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Abstract

Host complement is widely distributed throughout mammalian body fluids and can be activated
immediately as part of the first line of defense against invading pathogens. The agent of Lyme disease,
Borrelia burgdorferi sensu lato (s.1.), is naturally resistant to that innate immune defense system of
its hosts. One resistance mechanism appears to involve binding fluid-phase regulators of complement
to distinct borrelial outer surface molecules known as CRASPs (complement regulator acquiring
surface proteins). Using sensitive molecular biology techniques, expression patterns of all three
classes of genes encoding the CRASPs of B. burgdorferi sensu stricto (BbCRASPS) have been
analyzed throughout the natural tick-mammal infection cycle. Each class shows a different expression
profile in vivo and the results are summarized herein. Studies on the expression of B. burgdorferi
genes using animal models of infection have advanced our knowledge on the ability of the causative
agent to circumvent innate immune defenses, the contributions of CRASPSs to spirochete infectivity,
and the pathogenesis of Lyme disease.
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Introduction

Borrelia burgdorferi sensu lato (s.l.) has a complicated enzootic life cycle. To perpetuate,

spirochetes depend on a vertebrate host, often a small mammal or a bird, and a vector tick of
the genus Ixodes. Those ticks have three postembryonic stages: larva, nymph, and adult, each
of which takes only one blood meal. Bacteria from an infected reservoir host may be acquired
by feeding larvae, which then colonize the tick midgut and are retained through the molt into
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the nymph stage. As an infected nymph feeds, spirochetes are transmitted into the blood and
skin of the host and subsequently spread into distant host tissues to establish disseminated and
persistent infection (Stanek and Strle, 2003; Wormser, 2006). Occasionally, infected ticks feed
on humans, which may lead to the development of Lyme disease (Lyme borreliosis). Dissecting
molecular mechanisms underlying the ability of B. burgdorferi s.1. to persistently infect
immunocompetent mammalian hosts is crucial to understanding Lyme disease pathogenesis
and the development of improved therapies to prevent and treat these infections. Components
of the host complement system are widely distributed throughout body fluids and can be
activated spontaneously to mediate potent responses to infections (Janeway et al., 1999).
Complement was originally discovered as a powerful enhancer of antibody-mediated killing,
but it also constitutes an important part of innate immunity. Complement can be activated on
surfaces of invading organisms through the alternative pathway, before the specific adaptive
response develops. By this pathway, spontaneous activation of C3 on cell surfaces triggers a
cascade of enzymatic events leading to formation of the membrane-attack complex as well as
opsonization and inflammatory response. Yet, like many other blood-borne pathogens, most
infectious isolates of B. burgdorferi s.1. are naturally resistant to this arm of the host innate
immune defenses (Brade et al., 1992; Breitner-Ruddock et al., 1997; van Dam et al., 1997). B.
burgdorferi s.1. produces several different outer surface proteins collectively termed CRASPs
(complement regulator-acquiring surface proteins). These lipoproteins share affinities for the
host fluid phase negative regulators of complement factor H and/or FHL-1 (factor H-like
protein 1) (Hellwage et al., 2001; Kraiczy et al., 2001, 2003, 20044, 2004b; Alitalo et al.,
2002, 2005; Stevenson et al., 2002; McDowell et al., 2003; Hartmann et al., 2006; Kraiczy and
Wiirzner, 2006; Herzberger et al., 2007). Those two host proteins promote breakdown of C3b
and inactivation of the alternative pathway C3 convertase (Janeway et al., 1999; Kraiczy and
Wirzner, 2006). Mice and many other mammals do not produce FHL-1, while humans do, so
the ability of CRASPs to bind FHL-1 may play arole in human disease, although not in infection
of natural reservoir hosts. Some CRASPs also bind other, similar serum proteins such as FHR-1
(factor H-related protein 1) (Park and Wright, 1996; Hellwage et al., 1999, 2006; Zipfel et al.,
2002, 2007; McRae et al., 2005; Haupt et al., 2007).

