Hb and 125Hb with HDL is Hp genotype-
and diabetes-dependent. A: Increased association of injected Hp-Hb
with HDL in Hp 2-2 diabetic mice. 125I-Hp-Hb complex (one million
cpm) was injected in the tail vein. The percentage of the injected cpm
that coimmunoprecipitated with HDL at all time points after the
injection (1–180 min) is shown (n � 5 for Hp 1-1 and Hp 2-2 nondia-
betes and n � 6 for Hp 1-1 and Hp 2-2 diabetes). There was a significant
increase in cpm in the HDL immunoprecipitate of Hp 2-2 diabetes (P <
0.0001 compared with Hp 2-2 nondiabetes). There was no significant
difference in cpm in the HDL immunoprecipitate of Hp 1-1 diabetes
compared with Hp 1-1 nondiabetes (P � 0.24). B: The ability of 125I-Hb
to bind to human HDL in vitro is increased in Hp 2-2 and decreased in
Hp 0. 125I-Hb was incubated with serum from individuals with Hp 1-1,
Hp 2-2, or Hp 0. 125I-Hb associating with HDL was assessed by immu-
noprecipitation, and the mean � SE for 10 individuals from each of the
three groups is shown. There was significantly more 125I-Hb associated
with HDL using serum from Hp 2-2 individuals compared with Hp 1-1
individuals (P < 0.0001). The amount of 125I-Hb associating with HDL
using Hp 0 serum was significantly less than that observed in Hp 1-1
serum (P < 0.002). Note that Hp 0 does not indicate that these
individuals lack Hp, but rather that the level of Hp is below the level of
detection by gel electrophoresis.
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FIG. 3. Hb is an HDL-associated protein in Hp 2-2 diabetic humans and
mice. A: The amount of Hb associated with HDL is increased in Hp 2-2
diabetic individuals. Western blot for Hb of HDL immunoprecipitate of
serum of Hp 1-1 or Hp 2-2 diabetic individuals. Hb was identifiable in 14
of 15 diabetic individuals with the Hp 2-2 genotype and in 0 of 15 of the
diabetic individuals with the Hp 1-1 genotype. Hb was not found
associated with HDL from nondiabetic Hp 1-1 or Hp 2-2 individuals (not
shown). Hb indicates purified Hb used as positive control. B: The
amount of Hb associated with HDL is increased in Hp 2-2 diabetic mice.
Western blot for Hb of HDL immunoprecipitate of serum of Hp 1-1 or
Hp 2-2 mice with or without diabetes (D). Hb indicates purified Hb
used as positive control.
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The HDL of Hp 2-2 diabetic humans contains redox
active iron and has increased lipid peroxides. The
increased association of the pro-oxidant Hb with HDL in
Hp 2-2 diabetic individuals may result in the increased
oxidative modification of HDL-associated lipid and pro-
teins and may paradoxically make the HDL a pro-oxidant
(30). We assessed oxidation of HDL-associated lipids in
the HDL of Hp 1-1 and Hp 2-2 diabetic individuals and
found a marked increase in the amount of lipid peroxides
in the HDL of Hp 2-2 diabetes (1.8 � 0.2 nmol/�g HDL vs.
1.2 � 0.2 nmol/�g HDL, n 	 20, P 	 0.04). HDL from Hp
2-2 diabetic individuals was also associated with an in-
creased amount of iron capable of mediating oxidation
(4.4 � 0.8 pmol redox active iron/�g HDL vs. 1.8 � 0.5
pmol redox active iron/�g HDL, n 	 20, P 	 0.02).

The HDL in Hp 2-2 diabetes is dysfunctional. We
assessed the ability of serum from Hp 1-1 or Hp 2-2
diabetic mice or humans with type 1 or type 2 diabetes to
promote cholesterol efflux from macrophages in vitro. We
found a significant 30–40% decrease in HDL function in Hp
2-2 diabetes compared with Hp 1-1 diabetes (Fig. 4). No
differences were found between Hp 1-1 and Hp 2-2 in the
absence of diabetes or between Hp 1-1 with and without
diabetes (data not shown) (26).
HDL oxidative modification and dysfunction can be
corrected in Hp 2-2 diabetes with vitamin E. We
assessed the ability of vitamin E to reduce HDL oxidative
modification (HDL-associated lipid peroxides) and to im-
prove HDL function in Hp 1-1 or Hp 2-2 diabetic mice. We
found that vitamin E had no effect on HDL lipid peroxides
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or function in Hp 1-1 diabetic mice. However, vitamin E
significantly improved HDL function and reduced HDL
lipid peroxides in Hp 2-2 diabetic mice, restoring function
and reducing lipid peroxides to levels similar to those
found in Hp 1-1 diabetes (Fig. 5).

In humans, we assessed the ability of vitamin E to
improve HDL function and reduce HDL-associated lipid
peroxides in Hp 2-2 diabetes in a crossover study. We
found that vitamin E significantly improved HDL function
by 30–40% and reduced HDL lipid peroxides by 20–30%.
Notably, in this crossover design we found that after
vitamin E had restored HDL function and reduced lipid
peroxides and the vitamin E was then withdrawn, HDL
function deteriorated, and HDL-associated lipid peroxides
increased to levels seen at baseline within 2 months after
cessation of vitamin E supplementation (Fig. 6).