Genetic analyses of Lyme disease spirochetes led to division of B. burgdorferi s.l. into several
genospecies, with names including B. burgdorferi sensu stricto (s.s.), B. garinii, B. spielmanii,
B. afzelii, and others (Baranton et al., 1992; LeFleche et al., 1997). Since this review primarily
discusses the CRASPs of B. burgdorferi s.s., for clarity in reading we will refer to that organism
as B. burgdorferi and to Lyme disease spirochetes in general as B. burgdorferis.l. The CRASPs
produced by each borrelial genospecies are indicated by the genus and species initials, e.g. B.
burgdorferi CRASPs are designated BbCRASP, those of B. afzelii are BaCRASP, etc. B.
burgdorferi produces up to five different BbCRASPs, which are reviewed herein. At least two
of the BbOCRASPs contribute to complement resistance in vitro (Brooks et al., 2005; Hartmann
etal., 2006) but the question of why B. burgdorferi produces multiple distinct factor H-binding
proteins remains unsolved. Confounding matters further, both wild-type and factor H-deficient
mice can be infected by Lyme disease spirochetes to equal degrees (Woodman et al., 2007),
suggesting that factor H-binding is not essential for efficient mammalian infection.

Those data suggest five, non-exclusive possibilities:

1. Each class of CRASP is expressed at different times during the spirochete infectious
cycle.

2. Co-expressed CRASPs cooperate with each other in their functions.

3. Binding of factor H by B. burgdorferi is not the only mechanism used by the Lyme
disease spirochete to avoid being killed by complement.
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4. Binding of factor H is not be the only function of BbOCRASPs, and therefore not the
only mechanism by which BbCRASPs contribute to complement resistance and/or
mammalian infection.

5. Binding of factor H and other, similar host proteins by BoCRASPs serves other,
unrelated functions, such as adherence to host tissues.

Studies of B. burgdorferi transmission from infected ticks into mammalian hosts using animal
models have greatly advanced our knowledge on the ability of spirochetes to circumvent innate
immune defenses. Shedding more light on the regulation of BbCRASP expression during the
tick-mammal infection cycle can assist in determination of their additional functions and may
help in developing efficient vaccines that will directly target these proteins at the time they are
produced. Alternative therapeutic strategies could involve specific disruption of signaling
pathways triggering synthesis or coordinating action of BoOCRASPSs.

BbCRASP-encoding genes

BbCRASP-1 is encoded by cspA, a gene located on the linear DNA replicon Ip54 (Fig. 1).
Although the genome of every Lyme disease spirochete carries multiple genes that share
homology to cspA, only cspA is capable of binding factor H (Fraser et al., 1997;Casjens et al.,
2000;Kraiczy et al., 2006). The B. afzelii BaCRASP-1 is also encoded by an orthologous gene,
likewise located on its Ip54 homolog (Wallich et al., 2005). The cspZ gene, encoding
BbCRASP-2, is located on another linear DNA element, 1p28-3, but is not closely related to
any other gene within the B. burgdorferi genome (Fraser et al., 1997;Casjens et al.,
2000;Hartmann et al., 2006). Orthologous genes have been identified in all other Lyme disease
spirochete genospecies, although it is not yet clear whether or not the encoded proteins bind
factor H and FHL-1 (Rogers and Marconi, 2007, and our unpublished results). BoCRASP-3,
-4, and -5 lipoproteins all belong to the Erp paralog family, and their respective genes are named
erpP, erpC, and erpA, or, collectively, ospE (Stevenson et al., 1996,2002;Casjens et al.,
2000;Hellwage et al., 2001;Alitalo et al., 2002,2004;Kraiczy et al., 2003,2004a;Metts et al.,
2003). erp loci are all located on borrelial prophages which replicate as circular episomes
known as cp32s (Stevenson et al., 2001,2006).

Tick nymphs and the process of transmission

Bacteria colonizing the midguts of unfed nymphs generally do not produce detectable levels
of BbCRASPs (Miller et al., 2003; von Lackum et al., 2005; Bykowski et al., 2007) (Fig. 2).
When infected ticks begin to feed, B. burgdorferi begins production of Erp proteins (Miller et
al., 2003), but BbCRASP-1 or -2 remain largely undetectable during this time (von Lackum
et al., 2005; Bykowski et al., 2007, and our unpublished results). Ingested host complement is
ineffective inside the tick midgut, presumably due to components of tick saliva that block
complement activation (Ribeiro, 1987; Lawrie et al., 1999; Wikel, 1999; Valenzuela et al.,
2000; Rathinavelu et al., 2003; Schroeder et al., 2007).

As ticks continue feeding, bacteria cross the gut epithelium, migrate through the hemolymph,
target and penetrate the salivary glands, and are deposited into the bite wound with tick saliva
(Benach et al., 1987; Ribeiro et al., 1987; Zung et al., 1989). In host dermis at the bite site,
almost all bacteria produce detectable levels of BOCRASP-1 and all examined Erp proteins
(Miller et al., 2003; von Lackum et al., 2005). However, only a small percentage of bacteria
produce detectable BOoCRASP-2 levels in skin at the tick bite site (Bykowski et al., 2007).

Disseminated mammalian infection

At the time of disseminated mammalian infection, B. burgdorferi resides extracellularly at low
densitiesinavariety of tissues (Schwan etal., 1999), making it very difficult to directly examine
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bacterial protein production. However, at this stage transcript levels can be assessed by the
highly sensitive method of quantitative RT-PCR (Miller, 2005). Analyses of antibody
production can also serve to assess borrelial protein expression during mammalian infection.
Transcripts from erp genes have been detected in various tissues of infected laboratory animals,
including non-human primates, throughout the course of disseminated and persistent infection
(Miller et al., 2003, 2005; Miller and Stevenson, 2006). B. burgdorferi-infected mice mount
rapid antibody responses to Erp proteins (Lam et al., 1994; Akins et al., 1995; Suk et al.,
1995; Wallich et al., 1995; Stevenson et al., 1998; Miller et al., 2000b; Hefty et al., 2001,
2002; McDowell et al., 2001). Erp-directed antibodies persist at high levels and periodically
increase during prolonged infection, suggesting sustained exposure (and re-exposure) to Erp
proteins throughout chronic infection (Miller et al., 2003).

In contrast, cspA transcripts become undetectable within two weeks of establishing mammalian
infection (Wallich et al., 2003; Lederer et al., 2005; McDowell et al., 2006; Bykowski et al.,
2007). Humans and laboratory mice produce limited antibody responses to BbCRASP-1,
consistent with brief exposure of that protein to host immune systems (McDowell et al.,
2006; Rossmann et al., 2006).

By two weeks of mammalian infection, transcription of cspZ increases dramatically and is
significantly higher than in bacteria residing in ticks or during laboratory cultivation (Bykowski
et al., 2007). Humans and laboratory animals infected with B. burgdorferi produce robust
antibody responses to BbOCRASP-2, also indicating substantial production of that protein
during vertebrate infection (Hartmann et al., 2006, and our unpublished results).

Acquisition of bacteria by larval ticks

Molecular

Almost all of the bacteria acquired by feeding larvae produce BboCRASP-1, indicating that
cspA expression is re-stimulated during the mammal-tick transmission stage (von Lackum et
al., 2005). BbCRASP-2 protein is expressed in low abundance at this time, as cspZ undergoes
transcriptional repression (Bykowski et al., 2007). Erp proteins are produced by essentially all
recently-acquired borreliae in the feeding larval midgut. Following completion of larval
feeding and detachment from the host, B. burgdorferi reduces levels of all BbCRASPs (Miller
et al., 2003; von Lackum et al., 2005; Bykowski et al., 2007)

mechanisms underlying expression of BbCRASPs

Transcription start sites for cspA and cspZ have not yet been mapped, and the sequences
upstream from open reading frames show no obvious similarities to each other or to erp loci.
All the erp coding sequences, including erpA, erpC, and erpP, are preceded by almost identical
5’-non-coding sequences, including binding sites for at least 3 distinct DNA-binding proteins
(Babb et al., 2004, 2006). Co-regulation of erp genes on different cp32 plasmids suggests the
existence of similar molecular mechanisms that could coordinate expression of genes encoding
BbCRASP-3, -4, and -5 at the transcriptional level (Stevenson et al., 1998; Babb et al., 2001;
El-Hage and Stevenson, 2002; Babb et al., 2004, 2006).