DISCUSSION

In this translational study, we have provided a pathophys-
iological and pharmacogenomic rationale as to why vita-
min E may provide cardiovascular benefit to individuals
with the Hp 2-2 genotype and diabetes (Fig. 7). The main
reason why Hp 2-2 diabetic individuals appear to uniquely
derive benefit from vitamin E is that there is substantially

more Hb associated with the HDL of Hp 2-2 diabetic
individuals. This key structural difference between HDL in
Hp 1-1 and Hp 2-2 diabetic individuals is the result of an
impairment in the CD163-mediated clearance of Hp-Hb in
Hp 2-2 diabetes (23,31).

The association of Hb with HDL results in the oxidative
modification of HDL-associated proteins and lipids. The
loss of function of HDL may be the direct result of its
oxidative modification. Hb can oxidize ApoA1 (32), and
oxidation of ApoA1 interferes with its ability to promote
cholesterol efflux from macrophages (33). Oxidative mod-
ification of HDL-associated lipids can result in the inacti-
vation of HDL-associated antioxidant enzymes such as
glutathione peroxidase and paraoxonase (30).

A binding site for Hp on ApoA1 (amino acid residues
141–164) has been identified (27). Interestingly, lecithin
acyl transferase (LCAT), whose activity is dependent on
its binding to ApoA1, binds to ApoA1 residues 159–170
(34). Hazen and colleagues (34) have shown that nitration
or oxidation of Tyr166 in ApoA1 results in an inhibition of
the binding of LCAT to ApoA1. We have previously dem-
onstrated a marked decrease in LCAT activity in Hp 2-2
diabetic individuals (26). We propose that binding of
Hp-Hb to a site adjacent to the LCAT binding site may
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vitamin E treatment (test 1-test 2 in cohort 1, P � 0.004; test 2-test 3 in cohort 2, P � 0.04) and no change with placebo treatment (test 1-test
2 in cohort 2, P � 0.33). Of note in cohort 1, test 3 is not significantly different from the baseline value, demonstrating that even though vitamin
E improved HDL function (compare test 1-test 2), after a 2-month period without vitamin E, HDL function deteriorated to baseline levels (P �
0.13 comparing test 1-test 3 in cohort 1). B: Reduction in HDL-associated lipid peroxides with vitamin E. There was a significant reduction in lipid
peroxides with vitamin E treatment (test 1-test 2 in cohort 1, P � 0.03; test 2-test 3 in cohort 2, P � 0.01) and no change with placebo treatment
(test 1-test 2 in cohort 2, P � 0.35). Of note in cohort 1, test 3 was not significantly different from the baseline value, demonstrating that even
though vitamin E reduced lipid peroxides (compare test 1-test 2), 2 months after the vitamin E was stopped, lipid peroxides returned to baseline
levels (P � 0.31 comparing test 1-test 3 in cohort 1).
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result in the nitration or oxidation (35) of Tyr166, resulting
in an impairment in LCAT activity. An impairment in LCAT
activity would be expected to impair the maturation of
HDL and its ability to promote cholesterol efflux (36). We
have found a very tight correlation between LCAT activity
and cholesterol efflux in diabetic individuals (r 	 0.81, P 	
0.0002) (26).

The ability of Hb associated with HDL in Hp 2-2 diabetic
individuals to sequester nitric oxide (NO) (37) may have a
clinical significance that is of greater importance (38) than
the effect of Hb on the function of HDL in reverse
cholesterol transport. HDL in Hp 2-2 diabetes may actually
be proatherogenic and prothrombotic by limiting NO
bioavailability.

These mechanisms are also relevant to the atheroscle-
rotic plaque. Plaque hemorrhage is recognized as an
important determinant of plaque stability (39). The Hp
genotype may determine the response to plaque hemor-
rhage (40). Impaired clearance of Hb in Hp 2-2 diabetic
plaques may lead to oxidative modification of HDL within
the plaque and an impairment of its ability to promote
reverse cholesterol transport.

The current focus of the medical community toward
HDL has been to increase its concentration. The hypothe-
sis presented here may help to explain the dramatically
increased CVD risk in patients with type 1 diabetes,
despite a usually normal HDL and lipoprotein profile.
Moreover, increasing the amount of HDL in individuals in
whom the HDL is dysfunctional and potentially proathero-
genic may actually be harmful (30). We believe that this is
the first demonstration in humans that HDL function can

be improved in a specific population with vitamin E.
However, not all HDL dysfunction can be attributed to
Hb-mediated oxidation, and consequently, not all individ-
uals would be expected to improve the quality of their
HDL with vitamin E, as we have demonstrated here with
Hp 1-1 diabetes.

In conclusion, we believe that we have provided a
pathophysiological and pharmacogenomic rationale as to
why vitamin E may provide benefit to the Hp 2-2 diabetic
cohort. The potential public health and economic benefits
from application of this paradigm are enormous. We hope
that these findings will encourage testing of this hypothe-
sis in a large-scale clinical trial that could result in the
establishment of treatment guidelines for individuals with
diabetes.
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