Potential for direct or indirect effects on the synthesis of BoOCRASPs by the two B.
burgdorferi alternative RNA polymerase sigma factors RpoS (c5) and RpoN (NtrA, 6°4), has
recently been ruled out (Bykowski et al., 2007). All data indicate that each of the BoCRASP-
encoding genes are transcribed using the housekeeping sigma, RpoD (¢79) and that the
alternative sigma factors do not directly influence expression of these genes.
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Conclusions

Three types of genetically distinct but functionally related B. burgdorferi factor H-binding
lipoproteins have been described to date. Each class has a distinct expression pattern during
the mammal-tick infection cycle. BbCRASP-1 is produced exclusively during stages of
bacterial transmission from mammal to tick and vice versa, while BbOCRASP-2 is produced
during established mammalian infection. Erp proteins are up-regulated when nymphal ticks
begin to feed on mammals, are produced at all stages of mammalian infection, and are then
repressed following acquisition by feeding ticks. All other genospecies of Lyme disease
spirochetes contain cp32 prophage elements and erp genes, with at least some encoded proteins
sharing the ability to bind factor H (our unpublished results). These erp operons contain the
conserved 5’-non-coding regions as do the B. burgdorferi erp loci, suggesting that they also
share the same expression patterns. Likewise, it is likely that the BaCRASP-1-encoding gene
of B. afzelii has an expression profile similar to that of its B. burgdorferi ortholog, due to
similarities between those genes’ promoter elements (Wallich et al., 2005). As noted above,
other genospecies possess orthologs of cspZ, but the 5’-non-coding regions of cspZ genes
identified in strains of B. garinii are significantly different from those of B. burgdorferi, so it
is very possible that these genes are controlled through different mechanisms (our unpublished
results). Those differences indicate that continued studies of CRASPs produced by the many
different types of Lyme disease spirochetes are warranted. Since factor H-deficient and wild
type mice can be infected with B. burgdorferi to essentially identical levels, the possible
binding of factor H to the surface of bacteria may not be the only mechanism employed to
avoid complement-mediated killing (Woodman et al., 2007). Progress in dissecting other
mechanisms of B. burgdorferi complement resistance, defining novel ligands or roles for each
BbCRASP, and studies on interactions between factor H-binding proteins may bring novel
explanations for the diverse BbCRASP regulation patterns. Completing these analyses will
have a significant impact on our understanding of the infectious properties of Lyme disease
spirochetes.
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Fig. 1.

BbCRASP-encoding genes in the genome of B. burgdorferi strain B31. The segmented genome
of B. burgdorferi B31 is composed of a linear main chromosome and at least 24 other linear
and circular replicons (Fraser et al., 1997; Casjens et al., 2000; Miller et al., 2000a). Several
publications have referred to BbCRASP-encoding genes of the strain B31 by the open reading
frame (ORF) numbers assigned following sequencing and annotation of the genome (Casjens
et al., 2000). The sequenced B31 subculture had lost cp32-2, cp32-5, and other DNAS, so not
all genes known to exist in strain B31 were given ORF numbers. BbCRASP-1 is encoded by
cspA (ORF BBAG68) gene located on the linear DNA element Ip54. BoCRASP-2 is encoded
by cspZ (ORF BBHO06) carried by another linear replicon, Ip28-3. Genes erpP (ORF BBN38,
encoding BbCRASP-3) and erpC (encoding BbCRASP-4) are carried by plasmids cp32-9 and
cp32-2, respectively. Strain B31 can contain three identical copies of erpA, encoding
BbCRASP-5, on prophages cp32-1 (ORF BBP38), cp32-5, and cp32-8 (ORF BBL39).
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Fig. 2.

Comparison of BbCRASP in vivo expression profiles (relative levels of each BoCRASP or
gene transcript) during the mammal-tick infection cycle. (A) BoCRASP-1 likely functions only
during stages when bacteria are moving from the infected nymphs to the mammalian host and
again to naive larval ticks (von Lackum et al., 2005; Bykowski et al., 2007). Limited antibody
responses to this lipoprotein have been observed (Wallich et al., 2005; McDowell et al.,
2006; Rossmann et al., 2006). (B) BbCRASP-2 is produced predominantly during established
mammalian infection and induces strong antibody production by the host (Hartmann et al.,
2006; Bykowski et al., 2007, and our unpublished results). (C) Erp proteins are produced during
all stages between transmission from infected nymphs to acquisition by subsequently feeding
larvae (Das et al., 1997; Gilmore et al., 2001; McDowell et al., 2001; Hefty et al., 2002; Liang
et al., 2002; Miller et al., 2003, 2005, 2006; Miller and Stevenson, 2006). Infected mammals
mount rapid antibody responses to Erp proteins which persist at high levels over several months
of infection (Lam et al., 1994; Akins et al., 1995; Suk et al., 1995; Wallich et al., 1995;
Stevenson et al., 1998; Miller et al., 2000b; Hefty et al., 2001, 2002; McDowell et al., 2001).
Please see text for additional details.
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